

Abstract:

Globally Distributed BookPrep

Prakash Reddy, Shariff Dudekula, Susanth Puthanveedu, Dejan Milojicic

HP Laboratories
HPL-2011-133

BookPrep is a Print-On-Demand service that takes raw scans and converts them to print-ready files. It
requires large amount of storage and takes an average of 5 hours of CPU time to process a single book with
about 300 pages. The experiment we conducted is processing of books on Open Cirrus where the data is
close to compute servers. At three Open Cirrus sites we installed BookPrep service and we pre-populated
each site with region-specific scanned books. When request comes in to process the book, it is routed to the
compute node closest to the source data. The compute node is then expected to store the processed data on
the same network. The compute nodes are allocated and de-allocated based on demand. There is a cloud
based metadata repository that is used to update the metadata associated with each book regardless of
where the source and derived data is stored. The goal of this experiment is to determine if performance can
be improved if the compute is moved closer to source data location. The fundamental reason behind the
success of MapReduce is the notion of moving compute close to data and we would like to see if that same
principal can be applied to pull based scheduling model.

External Posting Date: August 21, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: August 21, 2011 [Fulltext]

Copyright 2011 Hewlett-Packard Development Company, L.P.

1

Globally Distributed BookPrep
Open Crirrus-Hosted Service for Book Preparation

Prakash Reddy,
1

Shariff Dudekula,
2
 Susanth Puthanveedu,

2
and Dejan Milojicic

3

1HP Imaging and Printing, 2HP Enterprise Services, and 3HP Labs
1,3

Palo Alto, CA, USA,
2
Bangalore, India

 [first.lastname@hp.com]

Abstract— BookPrep is a Print-On-Demand service that takes

raw scans and converts them to print-ready files. It requires

large amount of storage and takes an average of 5 hours of

CPU time to process a single book with about 300 pages. The

experiment we conducted is processing of books on Open

Cirrus where the data is close to compute servers. At three

Open Cirrus sites we installed BookPrep service and we pre-

populated each site with region-specific scanned books. When

request comes in to process the book, it is routed to the

compute node closest to the source data. The compute node is

then expected to store the processed data on the same network.

The compute nodes are allocated and de-allocated based on

demand. There is a cloud based metadata repository that is

used to update the metadata associated with each book

regardless of where the source and derived data is stored. The

goal of this experiment is to determine if performance can be

improved if the compute is moved closer to source data

location. The fundamental reason behind the success of

MapReduce is the notion of moving compute close to data and

we would like to see if that same principal can be applied to

pull based scheduling model.

Keywords: distribution, Clouds, Web services, and Imaging and

printing.

I. INTRODUCTION

Cloud computing is ideal for computational tasks with

unpredictable demand, where sudden surges of demand

cannot be met by local resources. One such example of

computational task is printing on demand. This service

entails scanning books, converting them into a printable

version, printing them, and then shipping to the customer

address. In this paper we will describe BookPrep [1][2][3],

one such online service.

At front of this service is a typical portal, which received

print on demand requests from users, and scanned book

uploads from authors. The resource requirements for

BookPrep per book are typically 1GB/s to upload a book, 5

hours of computation time to process a book in a single VM,

and 1-2GB of storage for input and output of 1-9 scanned

and processed books). To process many books requires

substantial resources working non-stop. With a fluctuating

demand, Cloud proves an ideal solution.

The BookPrep service was implemented and has been

production at HP for over two years. Initially, it was

developed on Open Cirrus site in Palo Alto as a Web

service. However, original implementation was working off

of one site. Subsequently, the original architecture was

further distributed, so that computation and queuing of new

jobs were separated on multiple sites, which further

improved scalability of BookPrep. Still, the shipping and

storage was conducted from a single site.

In this paper, we describe further distribution of BookPrep,

where all of components including queuing, computation,

storage, and shipping are conducted at multiple sites. The

goal of this effort is to further increase scalability and also

to reduce costs, by enabling regional access to BookPrep for

communication and shipping. For this purpose we have

leveraged three Open Cirrus sites: Palo Alto (original site),

GaTech, and Karlsruhe Institute of Technology. We are also

in the process of installing on CMU, MIMOS, and ETRI

sites, but we did not manage to complete installation to

report in this paper.

Figure 1 demonstrates the concept of the globally

distributed BookPrep. Users submit requests from anywhere

in the world to a single portal. The portal redirects requests

by selecting optimal location where the book will be

processed and then shipped to the customer. In this process

the most communication takes place between the stored

book and computational unit. For that reason the books are

cached on the regional boundaries. The next costly

component (both in terms of time and money) is shipping of

processed copy of physical book. In this paper, we used

collected data from three sites to estimate scalability,

performance and costs of three different architectures.

The rest of the paper is organized in the following manner.

Section II describes BookPrep original service and Section

III the first version of distributed BookPrep implementation.

In Section IV, we present the globally Distributed BookPrep

architecture. In Section V we discuss evaluation of our

Figure 1. Concept of Distributed BookPrep. Small amount of

communication is handled across geographies and as much as

possible locally.

Books
ComputeComputeCompute

Portal

Books

ComputeComputeCompute

Books

Compute
ComputeCompute

Shipping

Shipping

Shipping

2

work. Lessons learned are presented in Section VI and

future work in Section VII. In Section VIII, we compare our

approach to related work and in Section IX we provide a

summary.

II. BOOKPREP

BookPrep is a tool for converting scanned versions of books

into printable and viewable PDFs

(http://www.bookprep.com). It was originally developed in

2007 and it went into production in 2009. Over its lifetime it

went through a few architectures, three of which we discuss

and compare in this paper.

BookPrep is one of the embarrassingly parallelized

applications with clear delineation of computation, storage

and networking, almost ideal for Cloud computing. In its

lifetime, it has processed close to a million of book copies,

consuming close to 5 million CPU hours (single core), and

approximately 450TB of storage. It is in a daily production

use, 24x7.

It is implemented in Java and C++, in approximately 30,000

lines of code. Originally it started on open Cirrus partition

in Palo Alto, but it has since expanded on a dedicated

cluster, as well as onto Amazon Web Services [4] and other

Cloud providers.

The original BookPrep implementation (see Figure 2)

consists of several components each having different

bandwidth, storage and compute requirements. The

components include a) Process Queue (PQ) b) Content

Acquirer (CA) c) Process Pipeline (PP) d) Formatters (for

printing and online viewing) and e) Content Delivery (CD)

for Print Service Providers (PSPs) and online viewing.

A bank of in-house compute nodes acquires, processes,

formats and transfers print ready books to PSPs. The

number of books that can be processed at any given time is

a function of the number of CPU cores available. The queue

service and support for online viewing is handled by a Web

Service (WS).

Content

Owners

Content

Acquirer

(CA)

Process

Pipeline

(PP)

Content

Delivery

(CD)

Process Queue (PQ) Formatter

Web Services (WS)

Print Service

Providers

(PSPs)

Figure 2. Original BookPrep Implementation.

III. DISTRIBUTED BOOKPREP ARCHITECTURE

Figure 3 shows the components of the distributed BookPrep

implementation. The interaction between Compute nodes

and the Process Queue is through REST APIs. This allows

us to support multiple different cloud infrastructures. The

content owners and the raw scan data could be hosted on

different clouds. The interaction and the mechanisms used

to acquire content are specific to each content owner and are

encapsulated in the Content Acquirer.

The Queue Interface (QI) on each processing node is

responsible for talking to the queue and acting on the

responses. The Process Pipeline is the largest consumer of

processing that takes the raw scans and prepares them for

POD. Once the processing is complete, the processed file is

transferred to the resident storage infrastructure. The

processed data is packaged and uploaded to the appropriate

PSP when orders are processed. Depending on the PSP the

data could be transferred once per book or each time a book

is ordered.

Web Services (WS)

Content

Owners

Content

Owners

Content

Owners

Content

Acquirer

(CA)

Process

Pipeline

(PP)

Queue Interface

(QI)

Content

Acquirer

(CA)

Process

Pipeline

(PP)

Queue Interface

(QI)

Content

Acquirer

(CA)

Process

Pipeline

(PP)

Queue Interface

(QI)

Internet

Process

Queue

(PQ)

Controller Formatter

Content

Delivery

(CD)

Content

Owners

Content

Owners

Print Service

Providers

(PSPs)

Dynamically allocated

compute nodes

In-house infrastrure

Figure 3. Distributed BookPrep Architecture

IV. GLOBALLY DISTRIBUTED BOOKPREP IMPLEMENTATION

Figure 4 describes globally distributed BookPrep. It entails

replicating most BookPrep components, not only processing

as was done in the previous implementation. In this version,

we distribute BookPrep by replicating the initial architecture

in global locations and making portal aware of these

locations.

Portal hosts algorithm that determines preferred location

where to forward user requests as well as processing. In the

future, we shall also have authors interact through portal for

the same reasons. In the current implementation, for

simplicity reasons, authors interact with regional BookPrep

instances.

http://www.bookprep.com/

3

In the next version, we shall also distribute the process

queue and replace it with the distributed algorithm for

request fulfillment, with optimized caching and replication.

Figure 4. Globally Distributed BookPrep

V. EVALUATION

The configuration of each BookPrep site is provided in

Table 1 below.

Table 1. Configurations of Open Cirrus BookPrep Instances

Open Cirrus Site #nodes Cores Storage Networking

Palo Alto 33 448 240T (Ibrix) TBD

KIT 1 16 503T (NFS) TBD

GaTech 5 12 TBD TBD

Size of the raw scans of books varies from 20 MB to 800

MB. On an average size is 400 MB data that needs to be

uploaded into repository. Processed content size is 60-70%

of the size of the raw scan. So, a 400MB raw scan processed

content would be between 200 to 250MB.

On the external machines on an average the bandwidth

speed is 1.5 MB/second. Table 2 below gives samples for

speed for 3 book sizes.

 Table 2. Download Time as a Function of Different Book Sizes

Size (MB) Download Time (sec) Speed (MB/sec)
381.50 232.8 1.64
941.29 525.6 1.79
418.19 289.2 1.45

Breakdown for various components of BookPrep in terms of

how long individual component takes time to execute is

provided in Table 3 below.

Table 3. Breakdown of BookPrep Functions.

Page

Download

time (min)

Process Time (min) Total time

(min)

Avg page process

time (min) Convert MC AEB

72 1.43 16 23 6 51 1.41

120 2.85 27 43 12 92 1.30

In the table above the following components are described:

 Convert is a normalization process that converts a variety

of input formats (jp2, jpg, tif, png) and scales the images

so the resolution of the input images are consistent.

 MC determines the page and the content boundaries and

does de-skew operation to clean up the images.

 AEB removes the artifacts in images that are introduced

during the scanning process or those that occur due to

age. This also sharpens the text so the printed text is clear.

There are multiple benefits of deploying and using

BookPrep in a globally distributed configuration.

 Shipping will be reduced because placement algorithm at

portal directs requests to minimize shipping costs.

 Communication. For large number of books transferred,

this configuration effectively multiplies the inbound and

outbound throughput of transferred books, Even though

the communication cost is small compared to

computation, computation scales with the number of cores

and computation is limited by a link to the site.

 Computation. Obvious benefit is in enlarging the number

of cores, at a scale that cannot be accomplished at a single

site. Second benefit is in leveraging fluctuation of the cost

of processing, so that processing can always be done at

the cheapest site (assuming that book is also available at

that site and transfer/storage costs would not outweigh

benefits).

 Storage. Replication of storage at different sites

obviously increases scalability but it also increases cost.

At the large scale the scalability is more important than

cost reduction.

Table 4 below compares scalability of three different

implementations. Intuitively, the benefits of globally

distributed BookPrep consist in scaling and shipping.

Table 4. Scalability Comparison of BookPrep Implementations

Content
Owners

Content Acquirer

(CA)

Process

Pipeline

(PP)

Queue Interface (QI)

Internet

Controller Formatter

Content

Delivery

(CD)

Print Service Providers

(PSPs)

BookPrep Portal
Process

Queue

(PQ)

Content
Owners

Content Acquirer

(CA)

Process

Pipeline

(PP)

Queue Interface (QI)

Content
Owners

Content Acquirer

(CA)

Process

Pipeline

(PP)

Queue Interface (QI)

End
Customers

Content
Owners

Content
Owners

Content
Owners

End
Customers

End
Customers

End
Customers

Print Service Providers

(PSPs)

Print Service Providers

(PSPs)

Controller Formatter

Content

Delivery

(CD)

Controller Formatter

Content

Delivery

(CD)

Configuration Compute Communicate Ship

Single Site

BookPrep

1 site cores 1 site link Local

international

Distributed Compute

BookPrep

1 site cores

* #sites

1 site link*

#sites

Local+

international

Global

BookPrep

1 site cores

* #sites

1 site link*

#sites

Local+

international

4

To further prove this, we have calculated these costs in more

detail in terms of cost in dollars and time to complete

processing. We used configuration parameters as presented

in Table 5 below. We have based parameters on the publicly

available Amazon costs as well as values we have measured

from three Open Cirrus sites (see Table 2 and Table 3 earlier

in the paper).

Table 5. Parameters used for Cost Analysis

External Providers Data Customer Demand

Compute small (per h) $0.085 Location # books

Storage (/GB/month) $0.10 US 100

Data Transfer (/GB) $0.12 Europe 100

Put Requests (/1,000) $0.01 Asia 100

Get Requests (/ 10K) $0.01 Experiment-Specific Data

Ship local $1 # pages 200

Ship International $2.5 Process (/book/h) 4.5

Process (/page/min) 1.35 Raw book size (GB) 0.5

Upload time (MB/s) 1.45 book size (GB) 0.33

Ship duration local 5 Caching (#months) 24

Ship duration intn’l 10 # of nodes per site 10

For these parameters, we have calculated the cost and time

to complete book processing and shipping and presented

these values in Table 6 and Table 7 below.

Table 6. Cost Comparison of BookPrep Implementations

Configuration Compute Store Network Ship Total

Single Site $114.75 $204.00 $30.00 $600 $948.75
Distributed $114.75 $204.00 $42.00 $600 $960.75
Global $114.75 $204.00 $30.00 $300 $648.75

Table 7. Time Comparison of BookPrep Implementations

Configuration Comp Network Ship Total

Single Site 5.63 1.25 6.88 16.88
Distributed 1.88 0.58 2.46 12.46
Global 1.88 0.42 2.29 7.29

We have proven and quantified our hypothesis that globally

distributed BookPrep can improve both scalability

(performance) for 31% and 32% and cost of operation for

56% and 41% compared to single-site and distributed

BookPrep respectively.

VI. LESSONS LEARNED

While doing this experiment we came to the following

conclusions:

 Careful distribution is very important to match the

requirements. Initially, the storage was kept centralized to

reduce the costs, but subsequently when scalability

became limiting factor, further distribution took place.

 Automation is key in deployment, recognizing

performance of individual sites. In retrospective, we

should have created specs (application requirements) to

explain to sites how to get onto the BookPrep network.

 Heterogeneity of some of the systems prevented us from

larger deployment (having better specs would help to

recognize mismatches early in the process).

 A specific example of obstacle is the staged access to

systems (from the staging server into the internal

network) that required additional functionality in our

deployment. VPNs are another case.

 Once initial setup was completed, it was very easy to do

the deployment, which was positive experience.

 We experimented with different storage approaches; file

servers, network file systems (NFS), and Cloud storage

(S3 equivalent). The file servers and the network file

servers were not able to handle the load; as the number of

servers went up, we saw consistent failures. Reads were

fine, but for writes, only reliable solution was S3

equivalent. This came at the expense of more bandwidth,

latency and processing time.

VII. FUTURE WORK

We can schedule processing of larger sized books on

machines that have larger memory and faster CPU. This will

improve the performance. This could be done in a single

install or distributed installs. However we may find that

some installations support smaller configuration machines

and others support larger configurations. We can compute

the average processing time for different sizes and figure out

if the performance can be improved by intelligently

allocated books to the right kind of machines.

We will conduct more measurements and also do some

more simulation beyond a simplified use case with 300

book requests. In particular we will emphasize the benefits

of either configuration. We also plan to experiment with

different applications to leverage this architecture.

Distributed meta-data management is another area of future

work. If the number of books goes to millions, the scale will

become issue. Currently the meta-data is stored on the portal

site in the SQL database, but we will need to move to a non-

SQL data base eventually. Replication and caching of data

to support efficient online viewing and publishing is another

future item. Right now, data is being pushed on demand to

where it will be printed, but we can improve on that.

Distributing process queue, the last remaining centralized

component would improve reliability and business

continuity through distribution. We would also like other

developers to contribute modules for, e.g. pushing to

different print service providers and image processing

algorithms and different form factors (not just PDF).

VIII. RELATED WORK

To our knowledge there are few examples of web services

5

and applications that are dynamically partitioned across

different and independent cloud platforms (i.e. cloud

independent services). SmugMug [5], a photo web service,

has used Amazon’s EC-2, S3 combination to support

dynamic scaling. Their solution is specifically targeted

towards AWS. Other services do Cloud bursting between

private and public Cloud. Other examples of services

include Polyphony (a modular workflow orchestration),

Scribd (conversion of PDFs, MS Word, and other

documents into Web documents), Yelp (consumer review

Web site), 3scale (SaaS infrastructure for document and

content management), and ActualAnalytics (automated and

assisted video content analysis).

However, most scalable services do run across replicated

and homogeneous sites. Examples include Google [6],

Yahoo [7], Amazon [4], eBay, etc. Rollout of services is

also typical for most Web services. Our innovation is in

pulling the new version from the repositories periodically.

Our work has followed principles of Cloud platforms [8]

and leveraged most of the benefits of Cloud Computing

[9][10].

IX. SUMMARY

We have presented a globally distributed implementation of

BookPrep service that takes raw copies of books and

converts them into printable versions. Our implementation

currently executes on three open Cirrus sites, in Palo Alto,

Georgia tech, and Karlsruhe institute of Technology.

As part of porting BookPrep we also evolved its architecture

and configuration towards global deployment. We started

from the original single site configuration, through

distributed implementation that replicates compute part

(both part of our previous work), and concluded with the

current implementation that replicates all components

except for the portal.

We have conducted a number of measurements for each site

and used these measurements to do a more extensive

performance comparison in terms of cost and time-to-

execute. We have confirmed our intuition that globally

distributed BookPrep substantially (>22%) reduces cost in

our use case (primarily due to local shipping) and also

reduces time-to-execute (41% and 56% respectively).

In the process of porting BookPrep we have confirmed the

need for automating access to open Cirrus sites, as non-

negligible work had to be repeated for new sites.

There were a few surprises that we encountered while

evolving BookPrep architecture. A) The first one was the

ease with which porting BookPrep to other Open Cirrus

sites took place (even though automation would have

helped). B) Straightforward transition to VMs, earlier we

used exclusively physical machines. C) The evolution of

architecture, and in particular how suitable Cloud was for

BookPrep with special relevance to compute and storage.

ACKNOWLEDGEMENTS

We are indebted to a number of researchers and developers

who have helped us in the development of each of the

systems. In particular, we would like to thank Karsten

Schwan and Char Huneycutt from Georgia Tech, Marcel

Kunze and Ahmad Hammad from KIT. Even though we did

not initially used nodes from the following institutions we

are thankful to Luke Jing Yuan from MIMOS, Han

Namgoong and O.K. Min from ETRI, and Greg Ganger and

Michael Stroucken from CMU.

REFERENCES

[1] Prakash Reddy, Jian Fan, Steven Rosenberg, Andrew
Bolwell, Jim Rowson, Benedict Rozario, Shariff Dudekula.
An HP web service for long tail book publishing. HP
TechCon ’08.

[2] Prakash Reddy, James Rowson, Benedict Rozario, Shariff
Dudekula, Anil Dev V., “A Print On Demand web service
based on cloud computing,” Proceedings of the 16th IEEE
International Conference on High Performance Computing
(HiPC), Dec 2009.

[3] Prakash Reddy, Jian Fan, Steven Rosenberg, Andrew
Bolwell, Jim Rowson. A web service for long tail book
publishing. http://research.microsoft.com/en-
us/um/cambridge/events/booksonline08/papers/p45.pdf.

[4] Amazon Web Services: http://aws.amazon.com/ec2/.

[5] Cloud computing: The SmugMug Approach to using
Amazon’s EC2 and S3: http://opensource.sys-
con.com/node/590285

[6] Sanjay Ghemawat et,al : The Google File System

[7] Hadoop:Tutotial.
http://hadoop.apache.org/common/docs/r0.17.2/mapred_tutori
al.html

[8] David Chappell : A short introduction to cloud platforms
http://www.davidchappell.com/CloudPlatforms--Chappell.pdf

[9] Michael Armbrust, et al : Above the Clouds: A Berkeley
View of Cloud Computing

[10] Avetisyan, A., Campbell, R., Gupta, I., Heath, M., Ko, S.,
Ganger, G., Kozuch, M., O’Hallaron, D., Kunze, M., Kwan,
T., Lai, K., Lyons, M., Milojicic, D., Lee, H.Y., Soh, Ming.,
N.K., Luke, J.Y., Namgong, H., “Open Cirrus A Global
Cloud Computing Testbed,” IEEE Computer, vol 43, no 4, pp
42-50, April 2010.

http://aws.amazon.com/ec2/
http://hadoop.apache.org/common/docs/r0.17.2/mapred_tutorial.html
http://hadoop.apache.org/common/docs/r0.17.2/mapred_tutorial.html
http://www.davidchappell.com/CloudPlatforms--Chappell.pdf

