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A well-known problem for large scale cloud applications is how to scale their I/O performance. While next
generation storage class memories like phase change memory and Memristors offer potential for high I/O
bandwidths, if left unchecked, the raw volumes and rates of I/O already present in cloud can quickly
overwhelm future I/O infrastructures. This fact is motivating research on 'data staging' in which I/O and
data movement are partly replaced with and/or supplemented by computations that process data before
moving it across I/O channels – in situ – to filter or reduce it, to better organize it for subsequent access
(e.g., by other applications as in coupled codes), or to analyze it to quickly to derive important insights
about the application producing those large data volumes. This paper proposes a technique that uses and
exploits 'Active NVRAM' (non volatile memory) for staging I/O. Active NVRAMs are node-local
NVRAMs that are embedded with a low power system-on-chip compute element. These active compute
elements can be used to operate on output data asynchronously with the tasks performed by computational
node elements, to reduce data or to perform some of the data processing required for data analytics before
data is moved to longer term storage. The paper further describes the Active NVRAM design, sample ways
in which it is used for I/O acceleration, and initial performance results evaluating the opportunities for and
limitations of the Active NVRAM approach.
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Abstract—A well-known problem for large scale cloud ap-
plications is how to scale their I/O performance. While next
generation storage class memories like phase change memory
and Memristors offer potential for high I/O bandwidths, if left
unchecked, the raw volumes and rates of I/O already present in
cloud can quickly overwhelm future I/O infrastructures. This
fact is motivating research on ’data staging’ in which I/O and
data movement are partly replaced with and/or supplemented
by computations that process data before moving it across I/O
channels – in situ – to filter or reduce it, to better organize
it for subsequent access (e.g., by other applications as in
coupled codes), or to analyze it to quickly to derive important
insights about the application producing those large data
volumes. This paper proposes a technique that uses and exploits
‘Active NVRAM’ (non volatile memory) for staging I/O. Active
NVRAMs are node-local NVRAMs that are embedded with
a low power system-on-chip compute element. These active
compute elements can be used to operate on output data
asynchronously with the tasks performed by computational
node elements, to reduce data or to perform some of the
data processing required for data analytics before data is
moved to longer term storage. The paper further describes
the Active NVRAM design, sample ways in which it is used
for I/O acceleration, and initial performance results evaluating
the opportunities for and limitations of the Active NVRAM
approach.
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I. I NTRODUCTION

It is a well known fact that data size is growing faster than
Moore’s law. The growth has been 56 times over seven years.
Not just enterprise scale applications but HPC applications
have started considering cloud as an suitable cost effective
infrastructure. With more services moving towards cloud
based datacenters for scaling, the data explosion trend is
predicted to continue. While processing power is important
for applications to scale, equally important is an efficient
method to store generated data (I/O), to operate on these
data and absorb useful data and decimate the rest.

While most of the recent research have focused to improve
the data storage efficiency by improving the I/O bandwidth
using hardware and software techniques such as using new
storage class memories (e.g. NVRAM), very few research
efforts have focused on efficient mechanisms for I/O data
processing (post processing). The I/O data processing which
we refer here are data operations which can be either done
during computation or offline in a local or remote node.

While post processing is common in HPC systems, it is
becoming equally important in Cloud too with increasing
data. For example data analytics and monitoring are common
operations in data center environment, for example using
dedicated Hadoop cluster for analytics and monitoring [1].
Today services in cloud generate petabytes of data which are
either stored to a shared persistent storage disks or moved
over network for analytics processing. Either fetching data
again from shared disks or over the network to perform
post processing is not efficient and such data movement
cause considerable data traffic. C.Wang et al. [2] argue that
one way to attain scalability in analytics and monitoring is
to immediately analyze data locally and filter monitoring
information to reduce total data volumes passed across
monitoring topologies or to disk. D. Logothetis et al. [1]
throw a light on in-efficiency in moving terabytes of data
for log processing to centralized locations and stress on the
need for fast In-situ post processing. Post processing serve
two purposes.

1) Post processing such as data reduction reduces the mag-
nitude of data moved across I/O channel and also makes
the data management easier. This directly benefits the
I/O performance.

2) Post processing methods such as sorting, indexing,
layout reorganization is important from the point of data
analytics which require data assembled in a specific
layout.

In this paper we specifically focus on improving per-
formance of post processing for large scale applications
in cloud. We propose a novel mechanism to use Ac-
tive NVRAM for I/O staging to improve I/O throughput
and more importantly post processing performance. Active
NVRAM’s are non-volatile memory attached with a low
power compute element (Figure 1). Active NVRAM [3]
is based on system-on-a-chip architecture providing high
memory bandwidth to the compute elements. Each active
NVRAM has its own operating system. NVRAM technolo-
gies such as Memristor and PCM offer 100X faster read-
write performance and have endurance of approximately a
million writes. They are scalable in terms of storage density
with ability to store multiple bits per cell and require low
power(also no refresh required) when compared to DRAM
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Figure 1. Architecture

which makes them a suitable replacement for disks. Our
preliminary evaluations show high I/O performance gain
using active NVRAM and we also analyze the effectiveness
of Active NVRAM approach for post processing using HPC
benchmarks. We argue that, by using Active NVRAM sig-
nificant data post processing operations can be accomplished
efficiently.

Technical contributions of the paper include

1) a framework that provides applications to use NVRAM
for high performance I/O. The framework also supports
asynchronous I/O data post processing using active
NVRAM with minimal changes required to application

2) results of a common I/O post processing application-
distributed sorting and the performance benefits of
using Active NVRAM

3) Overheads of Active NVRAM based staging approach

II. RELATED WORK

C.Wang et al. [2] motivate the need for processing data
closer to computation in cloud. D. Logothetis et al. [1] dis-
cuss the time sensitivity aspects of log data post processing
in cloud and the need for an efficient in-situ processing.
However such in-situ processing on compute core do add
overheads to application runtime which we aim to address
using Active NVRAM. Moneta [4] provides an architectural
overview of using distributed non volatile memories for
I/O storage and provides insight on software optimization
required for using non volatile memories such as SSD for
distributed high performance storage. Our work relies on
node local data storage and uses NVRAM like Memristor
and PCM to improve I/O and also differs from others by
not only improving I/O throughput using NVRAM but also
improve post processing performance of I/O data. F.Zheng
et al. [5] use dedicated I/O staging nodes specifically for
post processing by moving data through high bandwidth
interconnect for HPC systems. In cloud environment with
restricted memory and network bandwidth for commodity

VM’s and with increasing I/O data, time taken to move
data from compute core to staging nodes can add application
overhead which we plan to investigate in future.

III. POST PROCESSING EXAMPLES

While current approaches perform ’on-compute-core’ pro-
cessing or in dedicated I/O nodes, we propose using Active
NVRAM. We implemented a simple data reduction tech-
nique by compression of I/O data and distributed merge
sort as driving examples. While compression reduces the
data and improves I/O performance, sorting is a commonly
used analytics application [6], for example in map reduce
based analytics to sort input files, and in monitoring too. We
believe these two examples provide a good representation
of computation intensive (compression) and communication
intensive (sorting) post processing operations. The exper-
imental evaluation analyzes the performance tradeoffs of
using Active NVRAM for post processing.

IV. OTHER ACTIVE NVRAM APPLICATIONS

Though in this paper we specifically use active NVRAM
for data post processing as an example, we believe our
mechanism can have huge impact on other large scale
applications too where I/O operations can be offloaded to
active NVRAM. For example, current database applica-
tions have been divided into two data components. One
component is persistent disk based database files stored in
set of nodes, the other component is an in-memory key
value store using dedicated nodes loaded with database
values. To address power and cost issues of in-memory,
FAWN [7] proposes a system architecture for using wimpy
nodes (low power cores) with flash based storage devices.
We believe node active NVRAM can be added as additional
component(wimpy node) to physical machines for key-value
store operations with database engine using powerful cores.
This has potential not only in terms of performance but
power benefits too. H.Amur et al. [8] propose a mechanism
for alternating between high performance nodes and wimpy
nodes based on data workloads for power benefits. We plan
to investigate on these applications in our future work.

V. I MPORTANCE OFACTIVE NVRAM IN CLOUD

Poor I/O bandwidth for large scale applications in virtu-
alized cloud environment is a well know problem. Inspite
of different I/O optimizations, a major cause of poor I/O
bandwidth performance is because of virtualization technol-
ogy. Sharing physical I/O channels such as Gigabit Ethernet
between virtual machines [9] results in poor bandwidth
of around 87 MB for large scale instances in EC2. For
large scale applications, the inter VM contention for I/O
bandwidth adds substantial overheads. We believe, using
a node local Active NVRAM would provide significant
performance benefit in cloud environment. In this paper we
do not focus on I/O virtualization issues. For evaluation we



use a non virtualized cluster at HP labs with NFS file system.
In our future work we would like to evaluate our approach
in a virtualized environment [10].

VI. D ESIGN

For applications to use NVRAM’s for I/O, we propose
an Active NVRAM framework. Active NVRAM framework
(AMF) provides application with simple memory based
interfaces for accessing NVRAM. Generally large scale
applications have multiple processes or threads in each
node and each process writes I/O data in chunks to active
NVRAM. A chunk can be defined as sequential stream
of data. Each chunk is a structure composed of metadata
and data. The metadata contains information about physical
address of chunk in active NVRAM, length of chunk, data
type and a set of flags describing state of chunk. The
metadata also contains information about set of operations
that needs to perform as a part of post processing on each
chunk.

A. NVRAM Allocation and commit

To write data to active NVRAM from a source data
structure (e.g. variable, arrays, structure) applications make
nvmalloc() call. The call results in allocation of memory in
DRAM and also equivalent allocation of memory in active
NVRAM. All updates to the allocated memory before com-
mit operations are buffered in DRAM. This avoids the write
latency to non volatile memory and indirectly addresses
the wear leveling issues of NVRAM. Active NVRAM is
persistent and applications know when data needs to be com-
mitted and saved. Hence it is responsibility of applications
to explicitly commitnvcommit() data to active NVRAM. A
commit guarantees an atomic failsafe update of data to active
NVRAM. Since currently NVRAM’s such as Memristor,
Phase Change Memories are not available, the AMF uses
memory mapped files to emulate persistence. AMF is flexi-
ble to work with any memory mapping compatible hardware.

B. Active NVRAM

Active NVRAM framework aims to decouple the gen-
eral compute cores and the active NVRAM element. The
compute cores and active element are independent and do
not communicate. They behave in a producer consumer
model. The compute cores execute applications, produce
data in form of chunks, write them to their respective
process compartment in NVRAM and continue with next
iteration step. A compartment is similar to process address
space. The compartment avoids memory conflicts between
processes. The chunk metadata describes how the data needs
to treated by the active element and what operations should
be applied over the data chunk. To handle multi-threaded
environments, AMF uses a global active NVRAM work
queue. All processes that commit data to NVRAM, update
their chunk metadata to the global work queue after the data
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Figure 2. Design

is committed to NVRAM. The active element de-queues
entry one by one applies processing to chunk.

VII. E XPERIMENTAL EVALUATION

To evaluate our approach of using Active NVRAM for I/O
staging, we used infiniband-based cluster at HP. The cluster
nodes run non-virtualized Linux OS. Each node has Quad
core Intel Xeon processors with node local hard disks for
storage. To emulate active NVRAM, each node uses three
cores for running actual simulation and one core is dedicated
for active NVRAM compute element. The home directories
of applications are mounted over NFS. Experimental results

1) validates the benefits of using NVRAM for I/O in terms
of throughput

2) provides a comparison of performance tradeoffs of
using Active NVRAM with respect to compute core
in-situ processing

3) analyzes application overheads due to software and
hardware limitations in using Active NVRAM

A. I/O throughput

For evaluation we primarily use NAS-NPB bench-
marks [11] NAS-NPB benchmarks provide a good mix of
applications with different characteristics such as communi-
cation intensive, I/O intensive and embarrassingly parallel
applications. We primarily use the I/O intensive BTIO
benchmark for most of our evaluation. Figure 3 compares
I/O throughput of applications using disk storage in NFS
mode, Ramdisk and Active NVRAM. We use the application
check pointing as source of I/O data. Ramdisks are memory
mounted file system.

1) Observations: As expected, using NFS results in
very poor throughput. Ramdisk and NVRAM provide huge
throughput gains compared to disk. For the largest data
size in out experiment, we observed around 385% gain
over disk as expected. An interesting thing to note is the
performance gains with NVRAM approach when compared
to using ramdisk. Though ramdisk creates a file system on
system memory, applications use the file system semantics
such as seek(), read(), write() in block sizes which results
in additional overheads when compared to NVRAM. With
increasing computation, the I/O data size also increases.
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The throughput of disk based I/O further decreases because
of increased NFS contention. In case of active NVRAM,
we use DRAM to emulate NVRAM by memory mapping
file. With increasing data size, memory used by application
and active NVRAM increases, resulting in increase disk
swapping which is why the effective througput decreases.
We believe such overheads should be absent when using
real hardware.

B. Performance impact in using NVRAM

The next experiment evaluates implication of using
NVRAM for data post processing with distributed I/O
data sorting as an example using the I/O intensive BTIO
benchmark for experiments. Figure 4 compares application
runtime for on-compute core post processing indicated by
green points with active NVRAM approach indicated by red
points. The experiments relate application performance with
varying the number of cores (x-axis) and the data size (y-
axis).

1) Observations: When the data size(MB) to no. of
compute cores ratio is small; application performance is
almost similar for both approaches. But as the ratio in-
creases, there is a considerable performance gain in case
of active NVRAM approach. The reason for this behavior
can be attributed towards communication intensive nature
of sorting. For small data sizes, post processing after each
checkpoint step does not add much overhead to application
run time. But with increasing data size, even though ’on
compute core’ approach uses powerful compute cores, com-
munication latencies adds substantial impact to application
runtime whereas asynchronous processing approach in Ac-
tive NVRAM hides such overheads.

The Figure 6 provides insights on using a computa-
tion intensive compression for post processing without any
communication. The algorithm is a loosy compression and
provides a 4:1 data reduction. The graph indicates almost no
performance difference when using the ’on-compute core’
for post processing and compared to active NVRAM for
different data size to no. of compute cores ratio.

2) Observations: The reason for this behavior can be
attributed as follows

1) In case of on compute core approach, though compres-
sion is performed synchronously with computation, the
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ratio of compute cores to active element is 3:1 which
explains why this approach adds less than 2 percent
overhead to application run time.

2) The time spent on compression is around 4 percent of
application run time and so there is not much significant
gain in doing asynchronously in active NVRAM. In
our future work we plan to use different compression
techniques to understand the performance tradeoffs.

C. Active NVRAM overheads

The compute cores and compute element in active
NVRAM share the communication channel, and NVRAM.
The next experiment Figure 6 analyzes the overheads of
post-processing using active NVRAM due to resource shar-
ing. We use different applications in NPB benchmark by
modifying the benchmark to write I/O using our NVRAM
framework. We use distributed sort as it as good example of
communication intensive in situ processing.

1) Observations: In case of communication intensive
benchmarks such as MG, CG, if active NVRAM processing
is also communication intensive, application experiences



Figure 6. Active NVRAM - Overheads

around 8% overhead. This is because of communication
channel contention between application processes and Ac-
tive NVRAM process. For embracingly parallel application
benchmarks (EP) with minimum communication and small
I/O size, there is less communication overhead. Compute
cores and active NVRAM function in producer-consumer
model and hence during global queue updates, the queue
requires locking. Synchronization overhead is slightly higher
in case of I/O sensitive BTIO benchmark. Our future work
would explore methods to reduce such synchronization over-
heads and communication overheads by efficient scheduling.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper we analyze the opportunities of using Active
NVRAM for large scale data (I/O) intensive applications and
use data post processing as a driving example. We use high
performance application benchmarks first to evaluate the I/O
performance gains and use the same benchmark to analyze
the tradeoffs of post processing using Active NVRAM. Our
preliminary results show over 385% I/O throughput benefits.
While for the sort based post processing our mechanism
shows 160% improvement in, but for compute intensive
operations we do not see much benefit. Our preliminary
results are evaluation based on limited scale and benchmark
driven. In our next phase of research, we would like to
improve the experiment scale and evaluate performance for
different data post processing examples. Also we would like
to address some of the performance overheads due to In-situ
processing.
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