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Abstract:

Datacenter network architectures must change to accommodate the unprecedented scaling and low cost
requirements of cloud computing environments. This paper describes our work on managing the
performance of multi-path Ethernet fabrics spanning a large datacenter. Our approach is to develop an
Ensemble Routing Controller, which achieves management scalability by reasoning about traffic at the
granularity of a tractable set of flow ensembles, i.e. groups of flows. To support research on novel
datacenter network architectures and management frameworks, the Palo Alto Open Cirrus site has been
augmented with an experimental multi-path Ethernet network, which operates separately and in parallel
with the production Open Cirrus network fabric. We implemented and deployed a prototype Ensemble
Routing Controller to manage traffic in this multi-path network. We present preliminary experimental
results showing that our controller effectively manages the fabric resources by dynamically assigning
traffic to efficient network paths delivering close to optimal network goodput to applications. We also
describe our experiences using the Open Cirrus platform and suggest features for Open Cirrus resource
allocation that would further facilitate our research on datacenter networking.
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Abstract—Datacenter network architectures must change to
accommodate the unprecedented scaling and low cost require-
ments of cloud computing environments. This paper describes
our work on managing the performance of multi-path Ethernet
fabrics spanning a large datacenter. Our approach is to develop
an Ensemble Routing Controller, which achieves management
scalability by reasoning about traffic at the granularity of a
tractable set of flow ensembles, i.e. groups of flows. To support
research on novel datacenter network architectures and man-
agement frameworks, the Palo Alto Open Cirrus site has been
augmented with an experimental multi-path Ethernet network,
which operates separately and in parallel with the production
Open Cirrus network fabric. We implemented and deployed
a prototype Ensemble Routing Controller to manage traffic in
this multi-path network. We present preliminary experimental
results showing that our controller effectively manages the fabric
resources by dynamically assigning traffic to efficient network
paths delivering close to optimal network goodput to applications.
We also describe our experiences using the Open Cirrus platform
and suggest features for Open Cirrus resource allocation that
would further facilitate our research on datacenter networking.

I. INTRODUCTION

Datacenter networks for cloud computing environments
need to scale to thousands of physical machines, and must be
cost-effective to retain the economic benefits of cloud com-
puting. Current Ethernet networks are hard to scale to large
size because of the single-path constraint of the Spanning Tree
Protocol, and the consequent use of very expensive high port
count core switches. Thus, researchers have proposed multi-
pathing techniques to scale Ethernet datacenter networks [1],
(2], [3], [4], [5], [6].

The choice of multiple paths raises the need for smart
traffic management to choose paths that optimize network
performance. In previous work, some of us proposed Ensemble
Routing as an approach to realize the combination of multi-
path Ethernet and scalable management [7], [6]. The key
insight of Ensemble Routing is to use state compression to
efficiently and scalably manage a large network hosting a
tremendous number of flows coming and going over time.
Instead of managing each flow individually, which seems
intractable, Ensemble Routing operates at the granularity of
flow ensembles, or collections of flows. Each flow, identified
by packet header n-tuple, is classified into a traffic class,
which determines the QoS treatment of the flow, and hash
class, which is calculated based on a simple symmetric hash
function. Together, the traffic and hash class comprise the
routing class, which determines the route that packets of a flow
will take through the network. Each switch records statistics
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for each routing class and provides the statistics to a logically
centralized controller. The controller gathers per-routing class
statistics from each switch, and then executes an optimization
algorithm to map each routing class to one of multiple routing
networks providing path diversity.

Ensemble Routing offers to globally optimize traffic usage
in the network through load balancing. Ensemble Routing
also offers great flexibility to implement network management
policies. For example, it can provide physical isolation or
dedicated paths to a traffic class with guaranteed bandwidth,
by allowing an administrator to restrict traffic classes to use
specific sets of paths. It can also tune the granularity of
traffic management by allowing an administrator to adjust the
number of hash classes used for each traffic class. Further-
more, Ensemble Routing enables fast failure recovery, as the
network controller can rapidly shift traffic away from failed
network components without waiting for a complex distributed
recovery protocol to converge.

This paper presents a prototype implementation of Ensem-
ble Routing on the HP Labs Palo Alto Open Cirrus testbed.
Our prototype uses host-based virtual switches to implement
multi-pathing. Using host-based virtual switches may be suit-
able for production deployment in a cloud computing environ-
ment that controls the system software (e.g., Xen hypervisor)
on all physical hosts. Alternatively, our implementation based
on virtual switches can be viewed as a software emulation of
future deployments that could use enhanced physical switches.

We present experimental results showing that our Ensemble
Routing Controller can manage multi-path traffic to load
balance network resources. We study two traffic patterns with
very different optimal routing policies, and we show that our
controller automatically and quickly discovers a routing policy
that is near-optimal in each case. We show that dynamically
changing the routing policy, causing a flow to shift between
network paths, is unlikely to cause a significant performance
disruption, for example due to TCP retransmissions caused by
packet reordering.

Our experiments use a special research test network on the
Open Cirrus testbed. We discuss some implications of conduct-
ing cloud datacenter network-related research on the shared
Open Cirrus testbed and suggest possible improvements.

The rest of the paper is organized as follows. Section II
reviews Ensemble Routing. Section III describes our prototype
on the Open Cirrus testbed. Section IV presents preliminary
experimental results. Section V discusses our experience using
Open Cirrus, and Section VI concludes.
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Fig. 1. Switch Architecture

II. ENSEMBLE ROUTING

Ensemble Routing operates at each edge switch attached to
hosts, while non-edge switches can be unmodified commodity
switches. Figure 1 shows the edge switch architecture for
Ensemble Routing. Outbound packets transmitted by hosts
are received at the edge switch, which takes the packet and
classifies it into a traffic class, and applies a hash function
to identify a hash class. Together, the traffic class and hash
class are concatenated to form the routing class. The routing
class is used to index a table, e.g. a TCAM (ternary content-
addressable memory) common in modern switches, to look
up the routing network to use to forward the outbound packet
through the fabric to a remote edge switch connected to the
destination host. The TCAM lookup also updates counters
associated with the routing class to record the amount of
traffic (packets and byte counts) transmitted using the routing
class. Our implementation uses Layer-2 VLANS to create the
multiple alternative routing networks that each packet can
traverse. Unlike the common use of VLANS to provide logical
isolation, these “routing VLANSs” are used to provide path
diversity (e.g. similar in SPAIN [4]). This approach could be
extended, e.g. with VLAN stacking, to provide both logical
isolation and multi-pathing. The outband packet is VLAN-
encapsulated and forwarded to the destination edge switch,
which decapsulates the packet, records the arrival in statistics
counters associated with the routing VLAN, and strips the
VLAN tag and forwards the packet to its destination host.

A logically centralized Ensemble Routing Controller oper-
ates in a control loop, periodically sampling traffic statistics
and optimizing routing settings throughout the network. Each
iteration of the control loop queries a set of sample points
located in the network to collect per-routing class and per-
VLAN traffic statistics. For our implementation, sample points
are located at each edge switch. The routing controller uses
the gathered statistics to compute optimized assignments of
routing classes to VLANS to achieve load balancing across the
network resources. At the end of each control loop iteration,
the controller programs each edge switch TCAM with the
resulting optimized assignment.

The optimization procedure is diagrammed in Figure 2.
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The techniques shown in the Figure are described in detail
elsewhere [7] for the case of symmetric routing, where each
bi-directional flow takes a congruent path through the fabric
in both directions. In this paper we relax that restriction in
some experiments and allow asymmetric routing, where bi-
directional traffic may take different paths in each direction to
improve performance through better load balancing.

III. ENSEMBLE ROUTING PROTOTYPE

Our prototype implementation adds Ensemble Routing sup-
port to virtual switches running in software at each host. Fig-
ure 3 shows a host running Open vSwitch (openvswitch.org)
which we modified to implement Ensemble Routing. The Open
vSwitch has a number of ports that are associated with various
network interfaces and with the local host TCP/IP stack. Using
standard Linux configuration, we created a network interface
object for each routing VLAN (four such interfaces are shown
in the figure as ethl.l through eth2.4). The host is attached
to unmodified physical switches that have VLANs setup on
alternative paths in the fabric.

Figure 4 shows our additions to the Open vSwitch design
to support Ensemble Routing. Each packet coming from the
local host is classified based on its header fields into a traffic
class. Each traffic class is associated with a programmable
hash table (so each traffic class can have its own hash table),
and the hash table maps each hash bin to a routing VLAN.
It is the responsibility of the central controller to program the
hash bin mapping for each traffic class.
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Figure 5 shows the controller, which runs in software on
a dedicated host, and its inputs and outputs. Inputs include
hash class (bin) statistics queried periodically from each Open
vSwitch instance on all the hosts, a description of the phys-
ical topology and the routing VLAN layouts. The Controller
takes this information and generates matrices summarizing
this information to the Route Optimizer component, which
executes a linear algebra package and a heuristic bin packing
algorithm [7] to generate new optimized hash bin settings
which are presented to the controller. The controller takes
these bin settings and programs each Open vSwitch instance
to change the routes associated with each routing class at each
host.

IV. EVALUATION

We performed experiments using a subset of the HP Labs
Open Cirrus testbed. A separate “research network™ was setup
to perform datacenter network-related research, including En-
semble Routing. Each host in the testbed has two NICs: ethO
connected to the standard network, and ethl connected to the
research network. The research network consists of several
edge switches connected in a clique topology — i.e., a fully
connected network among the edge switches. All links are
1Gbps Ethernet. (The network also contains additional links
and top switches to support a two-level fat tree topology, but
we do not use those resources in the experiments reported in
this paper). As shown in Figure 6, we used four edge switches
s1—s4 and for each switch, we used four attached hosts to run
our Ensemble Routing Open vSwitch (note: while the Figure
only shows the hosts that are attached to switch s3, we attached
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similar sets of four hosts to each other edge switch s1, s2, and
s4).

A routing VLAN is rooted at each edge switch as shown in
Figure 7. To take a single-hop path from one edge switch to
another edge switch, a packet can either use the routing VLAN
rooted at the source edge switch (i.e. the “Home” VLAN) or
the routing VLAN rooted at the destination edge switch. Using
any other routing VLAN requires a two hop path: a first hop
from the source edge switch to the root edge switch of the
routing VLAN, and a second hop from there to the destination
edge switch. For example, a packet from edge switch s3 to
edge switch s4 can take a one-hop path using VLAN 401
rooted at edge switch s3 or VLAN 404 rooted at edge switch
s4, but taking VLAN 402 requires traversing through s1, and
taking VLAN 403 requires traversing through s2.

Our initial experiments examine the question: What is
the impact on TCP performance when hash bin mappings
are changed dynamically? The Ensemble Routing Controller
dynamically optimized hash bin settings, potentially changing
the paths of established TCP connections. This can cause
packets to arrive out of order at the destination, leading to
a possible concern that the benefit of dynamic traffic load
balancing comes at the cost of a harmful impact on TCP
congestion control dynamics.

To test this key question, we performed two experiments. In
the first experiment, a hash bin mapping is alternated between
two routing VLANs at a high frequency of 10 times per
second. A single streaming TCP connection is established
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between two edge switches and transfers SOOGB. As a result of
the hash bin flipping between the two routing VLANS, packets
using the established TCP connection alternate between a one-
hop path and a two-hop path approximately every 100ms.
Figure 8 shows the results of this experiment. The plot shows
on the y-axis the traffic on each routing VLAN, and the total
traffic across all VLANSs, as time advances on the x-axis.
Results of two runs are shown. The first is a static run that does
not alternate the hash bin map. A streaming TCP connection
completes a fixed size data transfer in 48 seconds. The second
run performs the same streaming data transfer, but this time
the hash bin map is flipped every 100ms. The result shows that
the transfer still completes in 48 seconds, and the two VLANS
401 and 402 are approximately equally utilized. Thus, flipping
between paths does not hurt goodput in this experiment.

The second experiment also alternates the hash bin map
every 100ms, but adds a competing flow to one of the two
alternate paths. Specifically, the streaming TCP flow alternates
between an empty two-hop path, and a one-hop path shared
with another competing streaming TCP flow that does not
shift its path. The results, shown in Figure 9, show that the
completion time of the streaming TCP job extends to 71 sec-
onds, only 11% higher than the ideal value of 48 x4/3 = 64
seconds obtained if bandwidth sharing when the two flows
compete is perfectly equal. These results suggest that TCP
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in the datacenter is likely to well tolerate path changes at
frequencies up to several times per second. In the remainder
of this paper, the controller limits hash bin changes to take
place only every 2 seconds, a 20 times lower frequency than
in these initial extreme experiments.

We next examine the question: How well does Ensemble
Routing optimize routes for different traffic patterns? Our
initial test uses an All-pairs shuffle traffic pattern, in which
each host sends 500MB of data to each of the 12 hosts located
at different edge switches. This traffic pattern has a perfectly
uniform distribution across the edge switches. For this uniform
traffic, the optimal routing policy is to take shortest paths for
all traffic. Hence, all traffic should take the VLAN rooted at
the source edge switch.

Figure 10 shows the performance obtained with different
routing policies. Home VLAN is the optimal policy. Spanning
Tree is the use of a single spanning tree as in many con-
ventional Ethernet deployments, in which multiple paths are
not used except for fail-over. Round Robin maps hash bins to
routing VLANS in a round-robin pattern, approximating a ran-
dom choice of routing VLAN for each flow. Two independent
runs of Round Robin are shown, one in each plot. Finally,
Symmetric Routing (SR) and Asymmetric Routing (AR) use
the Ensemble Routing Controller with dynamic assignment
of hash bin mappings. SR restricts bi-directional flows to
congruent paths, while AR lifts that restriction. The result
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shows that SR and AR outperform all but the optimal Home
VLAN policy. AR outperforms SR and comes within 12.5%
of optimal. Round Robin suffers because as individual data
transfers complete, some VLANs become idle, whereas the SR
and AR schemes can dynamically shift traffic to less utilized
paths. Spanning Tree is the worst scheme because it is limited
to 1Gbps, the bandwidth of a single path.

We also ran experiments using a Skewed Shuffle traffic
pattern, where each of four hosts transmits 1500MB to each
of four destination hosts. The source hosts are attached to
a single edge switch, and the destination hosts are attached
to a single edge switch different from the sources. Thus
there are 4x4 data transfers, all traversing the same pair of
source and destination edge switches. Unlike for the All-Pairs
pattern, here it is not optimal to use only shortest-hop paths.
The reason is that there is only one link between the source
edge switch and the destination edge switch, limiting the total
bandwidth between the pair of switches to 1 Gb/s if only the
shortest path is used. Thus, unlike the All-pairs case in which
Home VLAN is the optimal policy, with Skewed Shuffle it is
better to use both the shortest-hop path and non-shortest-hop
paths. Figure 11 shows results for Skewed Shuffle using Home
VLAN, Round Robin, and Asymmetric Routing. The result
shows that Home VLAN has very long completion time due to
the 1 Gb/s bottleneck. Round Robin performs better by using
more VLANSs and, hence, all paths, but some VLANs go idle
before the entire job is completed, leaving available bandwidth
unused. Asymmetric Routing outperforms both static schemes,
resulting in the fastest completion time of 85 seconds. The
Ensemble Routing Controller is able to dynamically adjust
the routing policy to keep all paths between the source and
destination edge switches utilized throughout the execution,
maximizing total bandwidth utilization.

V. OPEN CIRRUS EXPERIENCE

We used the Open Cirrus testbed at HP Labs before the
deployment of an automated Node Reservation System that
would allow users to reserve sets of hosts for specific time
periods. To avoid interference between experiments, we had
to coordinate carefully with other users of the infrastructure

using email and in-person communication. In addition, all
users shared the same file systems on each host. This meant
that there was always a danger that some user would upgrade
Ubuntu packages on a subset of the machines, changing their
behavior or performance. Despite the potential for interference
and system corruption, we were able to carry out the exper-
iments with only occasional unintended interference, and we
are not aware of any instances in which the file system contents
were changed in a disruptive manner. We suspect this was
possible only because the number of cooperative users at the
time of our experiments was small. In addition, for most of
our work, we were able to confine changes to a custom kernel
module that we could dynamically load and unload, and we
would boot each system before and after running experiments
to try to ensure a fresh system.

The planned deployment of the Node Reservation System
(NRS) should make all of this much easier for researchers.
Hosts will be reservable, and strong content isolation will be
provided between different users. For research on networking,
we advocate extending NRS to allow resources of the research
network to be reserved in addition to hosts. For example,
we plan research that will require dynamically reconfiguring
routing VLANSs. This requirement suggests the need to extend
NRS to reserve sets of switches and/or links, and VLAN
identifiers along with hosts.

VI. CONCLUSION

The Open Cirrus testbed proved to be an extremely valuable
resource for advancing our research on Ensemble Routing
for large-scale datacenters. While we had previously tested
our Ensemble Routing ideas using fluid-flow simulation, a
real implementation was needed to evaluate and understand
the effects of Ensemble Routing in the context of the full
complexities of real systems and workloads. The results so
far are promising, and we plan to further extend and evaluate
our prototype on a variety of topologies and network traffic.
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