Similar Document Sear ch and Recommendation

Vidhya Govindaraju, Krishnan Ramanathan

HP Laboratories
HPL-2011-150

Keyword(s):
Key phrase extraction; recommendation system; similarity search

Abstract:

Query formulation is one of the most difficult aspects of search, especially for anovice user. We propose a
new search interaction where the user searches with a reference document and the system learns from the
user inputs over aperiod of timeto "push" relevant and new content without additional user interaction.
Our method is based on identifying key phrases from the input document. The key phrases are used to
query a search engine and the results are evaluated for similarity to the original document. By caching
documents received from a user over a period of time, a user profile is built. The profileis then used to
provide recommendations to the user.

External Posting Date: September 21, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: September 21, 2011 [Fulltext]

© Copyright 2011 Hewlett-Packard Devel opment Company, L.P.

Similar Document Search and Recommendation

Vidhya Govindaraju
HP Labs, Bangalore, India
vidhya.govindaraju@hp.com

Krishnan Ramanthan
HP Labs, Bangalore, India
krishnan ramanathan@hp.com

Abstract—Query formulation is one of the most difficult
aspects of search, especially for a novice user. We propose a
new search interaction where the user searches with a
reference document and the system learns from the user
inputs over a period of time to “push” relevant and new
content without additional user interaction. Our method is
based on identifying key phrases from the input document.
The key phrases are used to query a search engine and the
results are evaluated for similarity to the original document.
By caching documents received from a user over a period of
time, a user profile is built. The profile is then used to provide
recommendations to the user.

Evaluations show that this method has a good precision in
finding documents of interest to the user. Also our key phrase
extraction method has good recall in retrieving the input
document. Additional experiments reveal that our
recommendation system is of help in exploring documents of
interest to the user.

Index Terms— Key phrase extraction, recommendation
system, similarity search.

[. INTRODUCTION

In spite of the ubiquity of search engines, navigating
information spaces remains a complex affair. Traditional
search operates by matching a search query to (pre-
processed) document representations. While current search
algorithms perform reasonably well when the goal is
navigation and known item search, they are not well suited
when the goal is more exploratory and persistent in nature
(e.g. the user is looking to learn a new topic). The user’s
ability in finding relevant information depends on his
ability to frame good queries. However, query formulation
is harder when the user is unfamiliar with the topic. There
is also very little support on the web for stating persistent
interest; this is necessary for facilitating ongoing learning.
These long term interests are often stated in the form of
short queries for which an engine can provide alerts [11],
however ongoing maintenance of alerts is a problem.

Often, users have a set of documents obtained through
browsing or from their social network (via emails,
recommendations etc). These documents could serve as a
good starting point for further search and
recommendations. These documents are highly reflective

of the user interests, yet they are hardly used in fulfilling
ongoing information needs. Today, it is the responsibility
of the user to identify salient keywords from the specific
document of interest and use them in a search query.

In this paper, we propose an interaction paradigm whereby
a user can provide to a relevant document and ask the
system to retrieve similar documents without having to
formulate search queries. For example, we would like the
system to take as input the PDF version of John Hopcroft’s
talk on “Future directions in Computer science”
(www.cs.cornell.edu/jeh/China%202007.ppt) and output
Ed Lazowska’s talk titled “Computer Science-past, present
and future”
(lazowska.cs.washington.edu/fcre/Lazowska.FCRC.pdf) as
a similar document. Since the user is likely to be
interested in similar documents that get created at a later
point in time, it would be useful for a system to scout for
similar documents on a continuous basis and send it to the
user whenever they become available.

There are three main goals of the system. They include
1. Fetching documents similar to an input document.

2.Learn wuser interests periodically and recommend
documents covering multiple user interests.

3.Provide enough
diversification.

content exploration via result

Key phrases are often used as a brief summary of
documents. Hence they could prove useful for retrieving
and recommending similar documents. Since manual key
phrase extraction is time-consuming, automatic extraction
becomes an important task. We describe a novel key
phrase extraction method to extract key terms in a
document and use them in a query to find similar
documents. The aim of this is to find key phrases that best
describe the context of the document.

The amount of content on the web is increasing with new

Manuscript received January 1, 2011; revised June 1, 2011;
accepted July 1, 2011.
Copyright credit, project number, corresponding author, etc.

articles, documents, blogs etc being posted every day.
Users face the problem of finding documents in their area
of interest. There is a lot of support in the web for finding
new and relevant information. Web based recommender
systems help in choosing the right documents for the user.
Often such systems suffer from the problem of data
sparsity and hence produce redundant results. We develop
a personalized recommendation framework for
recommending documents based on the past user requests
to the system. A user profile is built from the past requests
and then used to source and recommend documents to the
user on an ongoing basis. We feel that such a push based
document system will be highly valuable in finding content
from the web without querying for it.

We extend our solution of finding similar and relevant
content to result diversification. A document has multiple
modalities and providing the user with similar content in
all these dimensions becomes an essential component in
this scenario. We study the problem of diversifying search
results and present ways to maximize relevance and
diversity of search results.

There are a number of applications where this kind of
technology can be useful. For example, in e-discovery, a
patent attorney looking for relevant documents among
millions of documents can identify one relevant document
and request the search system for similar ones. In an online
video application, a user can mark videos as interesting
and request retrieval of similar videos. Finally, in an
exploratory search scenario, users might find the results
useful even if they are not very similar to the input
document. We would like to stress that in this work, our
motivation is not to detect duplicate web pages or
documents.

The remainder of this paper is organized as follows. In
section 2 we survey related work on similar document
search, keyword extraction, results diversification and user
profiling. In section 3 we describe the architecture of the
system. Section 4 discusses the system components and
algorithms in greater detail. In section 5, we describe the
different fronts on which we evaluated our system. Section
6 concludes the paper.

II. RELATED WORK

A. Similar Document Search

Similarity search has recently become a field of active
research [7] [8]. Despite this, there are very few systems
that use similarity search to facilitate user interaction.

One of the earliest approaches was the “Similar pages” or
“More like this” [10, 11] link provided by search engines
for search results. In [9] related article search in Pubmed
through citation links in the database is presented. The user

study reveals that such a system which helps in exploring
new and relevant information is a useful feature and it
becomes an integral part of user’s interaction with
Pubmed. A direct way of finding similar text that is
conceptually related to the input document is presented by
Yang etal. [7]. They have built a system for finding
similar articles in BlogScope. They have developed a
system of cross-referencing information created by
different users. There is a large amount of related work on
retrieving similar images. For example, Flickner [12]
developed a system for querying with images to get similar
images and videos.

B. Keyword and Key phrase Extraction

The simplest approach to key phrase extraction is taking
top n most frequent n-grams in a document [5]. A method
for extracting keywords based on frequency and co-
occurrence phenomenon is presented in [1]. In [7] key
phrases are extracted using part of speech tagger. All noun
phrases are extracted as key phrases.

Yahoo Phrase Extractor [3] takes a text snippet and returns
key terms in the text. In [15], the task of key phrase
discovery is accomplished using suffix arrays or suffix tree
structures. They have also presented the benefits of using
key phrases as a feature in natural language processing.
The authors have used key phrases extracted from web
pages in clustering web search results.

Kea algorithm [6] uses the Naive Bayes machine learning
algorithm for training a classifier with user generated key
phrases for sample documents. The trained set is then used
to extract key phrases from other documents.

Extracting key terms from noisy documents by exploiting
the graph of semantic relationships between terms in the
document is explained in [4]. This method is close to ours
except that they exploit the Wikipedia information to filter
redundant phrases. In [14], clustering based unsupervised
key phrase extraction algorithm is presented.

Since most key phrase extraction methods generate a large
number of key phrases, some form of ranking is used to
select key phrases [2]. Most key phrase extraction
algorithms are based on TFIDF for ranking key phrases

[5].

C. Diversifying search Results

Documents have multiple themes associated with it. Our
hypothesis is that in the process of finding a document that
is similar to the input document, users want variety and
coverage of different themes that the input document
covers. Hence diversifying search results to cover these
multiple interpretations becomes important. Diversification
can be achieved in two ways: framing multiple queries that
are intrinsically diversified or clustering results so as to
achieve diversification. Agrawal et.al. [13] employed a

greedy algorithm that minimizes user dissatisfaction in a
web search scenario. This method considers the popularity
of the category while diversification.

Clustering of words [14] will help in framing queries that
represent various themes in a document. Clustering words
that are semantically similar is done based on known
ontologies. Also mutual information between words could
be used as a factor to classify words into different clusters.

The traditional method of clustering documents considers a
document as a vector of words and distance between two
documents is found by taking the cosine similarity between
them. This is then used in a hierarchical clustering
algorithm to get document clusters. But this method leads
to high dimensionality and the computational costs are
often huge. Using key phrases as document features for
clustering is discussed in [15].

D. Recommending documents based on user profile

Web based recommender systems are primarily based
upon Collaborative Filtering (CF) techniques which filters
information based on user preferences. It is based on
measuring the similarity of users or items or both [21].
Though the user based CF has a lot of commercial
applications, when sorted for recommending documents
this suffers from the problem of data sparsity and noise.
Zhou [17] has used co-citation graph, author-document
relationship and document-venue relationship in an item
based CF for recommending documents. They
implemented a single low dimensional embedding of
documents that capture the similarities between them. A
semi-supervised learning on this graph was used to
develop a recommendation system. In [18], a content
based recommendation system for Citeseer database is
proposed. They classify the documents in Citeseer into
predefined set of concepts which they use to build a user
profile and recommend documents accordingly.

Query specific recommendation depending on standing
interests is proposed in [19]. Xu et. al [20] proposes a
personalized method for recommending documents based
on eye tracking of keywords in the document.

III. SYSTEM OVERVIEW

In this section, we present an overview of our system
architecture and designed a solution to the problem of
recommending relevant documents based on a set of input
documents.

Generate keywords
and key phrases

\ 4
r
Query a search engine]

and get a document corpus

v

Assess similarity and
diversify results

Input document

\

\ 4

l Results presenE_’

\ 3

Build user profile and Recommend
documents

Figure 1. System Overview

When a user queries our system with a document, our
system generates keywords and key phrases from the
document and uses them in a search query to get an initial
set of documents from the web. It ranks these documents
based on the similarity to the input document and
diversifies the results so as to cover all the themes in a
document. It then presents the top ranked similar
documents to the user. It builds a profile with the
documents received from a user and exploits them in
sending recommendations. An overview of the system
architecture is shown in figure 1.

The first step in our solution is to generate a set of
keywords and key phrases from the input document. A
document can be viewed as a bag of words. Identifying the
most important words can help in framing the right queries
for searching similar documents. The keywords and key
phrases in the documents appear often in document titles,
paragraph titles, and important sentences, often associated
with more meaningful terms. We exploit this feature in
finding keywords and key phrases in the document. Since
key phrases are more descriptive than keywords in
explaining the context of the document, we use them in
framing a search query. We also add the most important
keywords that may not have a co-occurrence feature to the
list while framing a search query.

We achieve search result diversification by framing
multiple queries representing various dimensions of a
document. We cluster the key phrases into different sets
and frame the queries for each cluster using the key
phrases in it. We query the search engine (e.g. Google
scholar) with these clusters and get an initial set of
documents. Since the queries are intrinsically diversified,
the initial corpus contains documents diversified on
various topics. For each document retrieved, we assess

their similarity with the input document. We return most
similar documents to the user.

We extend our solution to develop a recommendation
framework based on content similarity. We build the user
profile with the keywords and key phrases of the
documents that are sent to the system by the user. We also
use the author information in the input documents to
recommend recent documents published by the authors to
the user. This is highly useful in a research scenario to find
other content that is posted or created by the same author
whose documents the users are interested in. Also in a
document search application, finding new publications
from the top publishers who publish content of interest to
the user is also an important feature. Hence we use the
profiler data in finding the publishers and extract new and
relevant content published by them for recommending to
the users. Our evaluations show that such a system is very
useful in exploring the web for finding relevant
information.

AScript Invokes the

checks similar
periodically for document
-------- Incoming mails search service
() o o ®
— Extract pdf Mails the zip

from the mails file of the
results to the
user

Figure 2. User Interface Overview

The service is exposed as a cloud service. On the server
side, it is implemented as a shell script in Linux which runs
every minute and checks the incoming mails and parses
them to get the required information. This script then runs
the program for the similar document search and collects
the similar documents, compresses them and mails it back
to the user (figure 2). Currently, ten relevant documents
are mailed to the user.

IV. PROPOSED SOLUTION

In this section, we describe the algorithms used in our
system.

A. Key phrase Extraction and Ranking

In our method, we model the document as a graph of
words in which the important words in the document tend
to co-occur with other important words. We exploit this
feature in finding the keywords from the document. We
extend the algorithm in [1] to generate keywords and key
phrases for a document.

We first construct a graph where the nodes are high
frequency words in the document. The weight of a word is
taken as the document frequency of the word (excluding
paragraphs and document titles) multiplied by its weight.
The weight of a word is measured by the frequency of the
word in paragraph and document titles. If it does not

appear in paragraph and document titles, the weight is
taken as one.

We create edges between those nodes of the graph if words
associated with the nodes co-occur in the same sentence.
The edge weight is the minimum of the word weights
assigned to words in the previous step. We add to the
graph those words that co-occur with the high frequency
words in any sentence. We then find the maximally
connected components in the graph. Each maximally
connected component is called a concept. We use the
concept graph (Cg) for finding the keywords and key
phrases.

We find all 2-3 gram words in the document that does not
contain a stop word in the middle. For each phrase, we test
whether the words in the phrase are part of a concept. We
find the rank of the phrase as follows.

Number of words in
phrase which are
present in the concept Frequency of a
graph * phrase (1)

Rank of a phrase =
Number of words in the phrase

We select phrases with higher rank as key phrases.
Sometimes, key phrases generated by our method are
permutations of each other. These key phrases are further
filtered so as to avoid redundancy. While selecting a new
key phrase, only those that contain a new keyword
(compared to previous key phrases) are chosen.

From our initial experiments, we found that adding a few
keywords that are very important in the document, to the
seed query can improve the precision of the results
drastically. This is because certain words may not have a
co-occurrence feature. So for adding the keywords that are
very important to the query we use the weight of the
keywords. We sort the keywords in the descending order
of their weight. We find the point at which there is steep
decrease in weight. All the keywords before this point are
taken for query formulation.

B. Querying the search engine and assessing similarity

A query is formulated using the key phrases and important
keywords and is used to query the search engine to get a
set of similar documents.

The retrieved documents are ranked based on the similarity
to the input document. There are a number of ways in
which similarity could be assessed. In our method,
keywords and key phrases are extracted from the retrieved
document. Jacquard similarity measure is found between
the keywords and key phrases of input and retrieved
document using the equation

AN B
J(A’B)::ABB 2)

Here A and B are the key phrases extracted from the input
and retrieved documents. Documents with higher similarity
score are sent to the user.

C. Diversifying search results

A document could be addressing multiple themes. For
instance, a research paper on mobile security could be
addressing issues with mobility and security. Diversifying
search results so as to cover all the major themes of a
document will increase user satisfaction. This can be
achieved by framing multiple queries one for each context.

D. Framing multiple queries

For framing multiple queries, the phrases and important
keywords extracted above are clustered based on their
semantic relationships into different groups. We use the
Normalized Google Distance (NGD) [16] as a measure to
find semantic relationships between words. NGD uses
Google page counts of words and phrases to find the
relative distance between them. All the key phrases and
important keywords in the input document are clustered
based on the NGD between them. These clusters are used
to frame multiple queries so as to cover all the context of
an input document. A sample cluster of key phrases and
keywords for the research paper in reference [7] is listed in
figure 3.

Wikipedia graph
Extract candidate
Relevancerank algorithm

Score candidate
Content yields ne

Seed set
Document

Phrase extraction

Phrase Term extraction
Blog posts Mutual information

User generated conten Query document
Wikipedia page etrieval precision

Figure 3. Key phrase clusters for reference [7]

E. Algorithm for clustering key phrases

Input: Number of required clusters N, Array of key phrases
Output: Clustered key phrases

Steps:

1. Find Normalized Google Distance (NGD) between
every pair of key phrases and important keywords.

2. Use the NGD between key phrases in a hierarchical
agglomerative clustering algorithm to cluster the key
phrases. Compute the cluster centroid. This step is used to
find cluster centriods for seeding the k-means clustering
algorithm.

3. With these cluster centroids, use the NGD between key
phrases in a k-means clustering algorithm to get clusters of
key phrases.

F. Building User Profiles

A profile is a description of user interests. A push based
data delivery system requires a profile to be built for every
user interacting with the system. The user interacts with
our system by sending a document of significance to him
and requesting for similar documents. The input document
serves as a tool to predict user interest. We aim at building
a user profile by implicitly predicting user interest from
user interactions.

We add the keywords and key phrases from the input
document to the profile. The profile thus built for a user
contains terms that broadly specify his interest. When
keywords and key phrases collected over a period of time
repeat in the profile or have a close semantic relationship
between them, it represents consistent user interests. The
recommendation algorithm exploits this feature in getting
valuable recommendations for the user.

We also add other metadata of the input document such as
author name to the profile. This specifies the list of authors
whose documents the user has read. The user profile thus
built is used in a recommendation system to push relevant
content to the user.

G. Recommendation System

The system is used to recommend more relevant and recent
documents to the user based on his profile. The
recommendation system uses multiple approaches to
improve relevance.

a) Recommend documents based on user profile
b) Recommend new documents of favorite authors

¢) Recommend new documents from recent conferences or
journals.

Recommend documents based on user profile

The profile built for a user implicitly using the documents
received from the user, is used to select documents for
recommendation. The profile has a list of keywords and
key phrases from the input documents and author names of
the documents. All the key phrases and keywords in the
profiler are clustered (using the algorithm in Section
4.3.1.1) into different clusters. Since the clusters are
framed from keywords and key phrases taken from
multiple documents, they capture interrelationships
between various topics. One cluster may contain key
phrases from different documents if they have a close
semantic distance.

These clusters are then used to frame multiple queries. An
initial set of documents are retrieved using Google Scholar
as the search engine for each of these queries. For each

document retrieved we extract the keywords and key
phrases.

Each document is ranked based on three parameters:

Sp - Similarity with the profiler

Dy - Days since the document was published

N - Number of queries that retrieved the same document.
Rank = (Sp *a. + (1/ Dp) * B) * N 3)

The similarity score is the strength of user interest in the
document. Similarity with the profiler is computed as
follows.

|AN B
|4U B| “)

Here, A is the set of key phrases in the document and B is
the set of key phrases in the user profile.

Profile Similarity Score, Sp =

The second parameter is used to filter out old documents
and ensure recency. For experimental purposes, we used o
=1 and P =4. The documents are sorted based on the final
rank and top ranked documents are recommended to the
user.

Recommend new documents of favorite authors

The profiler together with the list of keywords and key
phrases of the documents received from a user, has a list of
authors of each document. We assume that this list of
authors as favorite authors for the user. The number of
documents of a particular author, that a user has read is
taken as the authority of an author. We extract papers for
each author by adding the string author:<name> to the
query in the search engine. Also we find all the co-authors
from the input list and retrieve papers for each double
author. We extract keywords and key phrases for each
document retrieved.

Each document is thus ranked on four parameters

Sp - Similarity with the profiler

Dp -Days since the document was published

Na - Number of favorite authors who wrote this document

Ay - Authority of the authors who wrote the document
Rank = Sp *a.+ (1/ Dp) * B+ N * Ay *v (5)

Author names may be misleading when the name is shared
by more the one person who publishes content in different
fields. To prevent such errors, we compute the similarity of
the document with the profiler. Similarity with the profiler
is computed as in Equation (4). The second parameter in
the above equation is used to filter old documents. The
third parameter increases the weight of a document
according to the number of favorite authors who wrote the
document. For experimental purposes we used o =4, § =4
and y =2.

Recommend new documents from recent conferences or
Jjournals

We exploit the profiler key phrases in fetching a list of
conference and journal names that publish content of
interest to the user. This helps in alerting the user with
relevant documents from recent conferences.

All the key phrases and keywords in the user profile are
clustered (using the algorithm in Section 4.3.1.1) into
different clusters. These clusters are then used to get a list
of conference and journal names from the search engine.
For each clustered dataset, we get publisher details of
documents from the search engine (e.g. in Google Scholar
using the Bibtex output) and add them to the publishers
list. We consider publishers with higher frequency from
the results list and retrieve recent documents published by
them. This is done by querying the conference name in the
search engine and setting the recent preference to the
current year. For each conference, recent documents that
were published by them are obtained.

Each document is ranked based on two parameters
Sp - Similarity with the profiler
Dy - Days since the document was published
Rank = Sp *a + (1/ Dp) * B (6)

Similarity with the profiler is computed as in Equation (4).
The second parameter is used to filter old documents. For
experimental purposes, we used o =1 and B =4. We used
these values because more likely the documents retrieved
with the conference names tend to be relevant and the
major parameter here is the published date (since users
desire documents that are recommended to be more
recent).

V. EXPERIMENTAL EVALUATION

Our experimental evaluation is designed to answer the
following questions

1. Are the key phrases obtained by our method sufficiently
discriminative?
2. Are the similar documents retrieved by the system of
good precision?

3. How good are the recommendations made by our
recommender?

A. Evaluation of Key phrases

We first evaluated the usefulness of using key phrases in
representing the context of a document. This was done
because the hypothesis we use for retrieving similar
documents is that they are clustered close to the input
document. We extracted keywords and key phrases from a
document published in the web. We used the keywords and
key phrases separately as a query to find the rank at which

the input document is retrieved. Results (in figure 4) show
that key phrases perform better than keywords in retrieving
documents at higher rank.

6 m Keyphrases
m Keywords

No. of documents

1 2-3 4-5 6-8 9-10 10+
Rank

Figure 4. Comparison of keywords vs. key phrases in
fetching the input document

450
400 —
350 +—f
300 +—
250 +—
200
150 +—
100 +—

SO = ‘ ‘ ‘ 17

1-3 4-5 6-7 8-10 11-15 15-20 20+
Rank

No. of documents

Figure 5. Performance of key phrases in fetching the input
document

We evaluated whether the key phrases extracted for a
document is able to retrieve the same document back in
top results in Google scholar. An automated test run for
500 documents shows that 80% of the documents were
retrieved at top ranks by querying with the key phrases.
Results are shown in figure 5.

We next compared our method of finding key phrases
against existing methods. We compared our key phrase
extraction method with the Yahoo Phrase extractor and
manually extracted key phrases. Yahoo! Phrase Extractor
is on online tool for extracting phrases. It takes a text
document as input and returns a list of key phrases for the
document.

We conducted a study in which the users were presented a
list of key phrases for each document in the test data set.
The list comprised of the key phrases extracted by our
method and Yahoo Phrase Extractor. The users were asked
to rate the relevancy of each key phrase (0, if it is
irrelevant and 1, if relevant). We present the comparison
using the measure of precision which is calculated as in
Equation 7.

No of relevant key phrases
Precision = (7
Total no. of key phrases

Table 1 summarizes the performance of our method and
Yahoo Phrase Extractor for the test data set.

TABLE I
Performance of different key phrase extraction methods
Method Precision
Yahoo! Phrase Extractor 0478
Our key phrase extraction algorithm 0.758
35
g 30 B Key phrases
g 25 extracted
g 20 1 manually
15 + | Automatic key
'§ 10 4 phrase extraction
2 s 1
0 o [o

Rank at which the input
document is retrieved

Figure 6. Comparison of automatic key phrase extraction
against manually selected key phrases

A study was done in which users were asked to find key
phrases in 30 documents. Key phrases were also extracted
by our method. Using these phrases a search string was
framed and the rank at which the input document is
retrieved back is found in Google. Figure 6 shows that our
key phrase extraction algorithm performs better than
manually extracted key phrases in retrieving the input
document at higher rank.

B. Evaluation of Similar Documents

In this section we evaluate the relevance of similar
documents that are retrieved by our method. We
conducted an evaluation of the system with 10 users by
exposing the solution as a cloud service. The users were
primarily research scholars.

To compare the retrieval quality of the system, we
computed the following commonly used measure:

1 Precision at K: Prec@K(q) is the fraction of
relevant documents within the top K results for a query q.
This needs a binary classification of documents.

2 Mean Average Precision : It returns a single value
for each method of ranking and is computed as follows

m;

MAP(Q) = éﬁ:m% kZ‘ Precision(R ;) ®

Q is a set of queries, m; is the number of documents on
which precision is computed and is chosen as 20. MAP
takes the position of the results in the ranking into account
and is based on binary relevance classification.

3 DCG at K: The Discounted Cumulative Gain
explicitly takes the ranking of first K results into account.
Hence it rewards highly relevant results less than less
relevant results. It is computed as follows :

DCG@K(q) = f (2™ =1)/log(1+ /))

Here, 1(j) is an integer for the relevance rating given to the
result at position j for the query q and is taken on a scale of
1-3..

We first evaluated the efficiency of key phrases in finding
similar documents. Here, all the key phrases are given as
one long query. In this experiment the user sends a
document to the service and is sent a set of documents
similar to the input document. The user is asked to rate
each document on a scale of 1-5 based on his interest in
the document.

We chose ten documents from varied topics for evaluating
the relevancy of similar documents. For each input
document, we retrieved 20 similar documents. We used
the above specified measures for evaluation. Figure 7
shows the precision graph and Figure 8 shows the DCG
graph. Results are summarized in the Table 2.

Figure 7. Precision at K

[— Linking of rivers

— How Countries Get Rich
Best of Indian Recipes

Multidocument Summarization

—— Keyword Extraction As Text Chance Discovery

— The Weekest Link

— First Break All The Rules

— Retrieval and Feedback Model for Blog
Distilation

TABLE II
Evaluation of similar document search results
Precision @ 10 0.93
Precision @ 20 0.835
Mean Average Precision (MAP) 0.90

Personalized Video Search

CGD Brief: Young Democracies in the Balance

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 8. DCG at K

Also, we evaluated the importance of diversification in
search results. We will compare the similar documents that
are retrieved by the system with and without clustering of
key phrases. For this, we took ten documents from the
users and sent two lists of 10 documents for each input
document. The documents considered were primarily
research papers that were much focused. For each
document sent, the user rated the relevancy of it on a scale
of 1-5. We use the standard measure of precision and DCG
for comparison. Figure 9 shows the DCG graph. Table 3
summarizes the performance of our method.

TABLE 1II
Precision of similar documents retrieved with and without explicit result
diversification
Method Precision @10

Similar Documents retrieved with result 0.64
diversification

Similar Documents retrieved without 0.65

result diversification

—— Similar Documents
i retrieved w ithout
Result
Diversification

DCG

——— Similar Document
retrieved w ith
Result
Diversification

1.2 3 4 5 6 7 8 9 10
Rank

Figure 9. DCG graph of similar documents retrieved with
and without explicit result diversification

C. Evaluation of Recommended Documents

—&— Recommendations
based on user

fil
- / profile
/

8 8 ; —#&— Recommend
o 6 / Ay Documents of
A favourite authors
L
2 —J‘/ Recommend
0 documents from

new conferences
and journals

Figure 10. DCG graph for recommended documents

For evaluating the recommender system, the users are sent
a series of recommended documents based on the
documents submitted by them to the system. The user
feedbacks are collected for each recommended document
on a relevancy scale of 1-5. The DCG graph (Figure 10)
shows that our recommender system based on user profiles
performs well in selecting the right documents for
recommendation. Table 4 summarizes the performance of
our individual recommendation modules. This study was
done with 10 users, however we could obtain more than
five relevant documents for only 7 users (because of
subscription requirements), hence results are reported for
only 7 users.

TABLE IV
Performance of Recommender System
Recommendation Module Performance

Recommend documents based on user Precision @ 10 0.89
profile

Recommend new documents of favorite Precision @ 5 0.51
authors

Recommend new documents from recent Precision @ 5 0.65
conferences or journals

D. Discussion of Experimental results

The evaluation of extracted key phrases reveals that the
key phrase extraction algorithm performs better than some
existing key phrase extraction methods. It is also noted that
key phrases performs better than keywords in describing
the context of a document. Evaluation of similar
documents shows that our method helps in exploring the
web in finding documents of interest to the user. However,
it is noted that the diversifying search results does not
improve the user satisfaction. This could be because the
user may be interested in only the broader theme of a
document and not all the themes. Clustering has taken the
results to a different document space that is more precise
to the individual themes in a document.

From the evaluation of our recommender system we infer
that such a system can form a useful component of the
user’s information exploration in the web. Also it is

evident that the recommendation based on user profile has
fetched documents of interest to the user.

VI. CONCLUSION

In this paper, we propose a novel retrieval approach for
document similarity search. We have formulated a method
to get similar documents based on the concept of the input
document by extracting the relevant keywords and key
phrases from the document. The experimental results have
shown favorable performance of the proposed approach.
We have also built a personalized document
recommendation system based on the user profile created
implicitly with the inputs received from the user.

In future, we will aim to extend the similarity search and
recommendations to web pages, video content and to
cross-lingual similarity search where information in one
language could be used to find similar information in other
languages

REFERENCES

[1] Z. Zhang, H. Cheng, Keyword extracting as text
chance discovery, IEEE Fuzzy systems and
knowledge discovery conference (FSKD), 2007.

[2] Xin Jiang, Yunhua Hu, Hang Li, A Ranking Approach
to Key phrase Extraction, Proc. SIGIR 2009.

[3]1 Yahoo Phrase
http://developer.yahoo.com/search
/content/V 1/termExtraction.html

[4] M. Grineva, M. Grinev, and D. Lizorkin. 2009.
Extracting key terms from noisy and multi-theme
documents, Proc. WWW 2009, pages 661-670.

[5] Lee, J.W. and Baik, D.K., A model for extracting
keywords of document using term frequency and
distribution, Lecture notes in computer science,
Springer, Pg. 437—440, 2004.

[6] I. Witten, G. Paynter, E. Frank, C. Gutwin, and C.
Nevill-Manning, Kea: Practical automatic key phrase
extraction, Proceedings of the 4th ACM conference on
Digital Libraries.

[71 Yang Y., Bansal, N., Wisam, D., Panagiotis, I.,
Koudas, N., Dimitris, P., Query by Document, WSDM
’09.

[8] Xiaojun Wan, Jianwu Yang, Jianguo Xiao, Document
Similarity Search based on Manifold Ranking of
TextTiles, AIRS 2006, LNCS 4182, pp. 14 — 25,
2006.

[9] Jimmy Lin, Michael DiCuccio, Vahan Grigoryan,
W.John Wilbur, Navigating information spaces: A
case study of related article search in PubMed,

Extractor,

Information Processing and Management, 2008,
Elsevier

[10] Google similar pages,
googleguide.com/similar_pages.html

[11] Google alerts, http://www.google.com/alerts

[12] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q.
Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D.
Petkovic, D. Steele, and P. Yonker. Query by image
and video content: The gbic system. Computer,
28:23-32, 1995.

[13] Rakesh, A., Sreenivas, G., Alan, H., Samuel, I.,
Diversifying search results, WSDM ’09.

[14] Z. Liu, P. Li, Y. Zheng and M. Sun, Clustering to Find
Exemplar Terms for Keyphrase Extraction,
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing.

[15] Dell, Z., Yisheng, D., Semantic, Hierarchical and

Online Clustering of Web Search Results, AP Web
2004, LNCS 3007, pp 69-78, 2004.

[16] Rudi L. Cilibrasi and Paul M. B. Vitanyi, The google
similarity distance, IEEE Transactions on Knowledge
and Data Engineering, 19(3):370-383, 2007.

[17]1 D Zhou, S Zhu, K Yu, X Song, BL Tseng, H Zha,
Learning Multiple Graphs for Document
Recommendation, Proc. WWW 2008.

[18] Kannan, C., Susan, G., Praveen, L., HP Luong,
Concept-Based Document Recommendations for
Citeseer Authors, Lecture Notes in Computer Science,
2008 — Springer

[19] B. Yang, G. Jeh, Retroactive Answering of Search
Queries, Proc. WWW 2006.

[20] S Xu, H Jiang, FCM Lau, Personalized online
document, image and video recommendation via
commodity eye-tracking, Proc. RecSys 2008

[21] Fei Wang , Sheng Ma , Liuzhong Yang , Tao
Li, Recommendation on Item Graphs, Proceedings of
the Sixth International Conference on Data Mining,
p-1119-1123

