

Keyword(s):

Abstract:



Deinterleaving Finite Memory Processes via Penalized Maximum Likelihood

Gadiel Seroussi, Wojciech Szpankowski, Marcelo J. Weinberger

HP Laboratories
HPL-2011-136

process deinterleaving; maximum-likelihood estimation; MDL principle; Markov sources

We study the problem of deinterleaving a set of finite-memory (Markov) processes over disjoint finite
alphabets, which have been randomly interleaved by a finite-memory switch. The deinterleaver has access
to a sample of the resulting interleaved process, but no knowledge of the number or structure of the
component Markov processes, or of the switch. We study conditions for uniqueness of the interleaved
representation of a process, showing that certain switch configurations, as well as memoryless component
processes, can cause ambiguities in the representation. We show that a deinterleaving scheme based on
minimizing a penalized maximum-likelihood cost function is strongly consistent, in the sense of
reconstructing, almost surely as the observed sequence length tends to infinity, a set of component and
switch Markov processes compatible with the original interleaved process. Furthermore, under certain
conditions on the structure of the switch (including the special case of a memoryless switch), we show that
the scheme recovers all possible interleaved representations of the original process. Experimental results
are presented demonstrating that the proposed scheme performs well in practice, even for relatively short
input samples.

External Posting Date: September 6, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: September 6, 2011 [Fulltext]

Copyright 2011 Hewlett-Packard Development Company, L.P.

Deinterleaving Finite Memory Processes via

Penalized Maximum Likelihood
Gadiel Seroussi

Hewlett-Packard Laboratories
Palo Alto, CA, USA
gseroussi@ieee.org

Wojciech Szpankowski
Purdue University,

West Lafayette, IN, USA
spa@cs.purdue.edu

Marcelo J. Weinberger
Hewlett-Packard Laboratories

Palo Alto, CA, USA
marcelo.weinberger@hp.com

Abstract

We study the problem of deinterleaving a set of finite-memory (Markov) processes over disjoint

finite alphabets, which have been randomly interleaved by a finite-memory switch. The deinterleaver has

access to a sample of the resulting interleaved process, but no knowledge of the number or structure of

the component Markov processes, or of the switch. We study conditions for uniqueness of the interleaved

representation of a process, showing that certain switch configurations, as well as memoryless component

processes, can cause ambiguities in the representation. We show that a deinterleaving scheme based

on minimizing a penalized maximum-likelihood cost function is strongly consistent, in the sense of

reconstructing, almost surely as the observed sequence length tends to infinity, a set of component

and switch Markov processes compatible with the original interleaved process. Furthermore, under

certain conditions on the structure of the switch (including the special case of a memoryless switch),

we show that the scheme recovers all possible interleaved representations of the original process.

Experimental results are presented demonstrating that the proposed scheme performs well in practice,

even for relatively short input samples.

W. Szpankowski’s work was partially done while visiting HP Labs, Palo Alto, CA, and also supported by NSF Science and

Technology Center Grants CCF-0939370 and CCF-0830140.

I. INTRODUCTION

Problems in applications such as data mining, computer forensics, finance, and genomics, often

require the identification of streams of data from different sources, which may be intermingled

or hidden (sometimes purposely) among other unrelated streams, in large interleaved record files.

In this haystack of records can lie buried valuable information whose extraction would be easier

if we were able to separate the contributing streams. The deinterleaving problem studied in this

paper is motivated by these applications (more detailed accounts of which can be found, for

example, in [1], [2], [3]).

In our setting, the data streams, as well as the interleaving agent, will be modeled as

sequences generated by discrete-time random processes over finite alphabets. Specifically, let

A1, A2, . . . , Am be finite, nonempty, disjoint alphabets, let A = A1 ∪ A2 ∪ · · ·Am, and

Π = {A1, A2, . . . , Am}. We refer to the Ai as subalphabets, and to Π as a partition, of A.

Consider m independent, component random processes P1, P2, . . . , Pm, defined, respectively,

over A1, A2, . . . , Am, and a random switch process Pw over the alphabet Π, independent of

the component processes. The interleaved process P ∆
= IΠ(P1, P2, . . . , Pm;Pw) is generated as

follows: At each time instant, a subalphabet Ai ∈ Π is selected according to Pw, and the next

output sample for P is selected from Ai according to the corresponding process Pi (we say,

loosely, that the switch “selects” Pi at that instant). The component processes Pi are idle when

not selected, i.e., if Pi is selected at time t, and next selected at time t + T , then the samples

emitted by P at times t and t + T are consecutive emissions from Pi, regardless of the length

of the intervening interval T .

Given a sample zn from P , and without prior knowledge of the number or the composition

of the subalphabets Ai, the deinterleaving problem of interest is to reconstruct the original

sequences emitted by the component processes, and the sequence of switch selections.

So far, we have made two basic assumptions on the structure of the interleaved system: the

independence of the component and switch processes, and the disjointness of the subalphabets.

The latter assumption implies that, given an interleaved input stream, identifying the partition

Π is equivalent to identifying the component substreams and the sequence of switch selections.

Thus, identifying the partition Π is sufficient to solve the deinterleaving problem. Identifying the

substreams when the subalphabets are not disjoint is also a problem of interest, but it appears

2

more challenging [1], and is outside the scope of this paper. Even with these assumptions, it is

clear that without further restrictions on the component and switch processes, the problem defined

would be either ill-posed or trivial, since two obvious hypotheses would always be available:

the interleaved process P could be interpreted as having a single component P1 = P , or as an

interleaving of constant processes over singleton alphabets interleaved by a switch Pw essentially

identical to P . Therefore, for the problem to be meaningful, some additional constraints must be

posed on the structure of the component and switch processes. In this paper, we study the case

where the components and switch are ergodic finite memory (Markov) processes, i.e., for each

i ∈ {1, 2, . . . ,m,w}, there is an integer ki ≥ 0 such that for any sufficiently long sequence ut over

the appropriate alphabet, we have Pi(ut|ut−1) = Pi(ut|ut−1
t−ki). We assume no knowledge or bound

on the process orders ki, and refer to P in this case as an interleaved Markov process (IMP).

Except for some degenerate cases (e.g., when all the component processes are memoryless), the

IMP P is generally not a finite memory process, since the interval between consecutive selections

of a component process is unbounded. Hence, in general, the two obvious hypotheses mentioned

above are not available, and the deinterleaving problem for IMPs is well-posed, non-trivial, and,

as we shall show, solvable.

When P = IΠ(P1, P2, . . . , Pm;Pw) for finite memory processes P1, P2, . . . , Pm, Pw, we say

that Π is compatible with P , and refer to IΠ(P1, P2, . . . , Pm;Pw) also as an IMP representation of

P . Notice that, given an IMP P , any partition Π′ of A induces a set of deinterleaved component

and switch processes. In general, however, if Π′ is the “wrong” partition (i.e., it is incompatible

with P), then either some of the induced sub-processes P ′i or P ′w will not be of finite order, or

some of the independence assumptions will be violated. There could, however, be more than one

“right” partition: IMP representations need not be unique, and we may have partitions Π6=Π′

such that both Π and Π′ are compatible with P . We refer to this situation as an ambiguity in

the IMP representation of P .1

In this paper, we study IMP ambiguities, derive conditions for uniqueness of IMP represen-

tations, and present a deinterleaving scheme that identifies, eventually almost surely, an IMP

representation of the observed process. Under certain conditions, including all the cases where

1Notice that since P and Π uniquely determine the component and switch processes, two different IMP representations of

the same process P must be based on different partitions.

3

the switch is memoryless, the scheme will identify all IMP representations of the process. The

solution is based on finding a partition Π of A and an order vector k = (k1, k2, . . . , km, kw)

that minimize a penalized maximum-likelihood (penalized ML) cost function of the form

CΠ,k(zn) = nĤΠ,k(zn) + βκ log n, where ĤΠ,k(zn) is the empirical entropy of the observed

sequence zn under an IMP model induced by Π and k, κ is the total number of free statistical

parameters in the model, and β is a nonnegative constant. Penalized ML estimators of Markov

process order are well known (cf. [4], [5], [6]). Here, we use them to estimate the original

partition Π, and also the Markov order of the processes Pi and the switch Pw.

The deinterleaving problem for the special case where all processes involved are of order

at most one has been previously studied in [1], where an approach was proposed that

could identify an IMP representation of P with high probability as n→∞ (the approach

as described cannot identify multiple solutions when they exist; instead, all cases leading to

possible ambiguities are excluded using rather coarse conditions). The idea is to run a greedy

sequence of tests, checking equalities and inequalities between various event probabilities (e.g.,

P (ab) 6=P (a)P (b), P (abc) = P (a)P (b)P (c), a, b, c ∈ A), and permanently clustering symbols

into subalphabets sequentially, according to the test results (sequentiality here is with respect to

the alphabet processing, not the input sequence, which has to be read in full before clustering

begins). Empirical distributions are used as proxies for the true ones. Clearly, equalities between

probabilities translate only to “approximate equalities” subject to statistical fluctuations in the

corresponding empirical quantities, and an appropriate choice of the tolerances used to determine

equality, as functions of the input length n, is crucial to turn the conceptual scheme into an

effective algorithm. Specific choices for tolerances are not discussed in [1]. The attractive

feature of the approach in [1] is its low complexity; equipped with a reasonable choice of

tolerance thresholds, an efficient algorithm for the special case of processes of order one can be

implemented. However, as we shall see in the sequel, the convergence of the algorithm is rather

slow, and very long samples are necessary to achieve good deinterleaving performance, compared

to the schemes proposed here. The problem of deinterleaving hidden-Markov processes was also

studied, mostly experimentally, in [2]. Another variant of the problem, where all the component

processes are assumed to be identical (over the same alphabet), of order one, and interleaved by

a memoryless switch, was studied in [3].

We note that IMPs are a special case of the broader class of switching discrete sources studied

4

in [7], with variants dating back as early as [8]. However, the emphasis in [7] is on universally

compressing the output of a switched source of known structure, and not on the problem studied

here, which is precisely to identify the source’s structure.

The rest of the paper is organized as follows. In Section II we present some additional

definitions and notation, and give a more formal and detailed definition of an IMP, which will be

useful in the subsequent derivations. We also show that an IMP can be represented as a unifilar

finite-state machine (FSM) source (see, e.g., [9]), whose parameters satisfy certain constraints

induced by the IMP structure. In Section III we study conditions for uniqueness of the IMP

representation of a process. We identify two phenomena that may lead to ambiguities: a so-called

alphabet domination phenomenon which may arise from certain transition probabilities in the

switch being set to zero (and which, therefore, does not arise in the case of memoryless switches),

and the presence of memoryless component processes. We derive a set of sufficient conditions

for uniqueness, and, in cases where ambiguities are due solely to memoryless components (the

so-called domination-free case, which includes all cases with memoryless switches), characterize

all the IMP representations of a process P . Most of the derivations and proofs for the results of

Section III are presented in Appendix A. In Section IV we present our deinterleaving scheme,

establish its strong consistency, and show that in the domination-free case, it can identify all valid

IMP representations of the interleaved process. The derivations and proofs for these results are

presented in Appendix B. Finally, in Section V we present some experimental results for practical

implementations of deinterleaving schemes. We compare the performance of our scheme with

that of an implementation of the scheme of [1] (with optimized tolerances) for the case of IMPs

with memoryless switches, showing that the ML-based deinterleaver achieves high accuracy rates

in identifying the correct alphabet partition for much shorter sequences than those required by

the scheme of [1]. Our ideal scheme calls for finding the optimal partition through an exhaustive

search, which is computationally expensive. Consequently, we show results for a randomized

gradient descent heuristic that searches for the same optimal partition. Although in principle

this approach sacrifices the optimality guarantees of the ideal scheme, in practice, we obtain the

same results as with exhaustive search, but with a much faster and practical scheme. We also

present results for IMPs with switches of order one. We show, again, that the ML-based schemes

exhibit high deinterleaving success rates for sequences as short as a few hundred symbols long,

and perfect deinterleaving, for the samples tested, for sequences a few thousand symbols long.

5

II. PRELIMINARIES

A. Definitions

All Markov processes are assumed to be time-homogeneous and ergodic, and, consequently,

to define limiting stationary distributions [10]. We denote the (minimal) order of Pi by ki
∆
=

ord(Pi), refer to reachable strings uki as states of Pi, and denote the set of such states by

S(Pi), i ∈ {1, 2, . . . ,m,w}. Some conditional probabilities may be zero, and some ki-tuples

may be non-reachable, but all states are assumed to be reachable and recurrent. We further

assume that all symbols a ∈ A (and subalphabets A ∈ Π) occur infinitely often, and their

stationary marginal probabilities are positive. We make no assumptions on the initial conditions

of each process, and, in our characterization of ambiguities, distinguish processes only up to their

stationary distributions, i.e., we write P = P ′ if and only if P and P ′ admit the same stationary

distribution. All probability expressions related to stochastic processes will be interpreted as

(sometimes marginal) stationary probabilities, e.g., Pi(u), or Pi(a|u) = Pi(ua)/Pi(u) when u is

not long enough to define a state of Pi. Aside from simplifying some notations, this assumption

makes our results on uniqueness of IMP representations slightly stronger than if we had adopted

a stricter notion of process equivalence (e.g., actual process identity).

For a string ut = u1u2 . . . ut ∈ At, let AΠ(ut) ∈ Πt denote the corresponding string of

subalphabets, i.e., AΠ(ut)j = Ai where i is the unique index such that uj ∈ Ai ∈ Π, 1 ≤ j ≤ t.

We sometimes refer to AΠ(ut) also as the switch sequence corresponding to ut. Also, for A′ ⊆ A,

and a string u over A, let u[A′] denote the string over A′ obtained by deleting from u all symbols

that are not in A′. The IMP P = IΠ(P1, P2, . . . , Pm;Pw) is formally defined as follows: Given

zt ∈ At, t ≥ 1, and assuming zt ∈ Ai, we have

P (zt|zt−1) = Pw(Ai|AΠ(zt−1))Pi(zt|zt−1[Ai]) . (1)

It is readily verified that (1) completely defines the process P , which inherits whatever initial

conditions hold for the component and switch processes, so that (1) holds for any conditioning

string zt−1, t ≥ 1 (including zt−1 = λ). Also, by recursive application of (1), after rearranging

factors, we obtain, for any sequence zn ∈ An,

P (zn) = Pw(AΠ(zn))
m∏
i=1

Pi(z
n[Ai]) . (2)

6

Notice that when initial conditions are such that the probabilities on the right-hand side of (2)

are stationary, the equation defines a stationary distribution for P . (We adopt the convention that

Pi(λ) = 1, i ∈ {1, 2, . . . ,m,w}, and, consequently, P (λ) = 1.)

For conciseness, in the sequel, we will sometimes omit the arguments from the notations

IΠ or IΠ′ , assuming that the respective sets of associated subalphabets and processes (resp.

{Ai}, {Pi} or {A′i}, {P ′i}) are clear from the context. For IMP representations IΠ and IΠ′ , we

write IΠ ≡ IΠ′ if the representations are identical, i.e., Π = Π′ and Pi = P ′i , i ∈ {1, 2, . . . ,m,w}

(in contrast with the relation IΠ = IΠ′ , which is interpreted to mean that IΠ and IΠ′ generate

the same process).

We will generally denote sequences (or strings) over A with lower case letters, e.g., u ∈ A∗,

and sequences over Π with upper case letters, e.g., U ∈ Π∗. We say that un ∈ An and Un ∈ Πn

are consistent if P (un) > 0 and Un = AΠ(un). Clearly, for every sequence un with P (un) > 0

there exists a sequence Un = AΠ(un), with Pw(Un) > 0, that is consistent with un; conversely,

if Pw(Un) > 0, it is straightforward to construct sequences un consistent with Un. Unless

specified otherwise, we assume that an upper case-denoted alphabet sequence is consistent with

the corresponding lower case-denoted string, e.g., when we write UV = AΠ(uv), we also imply

that U = AΠ(u) and V = AΠ(v).

B. IMPs and FSM sources

A finite state machine (FSM) over an alphabet A is defined by a triplet F = (S, s0, f), where

S is a set of states, s0 ∈ S is a (possibly random) initial state, and f : S×A → S is a next-state

function. A (unifilar) FSM source (FSMS) is defined by associating a conditional probability

distribution PF (·|s) with each state s of F , and a probability distribution P init
F (·) on the initial

state s0. To generate a random sequence xn, the source draws s0 according to P init
F (·) and then

draws, for each i, 1 ≤ i ≤ n, a symbol xi ∈ A distributed according to PF (·|si−1), and transitions

to the state si = f(si−1, xi). Markov sources of order k over A are special cases of FSMSs with

S = Ak. We next observe that an IMP can be represented as an FSMS. For convenience, we

will assume in the discussion that FSMSs have arbitrary but fixed initial states. In particular, we

will assume that a fixed initial state s(j)
0 ∈ S(Pj) is defined for the component/switch processes

Pj , j ∈ {1, 2, . . . ,m,w}, where we recall that S(Pj) denotes the state set of Pj . The results are

easily generalized to arbitrary initial state conditions, since any initial state distribution can be

7

written as a convex combination of fixed initial state conditions.

We refer to the vector k = (k1, k2, . . . , km, kw), where kj = ord(Pj), j ∈ {1, 2, . . . ,m,w}, as

the order vector of the IMP IΠ. We denote by fj the next-state function of the FSM associated

with Pj , j ∈ {1, 2, . . . ,m,w}, and define the initial state vector s0 = (s
(1)
0 , s

(2)
0 , . . . , s

(m)
0 , s

(w)
0).

We consider now an FSM FΠ,k = (S, s0, f), with state set S = S1×S2×· · ·Sm×Sw, and next-

state function f defined as follows: Given a state s = (s(1), s(2), . . . , s(m), s(w)) ∈ S, and a ∈ A

such that AΠ(a) = Ai, we have f(s, a) = s′ = (s′(1), s′(2), . . . , s′(m), s′(w)) where s′(j) = s(j) for

j ∈ {1, 2, . . . ,m} \ {i}, s′(i) = fi(s
(i), a), and s′(w) = fw(s(w), Ai). To complete the definition

of an FSMS, for each state s ∈ S, we define the conditional probability distribution

PΠ,k(a | s) = Pw(Ai|s(w))Pi(a | s(i)), a ∈ A, AΠ(a) = Ai ∈ Π . (3)

The following proposition is readily verified.

Proposition 1: FΠ,k, with transition probabilities PΠ,k, generates P=IΠ(P1, P2, . . . , Pm, Pw).

Results analogous to Proposition 1 for switching discrete sources are given in [7]. The class

of finite state sources considered in [7], however, is broader, as unifilarity is not assumed.

It follows from the ergodicity and independence assumptions for IMP components and switch

that P is an ergodic FSMS, and every state s ∈ S has a positive stationary probability. Let

αi = |Ai|, 1 ≤ i ≤ m, and α = |A| =
∑m

i=1 αi. By the definition of the state set S, we

have |S| ≤ mkw
∏m

i=1 α
ki
i (equality holding when all kj-tuples over the appropriate alphabet are

reachable states of Pj , j ∈ {1, 2, . . . ,m,w}). Hence, the class of arbitrary FSMSs over A, with

underlying FSM FΠ,k, would have, in general, up to

K(Π,k) = (α− 1)mkw

m∏
i=1

αkii (4)

free statistical parameters. The conditional probability distributions in (3), however, are highly

constrained, as the parameters PΠ,k(a|s) satisfy relations of the form

Pw(Ai|s′(w))PΠ,k(a|s) = Pw(Ai|s(w))PΠ,k(a|s′),

where Ai = AΠ(a), for all states s′ such that s(i) = s′(i). In particular, it follows directly from (3)

that PΠ,k(a|s) = PΠ,k(a|s′) if s(i) = s′(i) and s(w) = s′(w). Overall, the number of free parameters

remains, of course, that of the original component Markov processes and switch, i.e., up to

κ(Π,k) =
m∑
i=1

αkii (αi − 1) + (m− 1)mkw , (5)

8

which is generally (much) smaller than K(Π,k).

We refer to an FSMS satisfying the constraints implicit in (3) as an IMP-constrained FSMS.

Notice that, given a specific IMP P = IΠ(P1, P2, . . . , Pm;Pw), the associated FSM FΠ,k may

also incorporate “hard constraints” on the parameters of (maybe other) FSMSs based on FΠ,k,

due to some kj-tuples possibly being non-reachable in Pj , and the corresponding transition

probabilities being identically zero. Later on, when our task is to estimate the FSMS without

any prior knowledge on the structure of P , we will assume that candidate structures FΠ,k are

fully parametrized, i.e., the class of IMP-constrained FSMS generated by FΠ,k has exactly κ

free statistical parameters (we omit the arguments of K and κ when clear from the context).

III. UNIQUENESS OF IMP REPRESENTATIONS

In this section, we study conditions under which the IMP representation of a process is

unique, and, for IMPs that are free from certain “pathologies” that will be discussed in the

sequel, characterize all IMP representations of a process when multiple ones exist. Notice that

although, as shown in Section II, IMPs can be represented as constrained FSM sources, the

study of ambiguities of IMP representations differs from the problem of characterizing different

FSM representations of a source [11], or more generally of representations of hidden Markov

processes [12]. It is known [11] that all FSMs that can generate a given FSMS P are refinements2

of a so called minimal FSM representation of the source. In particular, this applies to the

FSM corresponding to any IMP representation. However, the minimal FSM representation is

not required to satisfy the IMP constraints, so it needs not coincide with a minimal (or unique)

IMP representation. Notice also that, when defining IMPs and their FSM representations, we

have assumed that the orders ki of all the Markov processes involved are minimal, thus excluding

obvious FSM refinements resulting from refining some of the individual Markov processes.

A. Alphabet domination

Let A, B be arbitrary subalphabets in Π. We say that A dominates B (relative to Pw) if there

exists a positive integer M such that if Pw has emitted M occurrences of B without emitting

2A refinement [13] of an FSM F = (S, s0, f) is an FSM F+ = (S+, s+
0 , f

+) such that for some fixed function g : S+ → S

and any sequence xn, the respective state sequences {si} and {s+
i } satisfy si = g(s+

i), 0 ≤ i ≤ n (for example, the FSM

underlying a Markov process of order k + 1 is a refinement of the FSM underlying one of order k). By suitable choices of

conditional probabilities, a refinement of F can generate any process that F can generate.

9

���� ����

����

����

CA AB

BC

AA
	A : 1−µ

�
�
�
��A : ρ @

@
@
@R

B : µ

�
�
�
�	

C : 1
@

@
@
@I

A : 1

-B : 1−ρ

Fig. 1. A switch Pw of order two over Π = {A,B,C}. Arcs are labeled X : ξ, where X is the emitted symbol and ξ the

corresponding transition probability. Transitions not drawn are assumed to have probability zero.

one of A, then with probability one Pw will emit an occurrence of A before it emits another

occurrence of B; in other words, if Pw(U) > 0, then U [{A,B}] does not contain any run of

more than M consecutive occurrences of B. We denote the domination relation of A over B as

A A B, dependence on Pw being understood from the context; when A does not dominate B,

we write A 6A B (thus, for example, A 6A A). We say that A is dominant (in Π, relative to Pw)

if either m = 1 (i.e., Π = {A}) or A A B for some B ∈ Π, and that A is totally dominant if

either m = 1 or A A B for all B ∈ Π \ {A}. If A A B and B A A, we say that A and B are

in mutual domination, and write AA@B. It is readily verified that domination is an irreflexive

transitive relation. When no two subalphabets are in mutual domination, the relation defines a

strict partial order (see, e.g., [14]) on the finite set Π. We shall make use of the properties of

this strict partial order in the sequel.

Domination can occur only if some transition probabilities in Pw are zero; therefore, it never

occurs when Pw is memoryless. The approach for ord(Pw) = 1 in [1] assumes that Pw(A|A) > 0

for all A ∈ Π. Clearly, this precludes alphabet domination. However, the condition is too stringent

to do so, or as a condition for uniqueness.

Example 1: Consider an IMP P = IΠ(P1, P2, P3;Pw) with Π = {A,B,C}, and Pw as defined

by Figure 1, where ord(Pw) = 2, and transitions are labeled with their respective emitted symbols

and probabilities. We assume that µ ∈ (0, 1] and ρ ∈ (0, 1). For this switch, we have A A B,

A A C, and BA@C; A is totally dominant, and, if µ < 1, it is not dominated. If µ = 1, every

pair of subalphabets is in mutual domination. In all cases, Pw is aperiodic.

10

(a)

��
��
A

���
WA : 1−µ

��
��
B

-B : µ

�
A : 1

� ��
� W

C : 1−ν

C

��
��
D

6
C : 1

?
D : ν

(b)

��
��� ��

� W

A : (1−µ)(1−ν)

��
��

��
��

��
��

∗A ∗B

AD

BD

@
@
@
@R
@

@
@
@I

-
�

�
�
�
��

@
@

@
@I�

�
�
�	

A : 1 D : ν

B : µA : 1−µ
D : ν

B : µ(1−ν)

A : 1−ν

Fig. 2. Switches for ambiguous IMP representation: (a) Pw over {C,D}, ord(Pw) = 1 (C = A∪B, and the internal structure

of PC is also shown), (b) P ′w over {A,B,D}, ord(P ′w) = 2. Arcs are labeled with their corresponding emitted symbols and

transition probabilities; transitions not shown have probability zero.

B. Conditions for uniqueness

We derive sufficient conditions for the uniqueness of IMP representations, and show how

ambiguities may arise when the conditions are not satisfied. The main result of the subsection

is given in the following theorem, whose derivation and proof are deferred to Appendix A-A.

Theorem 1: Assume that, for an IMP P = IΠ(P1, P2, . . . , Pm;Pw),

i) no two subalphabets in Π are in mutual domination,

ii) no subalphabet in Π is totally dominant, and

iii) none of the processes Pi is memoryless.

Then, if P = IΠ′(P
′
1, P

′
2, . . . , Pm′ ;P

′
w) for some partition Π′ and finite memory processes

P ′1, P
′
2, . . . , Pm′ , P

′
w, we must have IΠ ≡ IΠ′ .

Example 2: We consider alphabets A,B,D, and C = A ∪ B, and respective associated

processes PA, PB, PD, PC . Part (a) of Fig. 2 shows a switch Pw of order 1 over Π = {C,D}.

Here, PC is in itself an interleaved process PC = I{A,B}(PA, PB;PC
w) with PB chosen as a

memoryless process so that PC has finite memory (specifically, ord(PC) ≤ 2 ord(PA)); PD is

not memoryless, and we have ν, µ ∈ (0, 1). Part (b) shows a switch P ′w of order two over

Π′ = {A,B,D}. State ∗A (resp. ∗B) represents all states that end in A (resp. B). It is readily

verified that P = IΠ(PC , PD;Pw) = IΠ′(PA, PB, PD;P ′w), so P is an ambiguous IMP. It is also

readily verified that both IΠ and IΠ′ violate Condition (ii) of Theorem 1: C is totally dominant

11

in IΠ, and A is totally dominant in IΠ′ . In fact, the figure exemplifies a more detailed variant of

Theorem 1, presented as Theorem 2 below, which characterizes ambiguities when Condition (ii)

of the original theorem is removed.

Given partitions Π and Π′ of A, we say that Ai ∈ Π splits in Π′ if Ai is partitioned into

subalphabets in Π′, i.e. A′j ⊆ Ai for all A′j ∈ Π′ such that A′j ∩ Ai 6= φ.

Theorem 2: Let Π = {A1, A2, . . . , Am} be a partition of A, and consider an IMP represen-

tation P = IΠ(P1, P2, . . . , Pm;Pw) such that no two subalphabets are in mutual domination,

and none of the processes Pi is memoryless. Then, if P = IΠ′(P
′
1, P

′
2, . . . , P

′
m′ ;P

′
w) for some

partition Π′ = {A′1, A′2, . . . , A′m′} of A, we must have Ai ∈ Π′ for all subalphabets Ai ∈ Π

except possibly for one subalphabet Ai0 ∈ Π, which must be totally dominant and split in Π′.

The proof of Theorem 2 is also deferred to Appendix A-A. The theorem covers the special

case m = 1, which is excluded by Condition (ii) in Theorem 1. In this case, the IMP is actually

a finite-memory process, which admits the two “obvious” IMP representations (with m = 1 and

m = |A| = |A1|, respectively) mentioned in the introduction.

C. Ambiguities due to memoryless components in the domination-free case

In this subsection, we eliminate Condition (iii) of Theorem 1, while strengthening Con-

ditions (i) and (ii) by excluding all forms of alphabet domination. We characterize all the

representations of an IMP when ambiguities, if any, are due solely to memoryless components.

We say that a partition Π′ is a refinement of Π if every subalphabet Ai ∈ Π splits in Π′. When

Π′ is a refinement of Π, we define the function ΨΠ,Π′ : Π′ → Π mapping a subalphabet A′j ∈ Π′

to the subalphabet Ai ∈ Π that contains it. The notation and map extend in the natural way to

arbitrary strings, namely ΨΠ,Π′ : (Π′)k → Πk for all k ≥ 0. We will omit the indices Π,Π′ from

Ψ when clear from the context.

Lemma 1: Consider a partition Π = {A1, A2, . . . , Am}, together with a refinement Π′ =

{B1, B2, A2, . . . , Am} of Π (i.e., A1 = B1 ∪ B2). Let P = IΠ(P1, P2, . . . , Pm;Pw), where P1

is memoryless, and let P ′ = IΠ′(P
(1)
1 , P

(2)
1 , P2, . . . , Pm;P ′w), where both P

(1)
1 and P

(2)
1 are

memoryless. Then, P = P ′ if and only if the following conditions hold:

P
(j)
1 (b) =

P1(b)

P1(Bj)
, b ∈ Bj , j ∈ {1, 2}, (6)

S(P ′w) = {S ′ ∈ (Π′)kw
∣∣Ψ(S ′) ∈ S(Pw)}, (7)

12

and for all A ∈ Π′ and S ′ ∈ S(P ′w), with S = Ψ(S ′),

P ′w(A|S ′) =

Pw(A|S), A = Ai, i ≥ 2,

Pw(A1|S)P1(Bj), A = Bj, j = 1, 2 .
(8)

Remarks. The proof of Lemma 1 is deferred to Appendix A-B. The lemma is interpreted as

follows: since, given IΠ, processes P (1)
1 , P

(2)
1 , and P ′w can always be defined to satisfy (6)–(8),

an IMP P with a nontrivial memoryless component always admits alternative representations

where the alphabet associated with the memoryless process has been split into disjoint parts (the

split may be into more than two parts, if the lemma is applied repeatedly). We refer to such

representations as memoryless refinements of the original representation IΠ. Using the lemma

repeatedly, we conclude that P admits a refinement where all the memoryless components are

defined over singleton alphabets. On the other hand, the memoryless components P (1)
1 and P (2)

1

of P ′ can be merged if and only if P ′w satisfies the constraint

P ′w(B2|S ′) = γP ′w(B1|S ′) (9)

for a constant γ independent of S ′ ∈ S(P ′w). Indeed, when (9) holds, we set P1(B1) = 1/(1 +

γ) and P1(B2) = γ/(1 + γ), and P1, Pw are defined implicitly by (6)–(8). Notice that the

constraint (9) is trivially satisfied when the switch P ′w is memoryless (and so is also the resulting

Pw). Thus, in this case, memoryless component processes can be split or merged arbitrarily

to produce alternative IMP representations. When the switch has memory, splitting is always

possible, but merging is conditioned on (9). We refer to a representation where no more mergers

of memoryless processes are possible, as well as to the corresponding partition Π, as canonical

(clearly, the canonicity of Π is relative to the given IMP).3

We denote the canonical representation associated with an IMP P = IΠ by (IΠ)∗, and the

corresponding canonical partition by (Π)∗P . Also, we say P is domination-free if there is no

alphabet domination in any IMP representation of P . The main result of the subsection is given

in the theorem below, whose proof is presented in Appendix A-B.

Theorem 3: Let P = IΠ and P ′ = IΠ′ be domination-free IMPs over A. Then, P = P ′ if

and only if (IΠ)∗ ≡ (IΠ′)
∗.

3The particular case of this result for IMPs with memoryless switches discussed in [15] uses a slightly different definition of

canonicity.

13

Theorem 3 implies that, in the domination-free case, all the IMP representations of a process

are those constructible by sequences of the splits and mergers allowed by Lemma 1. In particular,

this always applies to the case of memoryless switches, where domination does not arise.

Corollary 1: Let P = IΠ and P ′ = IΠ′ be IMPs over A, where the switches Pw and P ′w are

memoryless. Then, P = P ′ if and only if (IΠ)∗ ≡ (IΠ′)
∗.

IV. THE DEINTERLEAVING SCHEME

Given any finite alphabet A, a sequence ut ∈ At, and a nonnegative integer k, denote by

Ĥk(u
t) the kth order (unnormalized) empirical entropy of ut, namely, Ĥk(u

t) = − log P̂k(u
t),

where P̂k(ut) is the ML (or empirical) probability of ut under a kth order Markov model with a

fixed initial state. Let zn be a sequence over A. An arbitrary partition Π of A naturally defines

a deinterleaving of zn into sub-sequences zi = zn[Ai], 1 ≤ i ≤ m, with a switch sequence

Zw = AΠ(zn). Given, additionally, an order vector k = (k1, k2, . . . , km, kw), we define

ĤΠ,k(zn) =
m∑
i=1

Ĥki(zi) + Ĥkw(Zw) .

This quantity can be regarded as the (unnormalized) empirical entropy of zn with respect to

F = FΠ,k for an IMP-constrained FSMS (as discussed in Subsection II-B). Indeed, let P̂Π,k(zn)

denote the ML probability of zn with respect to F under IMP constraints, i.e., denoting by

PI(FΠ,k) the class of all IMPs generated by F (i.e., all FSMSs based on F with parameter

vectors satisfying the IMP constraints), we have

P̂Π,k(zn) = max
P∈PI(FΠ,k)

P (zn) . (10)

Clearly, by (2), P̂Π,k(zn) is obtained by maximizing, independently, the probabilities of the

component and switch sequences derived from zn, and, thus, we have ĤΠ,k(zn) = − log P̂Π,k(zn).

Notice that P̂Π,k(zn) is generally different from (and upper-bounded by) the ML probability with

respect to F for an unconstrained FSMS; this ML probability will be denoted P̂ ∗F (zn). Next, we

define the penalized cost of zn relative to Π and k as

CΠ,k(zn) = ĤΠ,k(zn) + βκ log(n+ 1) , (11)

14

where κ = κ(Π,k), as given in (5), is the number of free statistical parameters in a generic

IMP-constrained FSMS based on F , and β is a nonnegative (penalization) constant.4

Given a sample zn from an IMP P , our deinterleaving scheme estimates a partition Π̂(zn),

and an order vector k̂(zn), for the estimated IMP representation of P . The desired estimates are

obtained by the following rule:(
Π̂(zn), k̂(zn)

)
= arg min

(Π′,k′)
CΠ′,k′(z

n), (12)

where (Π′,k′) ranges over all pairs of partitions of A and order vectors k′. In the minimization,

if CΠ′,k′(z
n) = CΠ′′,k′′(z

n), for different pairs (Π′,k′) and (Π′′,k′′), the tie is broken first in favor

of the partition with the smallest number of alphabets. Notice that although the search space

in (12) is defined as a Cartesian product, once a partition Π′ is chosen, the optimal process orders

k′j are determined independently for each j ∈ {1, 2, . . . ,m,w}, in a conventional penalized ML

Markov order estimation procedure (see, e.g., [6]). Also, it is easy to verify that the optimal

orders k̂j must be O(log n), reducing the search space for k′ in (12).

Our main result is given by the following theorem, whose derivation and proof are presented

in Appendix B. Recall that (Π)∗P denotes the canonical partition of P (Subsection III-C).

Theorem 4: Let P = IΠ(P1, P2, . . . , Pm;Pw), and let zn be a sample from P . Then, for

suitable choices of the penalization constant β, Π̂(zn) is compatible with P , and k̂(zn) reproduces

the order vector of the corresponding IMP representation IΠ̂, almost surely as n → ∞.

Furthermore, if P is domination-free, we have

Π̂(zn) = (Π)∗P a.s. as n→∞ .

Remarks.

• Theorem 4 states that our scheme, when presented with a sample from an interleaved

process, will almost surely recover an alphabet partition compatible with the process. If the

interleaved process is domination-free, the scheme will recover the canonical partition of the

process, from which all compatible partitions can be generated via repeated applications of

4For convenience, we set the penalty terms in (11) all proportional to log(n + 1), rather than the term corresponding to zi

being proportional to log |zi|. Given our basic assumptions on switch processes, if zn is a sample from an IMP, |zi| will, almost

surely, be proportional to n. Therefore, the simpler definition adopted has no effect on the main asymptotic results. Clearly,

using log(n+ 1) in lieu of logn, which will be convenient in some derivations, is also of negligible effect.

15

Lemma 1. The difficulty in establishing the first claim of the theorem resides in the size of the

class of models that participate in the optimization (12). The fact that a compatible partition

will prevail over any specific incompatible one eventually almost surely, for any penalization

coefficient β ≥ 0, will be readily established through a large deviations argument. However,

the class contains models whose size is not bounded with n. In fact, it is well known (see,

e.g., [16]) that the stationary distribution of the ergodic process P can be approximated

arbitrarily (in the entropy sense) by finite memory processes of unbounded order. Thus,

without appropriately penalizing the model size, a sequence of “single stream” hypotheses

of unbounded order can get arbitrarily close in cost to the partitions compatible with P .

We will prove that an appropriate positive value of β suffices to rule out these large models

that asymptotically approach P . To establish the second claim of the theorem, we will take

advantage of the observation that the canonical representation of a domination-free IMP, is,

in a sense, also the most “economical”. Indeed, comparing the number of free statistical

parameters in the two IMP representations considered in Lemma 1, we obtain, using (5),

κ(Π′,k′)− κ(Π,k) = m(m+ 1)kw − (m− 1)mkw − 1 . (13)

It is readily verified that the expression on the right hand side of (13) vanishes for kw = 0,

and is strictly positive when kw > 0 (since m ≥ 1). Therefore, splitting a memoryless

component as allowed by Lemma 1, in general, can only increase the number of parameters.

Thus, the canonical partition minimizes the model size, and with an appropriate choice of

β > 0, our penalized ML scheme will correctly identify this minimal model.

• If a bound is known on the orders of the component and switch processes, then it will

follow from the proof in Appendix B that the first claim of Theorem 4 can be established

with any β ≥ 0. However, an appropriate positive value of β is still needed, even in this

case, to recover the canonical partition in the second claim of the theorem. As mentioned,

our deinterleaving scheme assumes that IMPs based on FΠ,k are fully parametrized, i.e.,

the class has κ free statistical parameters. If the actual IMP being estimated is less than

fully parametrized (i.e., it does have some transition probabilities set to zero), the effect of

penalizing with the full κ is equivalent to that of using a larger penalization coefficient β.

16

V. EXPERIMENTAL RESULTS

We report on experiments showing the performance of practical implementations of the

proposed deinterleaver. The experiments were based on test sets consisting of 200 interleaved

sequences each. Each sequence was generated by an IMP with m=3, subalphabet sizes

α1=4, α2=5, α3=6, component Markov processes of order ki ≤ 1 with randomly chosen

parameters, and a switch of order kw ≤ 1 as described below. In all cases, the switches were

domination-free. Deinterleaving experiments were run on prefixes of various lengths of each

sequence, and, for each prefix length, the fraction of sequences correctly deinterleaved was

recorded.

In the first set of experiments, the component Markov processes, all of order one, were

interleaved by uniformly distributed memoryless switches (i.e., k = (1, 1, 1, 0)). We compared

the deinterleaving performance of the ML-based scheme proposed here with that of an

implementation of the scheme of [1], with tolerances for the latter optimized (with knowledge

of the correct partition) to obtain the best performance for each sequence length. Two variants

of the ML-based scheme were tested: Variant (a) implements (12) via exhaustive search over all

partitions.5 Since this is rather slow, a heuristic Variant (b) was developed, based on a randomized

gradient descent-like search. This variant, which is briefly described next, is much faster, and

achieves virtually the same deinterleaving performance as the full search.

We define the neighborhood of radius t of a partition Π, denoted Nt(Π), which consists

of all partitions Π′ obtained from Π by switching up to t symbols of A from their original

subalphabets in Π to other subalphabets (including possibly new subalphabets not present in Π).

The main component of the heuristic starts from an input sequence zn and a random partition Π0

of A, and exhaustively searches for the partition Π′ that minimizes the cost CΠ′(z
n) within the

neighborhoodNt(Π0), for some small fixed value of t. The minimizing partition then becomes the

center for a new exhaustive neighborhood search. This “greedy” deterministic process continues

until no improvements in the cost function can be obtained. At this point, the best partition

Π observed so far is perturbed by picking a random partition Π′0 ∈ Nr(Π), for a fixed radius

5We recall that given a sequence zn and a partition Π, the order vector k minimizing the cost CΠ,k(zn) is determined through

conventional penalized-ML order estimators for the various sub-sequences induced by Π. We assume that this minimizing order

vector is used in all cost computations, and omit further mention of it.

17

TABLE I

FRACTION OF CORRECTLY DEINTERLEAVED SEQUENCES (OUT OF 200) VS. SEQUENCE LENGTH, FOR TWO VARIANTS OF

THE PROPOSED SCHEME (ML(a) AND ML(b)), AND FOR THE SCHEME OF [1]. A PENALIZATION CONSTANT β = 1
2

WAS

USED IN ALL CASES FOR THE ML-BASED SCHEMES.

memoryless switch switch with memory

k = (1, 1, 1, 0) k = (1, 1, 1, 1) k = (0, 1, 1, 1)

ML (b) ML (b)
n ML (a) ML (b) [1] ML (a) ML (b) canonical compatible

250 0.010 0.010 0.000 0.310 0.300 0.215 0.225

500 0.135 0.130 0.000 0.635 0.620 0.600 0.625

1000 0.440 0.420 0.000 0.915 0.915 0.880 0.900

2500 0.820 0.815 0.000 0.995 0.995 0.990 0.990

5000 0.960 0.960 0.005 1.000 1.000 1.000 1.000

10000 0.990 0.990 0.030 1.000 1.000 1.000 1.000

15000 1.000 1.000 0.080 1.000 1.000 1.000 1.000

20000 1.000 1.000 0.135 1.000 1.000 1.000 1.000

50000 1.000 0.460 1.000 1.000 1.000

100000 1.000 0.770 1.000 1.000 1.000

500000 1.000 0.965 1.000 1.000 1.000

1000000 1.000 0.980 1.000 1.000 1.000

r > t, and the deterministic search is repeated using Π′0 in lieu of Π0 as the starting point.

The routine stops if a given number N of consecutive rounds of such perturbations do not

yield further cost reductions, at which point the best partition Π observed so far is returned as a

candidate solution. To improve deinterleaving reliability, this basic scheme can be run for several

independent starting random partitions Π0, noting the overall cost minimum. The number R of

such outer iterations, the maximum count N of consecutive perturbations without improvement,

and the neighborhood radii t and r, are parameters controlling the complexity vs. deinterleaving

performance trade-off of the heuristic. For our experiments, we found that R = 5, N = 15,

t = 1, and r = 2, yielded performance virtually identical to a full exhaustive partition search,

with orders of magnitude reduction in complexity.6

6In fact, to keep running times reasonable, the exhaustive search was given the benefit of limiting the search space to partitions

Π with |Π| ≤ 4. No such limitation was assumed for the heuristic scheme, whose search space included, in principle, partitions

of any size |Π| ≤ |A|.

18

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 1000 10000 100000 1000000

n

2©1©4©3©

1© k=(1, 1, 1, 0) ML

2© k=(1, 1, 1, 0) [1]

3© k=(1, 1, 1, 1) ML

4© k=(0, 1, 1, 1) ML

Fr
ac

tio
n

of
se

qu
en

ce
s

co
rr

ec
tly

de
in

te
rl

ea
ve

d

Fig. 3. Deinterleaving success rate vs. sequence length for various IMPs and deinterleavers.

The results of the experiments with memoryless switches are summarized in columns 2–4 of

Table I. The table shows that the proposed ML-based scheme (in either variant) achieves better

than 80% deinterleaving accuracy for sequences as short as n = 2500, with perfect deinterleaving

for n ≥ 15000, whereas the scheme of [1], although fast, requires much longer sequences,

correctly deinterleaving just one sequence in 200 for n = 5000, and achieving 98% accuracy for

n = 106 (the maximum length tested in the experiments). This comparison is illustrated by the

curves labeled 1© and 2© in Figure 3.

In the second set of experiments, we used, for each sequence, the same component processes as

in the first set, but with a switch Pw of order one (i.e., k = (1, 1, 1, 1)), with random parameters

and uniform marginal subalphabet probabilities. The results are presented in columns 4–5 of

Table I, and plotted in the curve labeled 3© in Figure 3. We observe that the additional structure

resulting from the switch memory allows for improved deinterleaving performance for shorter

sequences: better than 60% accuracy is obtained for sequences as short as n = 500, while perfect

deinterleaving is obtained for n ≥ 5000. A comparison with the scheme of [1] is omitted in

this case, as the determination of appropriate statistics thresholds (not discussed in [1]) appears

more involved than in the memoryless switch case, and is beyond the scope of this paper.

Finally, in a third set of experiments, we maintained switches of order one, but let the

19

component process P1 in each case be memoryless (i.e., k = (0, 1, 1, 1)). Recall that, by

Lemma 1, the resulting IMPs in this case have ambiguous representations. Results for the

heuristic ML-based scheme are presented in columns 6–7 of Table I, which list the fraction

of sequences of each length for which the deinterleaver picked the canonical partition, or any

compatible partition, respectively. We observe that, except for minor deviations for the shorter

sequence lengths, the deinterleaver consistently picks the canonical partition, as expected from

Theorem 4. The fraction of sequences for which the canonical partition is chosen is plotted in

the curve labeled 4© in Figure 3. Memoryless components are excluded in [1], so a comparison

is not possible in this case.

Recalling the second remark at the end of Section IV, we note that any nonnegative value

of the penalization constant β would have sufficed for the ML schemes in the first two sets of

experiments, since the IMPs considered have unique representations, and the order of all the

processes tested was bounded by 1. However, a positive value of β is required to recover the

canonical partition (and from it, all compatible partitions) in the case of the third set. For shorter

sequences, a value of β as small as possible is preferred to exclude non-compatible partitions,

while a value of β as large as possible is preferred to recover the canonical partition. Overall, a

value β = 1
2

worked well in practice in all cases, providing the best trade-off for shorter sequence

lengths (clearly, the choice becomes less critical as the sequence length increases). This value

of β is smaller than the value employed in the proof of Theorem 4. In general, the question

of determining the minimal penalty that guarantees consistent deinterleaving remains open. The

situation bears some similarity to the one encountered with Markov order estimators: while it

is known that β = 1
2

guarantees strong consistency in all cases, it is also known that much

smaller penalization constants (or even penalization functions o(log n)) may suffice when the

process order is bounded [6]. The general question of the minimal penalization that guarantees

consistent unbounded order estimation is, also in this case, open [6].

APPENDIX A

UNIQUENESS OF IMP REPRESENTATIONS: DERIVATIONS

A. Derivation of Theorems 1 and 2

Theorems 1 and 2 will be established through a series of lemmas. The first one (Lemma 2

below) captures some essential properties of the interleaved process P=IΠ(P1, P2, . . . , Pm;Pw)

20

and of the domination relation, which we will draw upon repeatedly in the sequel. These

properties follow immediately from our ergodicity and independence assumptions. Intuitively,

the key point is that if A1 6A A2, the interleaved system can always take a trajectory (of positive

probability) where it reaches an arbitrary state s of P1, and then, without returning to A1, visits

any desired part of A2 any desired number of times (while the state of P1 remains, of course,

unchanged). The last segment of the trajectory, with an unbounded number of occurrences of

A2, can be chosen independently of s. For ease of reference, these observations are formally

stated in the lemma below, where Na(z) denotes the number of occurrences of a symbol a in a

string z.

Lemma 2: Consider the subalphabets A1, A2 ∈ Π, and assume A1 6A A2.

i) Let M1 and M be arbitrary integers. There exist strings U, V ∈ Π∗ such that Pw(UV) > 0,

NA1(U) ≥M1, NA1(V) = 0, NA2(V) ≥M , and Pw(A1 |UV) > 0.

ii) Let M2 be an arbitrary integer, let s be an arbitrary state of P1, and consider an arbitrary

subset B2 ⊆ A2 and an integer M1 ≥ k1. There exists an integer M ≥ M2, and strings

u, v ∈ A∗ such that uv is consistent with UV (with |u| = |U |), where U and V are the

strings obtained from Part i) for these values of M1 and M , u[A1] = u′s for some u′ ∈ A∗1,∣∣v[B2]
∣∣ ≥M2, and the choice of v does not depend on s (in particular, the same v can be

chosen for any s ∈ S(P1)).

Proof: Part i) follows from the ergodicity of Pw, the positivity of both Pw(A1) and Pw(A2),

and the definition of domination. The existence of the desired string u in Part ii) follows further

from the independence of the component and switch processes, and from the ergodicity of P1

(in particular, the fact that P1(s) > 0). Relying also on the ergodicity of P2, we obtain the string

v. The value of M is determined by how many times v must visit A2 to obtain M2 occurrences

of symbols in the subset B2. The independence of v from s follows from (2), which allows us

to substitute any string over A1, of positive probability, for u[A1] in uv, resulting in a string ũv,

with P (ũv) > 0, ũ compatible with U , and ũ[A1] ending in any desired state of P1.

For succinctness, in the series of lemmas and corollaries that follows, we assume throughout

that we are given an ambiguous IMP, P = IΠ(P1, P2, . . . , Pm;Pw) = IΠ′(P
′
1, P

′
2, . . . , P

′
m′ ;P

′
w),

where Π = {A1, A2, . . . , Am} and Π′ = {A′1, A′2, . . . , A′m′} are partitions of A, with Π 6= Π′.

Clearly, for at least one alphabet Ai we must have Ai 6∈ Π′, so we assume, without loss of

generality, that A1 6∈ Π′, and, furthermore, that A1∩A′1 6= φ. Also, we say that two subalphabets

21

Ai, Aj ∈ Π share a subalphabet A′` ∈ Π′ if A′` intersects both Ai and Aj .

Lemma 3: Assume that A2 shares A′1 with A1, and A1 6A A2. Then, for all a ∈ A1 ∩ A′1,

P1(a | s) is independent of s ∈ S(P1).

Proof: Let a ∈ A1 ∩ A′1, and s ∈ S(P1). Let U, V ∈ Π∗ and u, v ∈ A∗ be the strings

guaranteed by Lemma 2 for the given state s, M2 = ord(P ′1), and B2 = A2 ∩ A′1. Recall that

v can be chosen independently of s, and
∣∣v[B2]

∣∣ ≥ M2 = ord(P ′1). Let v̂ = v[A′1], and let

U ′V ′ = AΠ′(uv). Then, applying (1) separately to each of the two given IMP representations

of P , and noting that |v̂| ≥
∣∣v[B2]

∣∣ ≥ ord(P ′1), we have

P (a|uv) = P1(a|s)Pw(A1|UV) = P ′1(a|v̂)P ′w(A′1|U ′V ′).

Now, recalling that Pw(A1|UV) > 0 by Lemma 2(i), we obtain

P1(a|s) =
P ′1(a|v̂)P ′w(A′1|U ′V ′)

Pw(A1|UV)
,

which is independent of s.

Lemma 4: Assume that A′1 ⊆ A1, A′2 ∩ A1 6= φ, and A′1 6A A′2. Then, P ′1 is memoryless.

Proof: The lemma follows by applying Lemma 3 with the roles of Π and Π′ reversed, and

observing that A′1 ∩ A1 = A′1.

Lemma 5: Assume that A1 6A A2 and A′1 ⊆ A1. If A′2 ∈ Π′, and A′2 ∩A2 6= φ, then A′1 6A A′2.

Proof: We apply Lemma 2, referring only to the strings V and v guaranteed by the lemma,

and with B2 = A2 ∩ A′2. Thus, for any integer M2, there exists a string V ∈ Π∗ and a string

v consistent with V such that M2 ≤
∣∣v[B2]

∣∣ ≤ ∣∣v[A′2]
∣∣, while NA1(V) = 0 and, consequently,∣∣v[A′1]

∣∣ = 0. Letting V ′ = AΠ′(v), we then have NA′1
(V ′) = 0 and NA′2

(V ′) ≥M2 for arbitrarily

large M2. Thus, A′1 6A A′2.

Lemma 6: Assume that A1 is not totally dominant, A′1 ⊆ A1, and P ′1 is memoryless. Then,

for all a ∈ A′1, P1(a|s) is independent of s ∈ S(P1).

Proof: Since m > 1 and A1 is not totally dominant, there exists a subalphabet, say A2 ∈ Π,

such that A1 6A A2. Consider a symbol a ∈ A′1. Let s be an arbitrary state of P1, and let U , V , u,

and v be the strings guaranteed by Lemma 2 for the state s, with M2 = max{ord(Pw), ord(P ′w)}.

Then, applying (1) to the two IMP representations under consideration, we have

P (a|uv) = P1(a|s)Pw(A1|UV) = P ′1(a)P ′w(A′1|U ′V ′), (14)

22

where U ′V ′ = AΠ′(uv), and we have relied on the fact that P ′1 is memoryless. Recall from

Lemma 2(i) that Pw(A1|UV) > 0. By our choice of M2, it follows from (14) that P1(a|s) =

P ′1(a)P ′w(A′1|V ′)/Pw(A1|V), which is independent of s.

Lemma 7: Assume that A1 does not dominate any subalphabet Aj , j > 1, that shares some

A′` ∈ Π′ with A1. Then, either P1 is memoryless, or A1 splits into subalphabets in Π′.

Proof: Assume that A1 does not split into subalphabets in Π′. Then, there exists a

subalphabet A′` ∈ Π′ that intersects A1 but is not contained in it, so A1 shares A′` with some

Aj , j > 1. By the lemma’s assumptions, we have A1 6A Aj . Therefore, by Lemma 3, P1(a|s)

is independent of s ∈ S(P1) for all a ∈ A1 ∩ A′`. Assume now that there is also a subalphabet

A′i ∈ Π′ such that A′i ⊆ A1. By Lemma 5, we have A′i 6A A′`, and, therefore, by Lemma 4,

P ′i is memoryless. Thus, by Lemma 6, P1(a|s) is independent of s also when a ∈ A′i ⊆ A1.

Consequently, if A1 does not split in Π′, since every a ∈ A1 must belong to some A′h ∈ Π′,

and P1(a|s) is independent of s ∈ S(P1) whether A′h is contained in A1 or not, P1 must be

memoryless.

Lemma 8: Assume that A1 is not totally dominant, and that A1 does not dominate any

subalphabet Aj , j > 1, that shares some A′` with A1. Then, P1 is memoryless.

Proof: If P1 is not memoryless, then by Lemma 7, A1 splits into subalphabets in Π′. Thus, up

to re-labeling of subalphabets, we have A1 = A′1∪A′2∪· · ·∪A′r, where A′i ∈ Π′, 1 ≤ i ≤ r ≤ m′,

with r > 1. Furthermore, by Lemma 6, at least one of the A′i, say A′1, is not memoryless (for,

otherwise, P1 would be memoryless). By Lemma 4, A′1 must dominate all A′i, 2 ≤ i ≤ r, and in

particular, A′1 A A′2. It follows from this domination relation that there exists a string U ′ ∈ (Π′)∗

such that P ′w(A′2|U ′) = 0, and P ′w(A′1|U ′) > 0. By the ergodicity of P ′w, we can assume without

loss of generality that the number of occurrences of subalphabets A′1, A
′
2, . . . , A

′
r in U ′ is at least

k1 = ord(P1). Let u be a string consistent with U ′. We have
∣∣u[A1]

∣∣ ≥ k1; let t ∈ S(P1) be

the suffix of length k1 of u[A1]. Consider a symbol b ∈ A′2, and let U ′′ = AΠ(u). Applying (1)

separately to the two available IMP representations of P , we have

P (b|u) = P1(b|t)Pw(A1|U ′′) = P ′2(b|u[A′2])P ′w(A′2|U ′) = 0, (15)

where the last equality follows from our choice of U ′. On the other hand, since we also have

P ′w(A′1|U ′) > 0, we must have P (a|u) > 0 for some a ∈ A′1 ⊆ A1, and, therefore, Pw(A1|U ′′) >

0. Thus, it follows from (15) that P1(b|t) = 0. By our assumptions on component processes, there

23

must also be a state s ∈ S(P1) such that P1(b|s) > 0. Since A1 is not totally dominant, there exists

a subalphabet, say A2, such that A1 6A A2. Let B2 = A2 and M2 = max{ord(Pw), ord(P ′w)}.

We apply Lemma 2(ii), separately to the states s and t, choosing the same string v for both

as allowed by the lemma. Specifically, let U and V be the strings over Π obtained from the

lemma, and let u(t), u(s), and v be strings such that u(t)[A1] = u′t, u(s)[A1] = u′′s for some

u′, u′′, both u(s)v and u(t)v are consistent with UV , and |v[A2]| ≥M2. Let V ′ = AΠ′(v). Clearly,

|V | = |V ′| ≥M2, so V and V ′ determine states in the respective switches. Applying (1) again,

we obtain

P (b|u(s)v) = P ′2(b|u(s)[A′2])P ′w(A′2|V ′) = P1(b|s)Pw(A1|V) > 0 , (16)

where the last inequality follows from our choice of s, and the fact that Pw(A1|V) =

Pw(A1|UV) > 0 by our choice of M2 and by Lemma 2(i). Thus, we must have P ′w(A′2|V ′) > 0.

On the other hand, we can also write

P (b|u(t)v) = P ′2(b|u(t)[A′2])P ′w(A′2|V ′) = P1(b|t)Pw(A1|V) = 0 , (17)

where the last equality follows from our choice of t. Since, as previously claimed, P ′w(A′2|V ′)>0,

it follows from (17) that P ′2(b|u(t)[A′2]) = 0, which must hold for all b ∈ A′2, a contradiction,

since every state of P ′2 must have at least one symbol with positive probability (the argument

holds even if |u(t)[A′2]| < ord(P ′2), reasoning with marginal probabilities). We conclude that P1

must be memoryless.

The following corollary is an immediate consequence of Lemma 8.

Corollary 2: Assume that A1 is not dominant. Then, P1 is memoryless.

Assume now that Pw is such that no two alphabets in Π are in mutual domination. As discussed

in Section III-A, this ensures that A defines a strict partial order on Π. We classify alphabets in

Π into disjoint layers Li, i≥0, as follows: Given L0, L1, . . . , Li−1, and assuming that these layers

do not exhaust Π, we let Li consist of the alphabets that have not been previously assigned to

layers, and that only dominate alphabets contained in layers Li′ , 0 ≤ i′ < i (e.g., L0 consists of

the non-dominant alphabets in Π). Since Π is finite, and every finite set endowed with a strict

partial order has minima, Li is well defined and non-empty. Thus, for some r ≥ 0, we can write

Π = L0 ∪ L1 ∪ · · · ∪ Lr (18)

24

where the layers L0, L1, . . . , Lr are all disjoint and non-empty.7

We are now ready to present the proofs of Theorems 1 and 2, which rely on the foregoing

lemmas and corollaries, and on the classification of alphabets into layers Li.

Proof of Theorem 1: For the layers in (18) we prove, by induction on i, that Li ⊆ Π′ for

0 ≤ i ≤ r. By the definition of L0, alphabets Aj ∈ L0 are not dominant. Thus, by Corollary 2,

we must have Aj ∈ Π′, since, by assumption (iii), Aj is not memoryless. Hence, L0 ⊆ Π′.

Assume now that the induction claim has been proven for L0, L1, . . . , Li−1, 1 ≤ i ≤ r. Let Aj

be any alphabet in Li. By definition of Li, Aj only dominates alphabets in layers Li′ , i′ < i. But,

by our induction hypothesis, alphabets in these layers are elements of Π′, and, thus, they do not

share with other alphabets from Π. Thus, Aj does not dominate any alphabet Ah with which it

shares any A′`. By Lemma 8, we must have Aj ∈ Π′, since Aj is neither totally dominant nor

memoryless by the assumptions of the theorem. Hence, Li ⊆ Π′, and our claim is proven. Now,

it follows from (18) that Π ⊆ Π′, and, since both Π and Π′ are partitions of the same alphabet

A, we must have Π = Π′.

Proof of Theorem 2: Examining the proof of Theorem 1, we observe that when

Condition (ii) is removed, any totally dominant alphabet must reside in Lr, the last layer in (18).

Furthermore, if there is such an alphabet Ai0 , it must be unique, for otherwise there would be

alphabets in mutual domination. Thus, we have Lr = {Ai0}, and Ai ∈ Π′ for all i 6= i0, and,

therefore, Ai0 splits into the remaining alphabets in Π′ that are not equal to any Ai.

B. Derivation of Theorem 3

We start by proving Lemma 1 of Subsection III-C, and then proceed to present an additional

auxiliary lemma, and the proof of Theorem 3.

Proof of Lemma 1: Assume P
(j)
1 , j ∈ {1, 2}, and P ′w satisfy (6)–(8). We prove that

P (un) = P ′(un) for all lengths n and sequences un ∈ An by induction on n. For n = 0, the

claim is trivially true due to the convention P (λ) = P ′(λ) = 1. Assume that P (un−1) = P ′(un−1)

for n > 0 and all un−1 ∈ An−1, and consider a sequence un = un−1un. Let Un = AΠ(un) and

(U ′)n = AΠ′(u
n), and let S ∈ S(Pw) and S ′ ∈ S(P ′w) be the states selected by Un−1 and (U ′)n−1,

7The layers Li correspond to height levels in the directed acyclic graph associated with the transitive reduction of the partial

order A.

25

respectively. Clearly, we have S = Ψ(S ′). By the definition of Π′, if Un = Ai, i ∈ {2, 3, . . . ,m},

then U ′n = Un, and we have

P ′(un) = P ′(un−1)P ′(un|un−1) = P ′(un−1)P ′w(Ai|S ′)Pi(un
∣∣un−1[Ai]))

= P (un−1)Pw(Ai|S)Pi(un
∣∣un−1[Ai])) = P (un) , (19)

where the second and last equalities follow from the definitions of the respective IMPs, and the

third equality follows from the induction hypothesis and (8). On the other hand, if Un = A1,

then U ′n = Bj for some j ∈ {1, 2}, and we have

P ′(un) = P ′(un−1)P ′(un|un−1) = P ′(un−1)P ′w(Bj|S ′)P (j)
1 (un)

= P (un−1)Pw(A1|S)P1(Bj)
P1(un)

P1(Bj)
= P (un) , (20)

where, this time, the third equality follows from the induction hypothesis, (8), and (6) (we recall

that P1, P (1)
1 , and P (2)

1 are memoryless). This completes the induction proof and establishes that

P ′ = P .

To prove the “only if” part of the lemma, we assume that P ′ = P , and consider a sufficiently

long, arbitrary string un such that P (un) > 0. Let U ′ = AΠ′(u
n−1), and assume first that un ∈ Ai

for some i ≥ 2. Then, similarly to (19) (but proceeding from the inside out), and noting that

AΠ(un−1) = Ψ(U ′), we can write

P ′(un−1)P ′w(Ai|U ′)Pi(un
∣∣un−1[Ai])) = P ′(un) = P (un)

= P (un−1)Pw(Ai|Ψ(U ′))Pi(un
∣∣un−1[Ai])) . (21)

Since P ′ = P , and P (un) > 0, (21) can be simplified to

P ′w(Ai|U ′) = Pw(Ai|Ψ(U ′)), i ∈ {2, 3, . . . ,m} , (22)

for arbitrary U ′ ∈ (Π′)n−1 of positive probability. Consider now the case un = b ∈ Bj , j ∈ {1, 2}.

Then, in analogy with (20), we write

P ′(un−1)P ′w(Bj|U ′)P (j)
1 (b) = P ′(un) = P (un) = P (un−1)Pw(A1|Ψ(U ′))P1(b) . (23)

Adding over all b ∈ Bj and simplifying, we obtain

P ′w(Bj|U ′) = Pw(A1|Ψ(U ′))P1(Bj), j ∈ {1, 2} , (24)

26

again for arbitrary U ′. Conditions (7)–(8) now follow readily from (22) and (24) (which imply,

in particular, that kw = k′w), and Condition (6) follows by substituting the right-hand side of (24)

for P ′w(Bj|U ′) in (23) and solving for P (j)
1 (b).

We say that the representations IΠ and IΠ′ of an IMP P coincide up to memoryless components

if the set of component processes of positive order is the same in both representations. The

following lemma establishes the uniqueness of canonical partitions.

Lemma 9: Let IΠ and IΠ′ be IMP representations of a process P that coincide up to

memoryless components, and such that both are canonical. Then, Π = Π′.

Proof: Assume that Π 6= Π′, and let Π′′ be the smallest common refinement of Π and Π′

(i.e., Π′′ =
{
Ai ∩ A′j

∣∣Ai ∈ Π, A′j ∈ Π′, Ai ∩ A′j 6= φ
}

). By repeated application of Lemma 1,

there exists an IMP representation IΠ′′(P
′′
1 , P

′′
2 , . . . , P

′′
m′′ ;P

′′
w) of P . This representation is a

memoryless refinement of both IΠ and IΠ′ . Since Π 6= Π′, there exists an alphabet, say A′1 ∈ Π′

such that A′1 6∈ Π, P ′1 is memoryless, and we can assume without loss of generality that A′1
intersects at least two alphabets, A1 and A2, in Π (otherwise, we can switch the roles of Π and

Π′). Let B1 = A′1 ∩A1 and B2 = A′1 ∩A2, so that B1, B2 ∈ Π′′. Applying Lemma 1 separately

to IΠ and to IΠ′ with respect to the refinement IΠ′′ , we can write, for any S ′′ ∈ S(P ′′w), and

denoting S = ΨΠ,Π′′(S
′′) and S ′ = ΨΠ′,Π′′(S

′′),

P ′′w(B1|S ′′) = Pw (A1|S)P1(B1) = P ′w (A′1|S ′)P ′1(B1),

where P1(B1) and P ′1(B1) are nonzero. (Notice that the equation holds also when B1 = A1, i.e.,

when A1 is not actually refined in Π′′.) Therefore, we can write

Pw (A1|S) =
P ′w (A′1|S ′)P ′1(B1)

P1(B1)
. (25)

Using a similar argument for B2 and A2, we obtain

Pw (A2|S) =
P ′w (A′1|S ′)P ′1(B2)

P1(B2)
. (26)

It follows from (25) and (26) that if P ′w (A′1|S ′) = 0, then Pw(A1|S) = Pw(A2|S) = 0, and,

otherwise,
Pw (A2|S)

Pw (A1|S)
=
P1(B1)P ′1(B2)

P ′1(B1)P1(B2)
∆
= γ,

where γ > 0 is independent of S ′′ (and of S). Observing that S can assume any value in S(Pw),

we conclude, by Lemma 1 and the remarks following its statement, that A1 could be merged

with A2, contradicting the assumption that IΠ is canonical. Thus, we must have Π = Π′.

27

Proof of Theorem 3: Assume P = P ′. Since there are no dominant alphabets in

either representation, it follows from Corollary 2 that the representations must coincide up

to memoryless components. It then follows from Lemma 9 that the canonical partitions of

IΠ and IΠ′ must be identical, and, thus, since they generate the same process, we must have

(IΠ)∗ ≡ (IΠ′)
∗. The “if” part is straightforward, since (IΠ)∗ generates P , and (IΠ′)

∗ generates

P ′.

APPENDIX B

THE DEINTERLEAVING SCHEME: DERIVATIONS

We will prove Theorem 4 through the auxiliary Lemmas 10 and 11 below, for which we need

some additional definitions.

Let F = (S, s0, f) be an FSM, and let P and Q be processes generated by F , such that P is

ergodic. The divergence (relative to F) between P and Q is defined as

D(P ||Q) =
∑
s∈S

P (s)D
(
P (·|s)

∣∣∣∣Q(·|s)
)
, (27)

where P (s) denotes the stationary probability of the state s ∈ S, and D
(
P (·|s)

∣∣∣∣Q(·|s)
)

denotes

the Kullback-Leibler divergence between the conditional distributions P (·|s) and Q(·|s). It is

well known (see, e.g., [17]) that D(P ||Q) as defined in (27) is equal to the asymptotic normalized

Kullbak-Liebler divergence between the processes P and Q, namely,

D(P ||Q) = lim
n→∞

1

n

∑
zn∈An

P (zn) log
P (zn)

Q(zn)
.

Let V(FΠ,k) denote the set of parameter vectors corresponding to ergodic unconstrained

FSMSs based on FΠ,k, and let V(FΠ,k) denote its topological closure. Assuming full parametriza-

tion, this set is a convex polytope in K-dimensional Euclidean space. The boundary of V(FΠ,k)

consists of parameter vectors with certain transition probabilities set to zero or one. Some

of these vectors do not correspond to ergodic FSMS, namely, those that make some of the

marginal probabilities of states in S vanish (e.g., parameter vectors where the probabilities of

all the transitions leading to a state vanish). Let VI(FΠ,k), in turn, denote the set of parameter

vectors of IMP-constrained FSMSs based on FΠ,k, and VI(FΠ,k) its topological closure. The set

VI(FΠ,k) is a closed κ-dimensional hypersurface within V(FΠ,k), determined by the parameter

28

relations implicit in (3). As before, boundary points in VI(FΠ,k) are either in VI(FΠ,k), or do

not correspond to valid IMPs. We shall make use of these relations in the sequel.

The following lemma will be useful in proving the first claim of Theorem 4.

Lemma 10: Let P = IΠ(P1, P2, . . . , Pm;Pw), and let k = (k1, k2, . . . , km, kw) be the

corresponding order vector. Let Π′ be a partition of A incompatible with P , and k′ an arbitrary

order vector of dimension |Π′|+ 1. Then, for a sample zn from P , and for any β ≥ 0, we have

CΠ′,k′(z
n) > CΠ,k(zn) a.s. as n→∞ .

Proof: Let F+ be a common refinement8 of F = FΠ,k and F ′ = FΠ′,k′ . Let V = V(F+)

denote the space of all valid parameter vectors for FSM sources based on F+, and let V(F+)

denote its topological closure. The constraints satisfied by IMP sources based on F and F ′ are

extended to their representations in V (notice that a refinement increases the dimension of the

parameter vector by “cloning” parameters, together with their constraints). Thus, as mentioned

in the discussion immediately preceding the lemma, the set of all IMP-constrained FSMSs based

on F ′ maps to a lower-dimensional hypersurface V ′ = VI(F+) ⊆ V , with closure V
′
. We claim

that the representation of P in V is outside the closed hypersurface V
′
, and, thus, at positive

Euclidean (or L1) distance from it. To prove the claim, we first notice that since Π′ is, by

assumption, incompatible with P , no valid IMP-constrained assignment of parameters for F ′

can generate P , and, thus, P 6∈ V ′. Furthermore, since points in V
′ \ V ′ correspond to “invalid”

IMPs with unreachable states, we must have P 6∈ V ′, and, therefore, P is at positive distance

from V
′
, as claimed. The ergodicity of P also implies that, in its representation in V , all the

states of F+ have positive stationary probabilities. Applying Pinsker’s inequality on a state by

state basis in (27) for F+, we conclude that for any process P ′ ∈ V ′, we have

D(P ||P ′) ≥ ∆ , (28)

for some constant ∆ > 0. Now, recall that P̂ ∗F+(zn) denotes the ML probability of zn with

respect to F+ for an unconstrained FSMS. It follows from the definition of P̂ ∗F+(zn) and of the

divergence D(·||·) in (27) that for any process Q generated by F+, we have

− logQ(zn) = − log P̂ ∗F+(zn) + nD
(
P̂ ∗F+

∣∣∣∣Q) . (29)

8It is always possible to construct a common refinement of two FSMs, e.g., one whose state set is the Cartesian product of

the state sets of the refined FSMs.

29

In particular, since F+ can generate any process that either F or F ′ can generate, it can assign

to zn its IMP-constrained ML probabilities with respect to F and F ′ which are, respectively,

P̂Π,k(zn) = 2−ĤΠ,k(zn) and P̂Π′,k′(z
n) = 2−ĤΠ′,k′ (z

n). Applying (29) to Q = P̂Π,k and Q = P̂Π′,k′

separately, subtracting on each side of the resulting equations, and dividing by n, we obtain

1

n

(
ĤΠ′,k′(z

n)− ĤΠ,k(zn)
)

= D
(
P̂ ∗F+

∣∣∣∣P̂Π′,k′
)
−D

(
P̂ ∗F+

∣∣∣∣P̂Π,k

)
. (30)

Now, since zn is a sample from P , the empirical measures P̂ ∗F+ and P̂Π,k tend to the true

process P almost surely in the divergence sense, i.e., D
(
P̂ ∗F+

∣∣∣∣P) → 0 and D
(
P̂Π,k

∣∣∣∣P) → 0

a.s. as n→∞. Also, an empirical conditional probability value in either P̂ ∗F+ or P̂Π,k is surely

zero if the corresponding parameter in P is zero, and almost surely bounded away from zero

otherwise. Hence, we also have D
(
P̂ ∗F+

∣∣∣∣P̂Π,k

)
→ 0 a.s. as n → ∞. On the other hand, since

P̂Π′,k′ ∈ V ′, (28) applies with P ′ = P̂Π′,k′ , so we have D
(
P
∣∣∣∣P̂Π′,k′

)
≥ ∆ > 0, and, using

a similar convergence argument, D
(
P̂ ∗F+

∣∣∣∣P̂Π′,k′
)
≥ ∆ > 0 a.s. as n → ∞. Thus, it follows

from (30) that
1

n

(
ĤΠ′,k′(z

n)− ĤΠ,k(zn)
)
≥ ∆ > 0 a.s. as n→∞,

which implies, by (11),

1

n

(
CΠ′,k′(z

n)− CΠ,k(zn)
)
≥ ∆ > 0 a.s. as n→∞ , (31)

since the contribution of the O(log n) penalty terms to the costs vanishes asymptotically in this

case, for any choice of β ≥ 0.

The following lemma, in turn, will be useful in establishing the second claim of Theorem 4.

Lemma 11: Let Π, Π′, IΠ and IΠ′ be as defined in Lemma 1, so that IΠ′ is a memoryless

refinement of IΠ. Let k = (0, k2, . . . , km, kw) be the order vector corresponding to IΠ, and

k′ = (0, 0, k2, . . . , km, kw) that of IΠ′ . For a sample zn from P , and an appropriate choice of β,

we have: if kw > 0, then

CΠ′,k′(z
n) > CΠ,k(zn) a.s. as n→∞ , (32)

while if kw = 0, then

CΠ′,k′(z
n) = CΠ,k(zn) . (33)

Proof: We first notice that, by Lemma 1, PI(FΠ,k) can alternatively be characterized as

the subset of PI(FΠ′,k′) formed by distributions such that the switch process P ′w satisfies the

following two constraints, where Ψ denotes the mapping defined prior to Lemma 1:

30

a) If S ′, S ′′ ∈ S(P ′w) satisfy Ψ(S ′) = Ψ(S ′′) then the corresponding conditional distributions

coincide;

b) For every S ∈ S(P ′w), P ′w(B2|S) = γP ′w(B1|S) for some parameter γ, independent of S.

Clearly, the dimension of both parametrizations remains κ(Π,k). It then follows from the

definition of empirical entropy of an IMP and from (10) that

ĤΠ,k(zn) = Ĥ0(zn[B1]) + Ĥ0(zn[B2]) +
m∑
i=2

Ĥki(zi)− log P̃ ′w(AΠ′(z
n)) (34)

where P̃ ′w(AΠ′(z
n)) denotes the ML probability, subject to the above two constraints, of the

switch sequence AΠ′(z
n). Therefore,

ĤΠ,k(zn)− ĤΠ′,k′(z
n) = − log P̃ ′w(AΠ′(z

n))− Ĥkw(AΠ′(z
n)) (35)

which depends on zn only through AΠ′(z
n). The above difference is obviously nonnegative, since

Π′ is a refinement of Π; equivalently, looking at the right-hand side of (35), the maximization

leading to P̃ ′w(AΠ′(z
n)) involves more constraints than the one leading to Ĥkw(AΠ′(z

n)).

Recalling the difference in model sizes computed in (13), we obtain, together with (35), that

CΠ′,k′(z
n)− CΠ,k(zn) = Ĥkw(AΠ′(z

n)) + βm(m+ 1)kw log(n+ 1)

− [− log P̃ ′w(AΠ′(z
n)) + β((m− 1)mkw + 1) log(n+ 1)] . (36)

Thus, the left-hand side of (36) is equal to the difference between penalized ML probabilities

for a switch sequence of length n on Π′, for two candidate models. The first model is Markov of

order kw, whereas the second model differs from the plain Markov one in that states of (Π′)kw

have merged according to the mapping Ψ, so that the number of states is now mkw (constraint (a)

above), and imposes the additional constraint (b) on the conditional probabilities of B1 and B2

(notice that the number of free parameters in this model is indeed (m− 1)mkw + 1). Since, by

our assumptions, the number of states of the underlying switch process is mkw and the process

does satisfy the additional constraint (b), the left-hand side of (36) can be viewed as a penalized

ML test of two models, the minimal, “true” one, and a refinement of it. When kw = 0, the

refinement is trivial and the penalty difference is 0, implying (33). When kw > 0, our analysis,

presented next, will rely on tools developed in [11] to study refinements of the type given by

constraint (a), which will be extended here to deal also with the type of refinement given by

31

constraint (b). As in [11], we will show the strong consistency of the penalized ML test for

suitable β.

Specifically, given a sequence Zn over (Π′)n, we start by defining the following “semi-ML”

Markov probability distribution
≈
P ′w of order kw: For every S ∈ (Π′)kw and i = 2, · · · ,m, we

define
≈
P ′w(Ai|S) = Pw(Ai|S) if S ∈ Πkw (i.e., S is a kw-tuple over (Π′)kw not containing either

B1 or B2, and is therefore an unrefined state of Πkw), and
≈
P ′w(Ai|S) = P̂ ′w(Ai|Ψ(S)) otherwise,

where P̂ ′w(Ai|S̄) denotes the ratio between the number of occurrences of Ai following a state S̄

in Zn, and the number of occurrences of S̄, where S̄ can be either in Πkw (as is Ψ(S) in this

case) or, more generally, in (Π′)kw . The distribution is completely determined by further setting,

for every S ∈ (Π′)kw , the relation
≈
P ′w(B2|S) = γ̂

≈
P ′w(B1|S), where

γ̂
∆
=
NB2(Zn)

NB1(Zn)

is the ML estimate of γ based on Zn, given by the ratio between the number of occurrences

of B2 and B1 in Zn (independent of S), provided NB1(Zn) > 0. Otherwise, if NB1(Zn) = 0,

we let
≈
P ′w(B1|S) = 0. Notice that P̂ ′w(Ai|S) is the ML estimate of P ′w(Ai|S) regardless of

the constraint relating P ′w(B2|S) and P ′w(B1|S). Since, in order to obtain the (constrained) ML

probability P̃ ′w(Zn), one can first maximize over γ and then perform independent maximizations

of the conditional probabilities for each state, it is easy to see that, for any Zn ∈ (Π′)n, we have

P ′w(Zn) ≤
≈
P ′w(Zn) ≤ P̃ ′w(Zn) (37)

justifying our reference to
≈
P ′w as a “semi-ML” Markov probability distribution.

Another (non-constrained) “semi-ML” Markov probability distribution ˆ̂P ′w of order kw is

defined as follows: For every S ∈ (Π′)kw ∩Πkw we define ˆ̂P ′w(Ai|S) = Pw(Ai|S), i = 2, · · · ,m,

and ˆ̂P ′w(B2|S) = γ̂S
ˆ̂P ′w(B1|S), where γ̂S denotes the ratio between the number of occurrences

of B2 and B1 following state S in Zn, provided the latter number is positive (otherwise,

we let ˆ̂P ′w(B1|S) = 0). For all other states S ∈ (Π′)kw and every Z ∈ Π′, we define
ˆ̂P ′w(Z|S) = P̂ ′w(Z|S).

Notice that for states in (Π′)kw ∩ Πkw , ˆ̂P ′w differs from
≈
P ′w in that the ratio between the

conditional probabilities of B2 and B1 depends on S (while the conditional probabilities of all

Ai, i = 2, · · · ,m, under the two measures, coincide, and are independent of Zn). For the other

states, both ˆ̂P ′w and
≈
P ′w use ML estimates (which are constrained for the latter distribution). The

32

key observation is then that

− log P̃ ′w(AΠ′(z
n))− Ĥkw(AΠ′(z

n)) = − log
≈
P ′w(AΠ′(z

n)) + log ˆ̂P ′w(AΠ′(z
n)) . (38)

Now, the probability Perr(n) of the error event is given by

Perr(n)
∆
=

∑
zn:CΠ′,k′ (z

n)≤CΠ,k(zn)

P (zn) =
∑
Zn∈E

P ′w(Zn) (39)

where E denotes the subset of switch sequences Zn over (Π′)n satisfying

Ĥkw(Zn) + βm(m+ 1)kw log(n+ 1) ≤ − log P̃ ′w(Zn) + β[(m− 1)mkw + 1] log(n+ 1)

and the second equality in (39) follows from (36). By (38), Zn ∈ E if and only if

− log
≈
P ′w(Zn) ≥ − log ˆ̂P ′w(Zn) + β[m(m+ 1)kw − (m− 1)mkw − 1] log(n+ 1)

or, equivalently,
≈
P ′w(Zn) ≤ (n+ 1)−β[m(m+1)kw−(m−1)mkw−1] ˆ̂P ′w(Zn) .

Therefore, by the first inequality in (37), the rightmost summation in (39) can be upper-bounded

to obtain

Perr(n) ≤ (n+ 1)−β[m(m+1)kw−(m−1)mkw−1]
∑

Zn∈(Π′)n

ˆ̂P ′w(Zn) . (40)

Notice that the probability distributions in the summation in the right-hand side of (40) depend

on Zn. Clearly, when restricted to sequences Zn giving rise to the same distribution, the partial

sum is upper-bounded by 1. Therefore, the overall sum is upper-bounded by the number N of

distinct such distributions. Now, there are (m + 1)kw − (m − 1)kw states given by kw-tuples

containing either B1 or B2 and, by the definition of ˆ̂P ′w, for each of these states there are at most

(n + 1)m+1 possible conditional distributions, given by the composition of the corresponding

substring in Zn. For each of the remaining (m − 1)kw states, the definition of ˆ̂P ′w implies that

there are at most (n+ 1)2 possible conditional distributions. Therefore,

N ≤ (n+ 1)2(m−1)kw+[(m+1)kw−(m−1)kw](m+1)

implying

Perr(n) ≤ (n+ 1)2(m−1)kw+[(m+1)kw−(m−1)kw](m+1)−β[m(m+1)kw−(m−1)mkw−1] . (41)

33

Since m ≥ 2 and kw ≥ 1, it can be readily shown that, for any β > 3, the exponent in the

right-hand side of (41) is less than −1. Thus, Perr(n) is summable and the result follows from

the Borel-Cantelli lemma.

With these tools in hand, we are now ready to prove Theorem 4.

Proof of Theorem 4: Define the set

Π′ = { (Π′,k′) | Π′ is incompatible with P } .

To establish the first claim of the theorem, we will prove that
(

Π̂(zn), k̂(zn)
)
6∈ Π′ a.s. as

n → ∞. Consider a partition Π̄ compatible with P , denote by k̄ the associated order vector,

and let κ̄ = κ(Π̄, k̄). Let κ0 > κ̄ denote a threshold for model sizes, which is independent of n,

and will be specified in more detail later on. Write Π′ = Π1 ∪Π2, where

Π1 = { (Π′,k′) ∈ Π′ | κ(Π′,k′) < κ0 } ,

and Π2 = Π′ \Π1. Clearly, Π1 is finite and its size is independent of n. By Lemma 10, for

each pair (Π′,k′) ∈ Π1, we have CΠ′,k′(z
n) > CΠ̄,k̄(zn) a.s. as n → ∞, for any penalization

coefficient β ≥ 0. Thus, the search in (12), almost surely, will not return a pair from Π1. It

remains to prove that it will not return a pair from Π2 either. As mentioned, the difficulty here

is that the size of Π2 (and of the IMP models associated with pairs in Π2) is not bounded

as n → ∞, and we cannot establish the desired result with a finite number of applications of

Lemma 10. As before, we adapt some tools from [11] to IMP-constrained FSMSs.

For (Π′,k′) ∈ Π2, let PΠ′,k′ denote the probability that a solution with (Π′,k′) is preferred

over (Π̄, k̄) in the minimization. Define

BΠ′,k′ =
{
zn |CΠ′,k′(z

n) ≤ CΠ̄,k̄(zn)
}
.

Clearly, we have

PΠ′,k′ ≤
∑

zn∈BΠ′,k′

P (zn) . (42)

By the definitions of BΠ′,k′ and of the cost function in (11), and denoting κ′ = κ(Π′,k′), we

have, for zn ∈ BΠ′,k′ ,

ĤΠ̄,k̄(zn) ≥ ĤΠ′,k′(z
n) + β(κ′ − κ̄) log(n+ 1) . (43)

34

Recalling that P (zn) ≤ P̂Π̄,k̄(zn) by (10), and that ĤΠ′,k′(z
n) = − log P̂Π′,k′(z

n), it follows

from (43) that

P (zn) ≤ (n+ 1)β(κ̄−κ′)P̂Π′,k′(z
n) , zn ∈ BΠ′,k′ ,

and, hence, together with (42), and applying an obvious bound, we obtain

PΠ′,k′ ≤ (n+ 1)β(κ̄−κ′)
∑

zn∈BΠ′,k′

P̂Π′,k′(z
n) ≤ (n+ 1)β(κ̄−κ′)

∑
zn∈An

P̂Π′,k′(z
n) . (44)

In analogy to the reasoning following (40) in the proof of Lemma 11, the summation on the right-

hand side of (44) can be upper-bounded by the number of different empirical distributions (or

types) for IMPs based on FΠ′,k′ and sequences of length n. It is well established (see, e.g., [18])

that (αi−1)αkii counts suffice to determine the empirical distribution for the Markov component

Pi (and similarly for the switch Pw). Hence, recalling (5), we conclude that κ′ = κ(Π′,k′)

counts suffice to determine an empirical distribution P̂Π′,k′(z
n), and, therefore, the number of

such distributions is upper-bounded (quite loosely) by (n+ 1)κ
′ . Thus, it follows from (44) that

PΠ′,k′ ≤ (n+ 1)β(κ̄−κ′)+κ′ . (45)

We next bound the number of pairs (Π′,k′) satisfying κ(Π′,k′) = κ′ for a given κ′ ≥ κ0. The

number of partitions Π′ is upper-bounded by αα, where α = |A|. For a given partition, with,

say |Π′| = m, we need an assignment of process orders k′i, i ∈ {1, 2, . . . ,m,w}. If |A′i| = 1,

the only valid assignment is k′i = 0, while if |A′i| ≥ 2, we must have k′i ≤ log κ′. Thus, since

m ≤ α, the number of pairs sought is upper-bounded by αα(log κ′)α+1. We notice also that, for

zn ∈ BΠ′,k′ and sufficiently large n, we must have κ′ ≤ n (actually, κ′ = o(n)), for otherwise

the penalty component of CΠ′,k′(z
n) on its own would surpass CΠ̄,k̄(zn), which is O(n). Hence,

for sufficiently large n, denoting by Perr(n) the probability of a pair from Π2 prevailing over

(Π̄, k̄) in (12), and observing that αα(log(n + 1))α+1 ≤ (n + 1)α logα+α+1 for n ≥ 1, it follows

from (45) that

Perr(n) ≤
∑

(Π′,k′):κ′≥κ0

PΠ′,k′ ≤
n∑

κ′=κ0

αα (log(n+ 1))α+1 (n+ 1)β(κ̄−κ′)+κ′

≤
n∑

κ′=κ0

(n+ 1)κ
′(1−β)+βκ̄+α logα+α+1 ≤ (n+ 1)κ0(1−β)+βκ̄+α logα+α+2,

where the last inequality holds for β > 1. Choosing κ0 >
βκ̄+α logα+α+3

β−1
, we get

Perr(n) ≤ (n+ 1)δ ,

35

for a constant δ < −1. Therefore, Perr(n) is summable, and, applying again Borel-Cantelli’s

lemma, (Π̂, k̂) 6∈ Π2 a.s. as n → ∞. We conclude that (Π̂, k̂) is compatible with P a.s. as

n → ∞, as claimed. The fact that k̂ is, almost surely, the correct order vector follows from

the well known consistency of penalized ML estimators for Markov order [6] (recall, from the

discussion following (12), that the order of each subprocess is estimated independently).

The second claim of the theorem is proved by applying Lemma 11, which implies that in

the domination-free case, the canonical partition beats other compatible partitions with more

subalphabets. When kw>0, this follows from (32), while when kw=0, it follows from (33) and

our tie-breaking convention.

Acknowledgment. Thanks to Erik Ordentlich and Farzad Parvaresh for stimulating discussions.

REFERENCES

[1] T. Batu, S. Guha, and S. Kannan, “Inferring mixtures of markov chains,” in Computational Learning Theory—COLT, 2004,

pp. 186–199.

[2] N. Landwehr, “Modeling interleaved hidden processes,” in ICML ’08: Proceedings of the 25th International Conference

on Machine Learning. New York, NY, USA: ACM, 2008, pp. 520–527.

[3] D. Gillblad, R. Steinert, and D. Ferreira, “Estimating the parameters of randomly interleaved Markov models,” in IEEE

International Conference on Data Mining Workshops, 2009. ICDMW ’09., Dec. 2009, pp. 308 –313.

[4] G. Schwartz, “Estimating the dimension of a model,” Ann. Statist., vol. 6, pp. 461–464, 1978.

[5] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, pp. 465–471, 1978.

[6] I. Csiszár and P. C. Shields, “The consistency of the BIC Markov order estimator,” Annals of Stat., vol. 28, pp. 1601–1619,

2000.

[7] Y. M. Shtarkov, “Switching discrete sources and its universal encoding,” Probl. Inform. Transm., vol. 28, no. 3, pp. 95–111,

1992.

[8] R. L. Dobrushin, “Unified methods of information transmission—general case,” Dokl. Akad. Nauk SSSR, vol. 163, no. 1,

pp. 16–19, 1963.

[9] R. B. Ash, Information Theory. John Wiley, 1967.

[10] W. Feller, Probability theory and its applications, 3rd ed. New York: John Wiley, 1968, vol. 1.

[11] M. J. Weinberger and M. Feder, “Predictive stochastic complexity and model estimation for finite-state processes,” Journal

of Statistical Planning and Inference, vol. 39, pp. 353–372, 1994.

[12] D. Blackwell and L. Koopmans, “On the identifiability problem for functions of finite Markov chains,” Ann. Math. Statist.,

vol. 28, pp. 1011–1015, 1957.

[13] M. Feder, N. Merhav, and M. Gutman, “Universal prediction of individual sequences,” IEEE Trans. Inform. Theory, vol. 38,

pp. 1258–1270, 1992.

[14] R. P. Stanley, Enumerative Combinatorics. Cambridge: Cambridge University Press, 1997, vol. 1.

36

[15] G. Seroussi, W. Szpankowski, and M. J. Weinberger, “Deinterleaving Markov processes via penalized ML,” in Proc.

ISIT’2009, Seoul, South Korea, June–July 2009, pp. 1739–1743.

[16] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken, NJ: John Wiley & Sons, Inc., 2006.

[17] I. Csiszar, T. M. Cover, and B.-S. Choi, “Conditional limit theorems under Markov conditioning,” IEEE Trans. Inform.

Theory, vol. 33, pp. 788–801, Nov. 1987.

[18] A. Martı́n, G. Seroussi, and M. J. Weinberger, “Types classes of context trees,” in Proc. ISIT’2007, Niece, France, July

2007, pp. 1739–1743, full paper submitted to IEEE Trans. Inform. Theory.

37

