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Abstract—A typical MapReduce cluster is shared among
different users and multiple applications. A challenging prob-
lem in such shared environments is the ability to efficiently
control resource allocations among the running and submitted
jobs for achieving users’ performance goals. To ease the
task of evaluating and comparing different provisioning and
scheduling approaches in MapReduce environments, we have
designed and implemented a simulation environment SimMR 1

which is comprised of three inter-related components: i) Trace
Generator that creates a replayable MapReduce workload;
ii) Simulator Engine that accurately emulates the job master
functionality in Hadoop; and iii) a pluggable scheduling policy
that dictates the scheduler decisions on job ordering and the
amount of resources allocated to different jobs over time.
We validate the accuracy of SimMR environment by, first,
executing a set of realistic MapReduce applications in a 66-
node Hadoop cluster and then by replaying the collected
job execution traces in SimMR. Our simulator accurately
reproduces the original job processing: the completion times
of the simulated jobs are within 5% of the original ones.
SimMR can process over one million events per second. This
allows users to simulate complex workloads in a few seconds
instead of multi-hour executions in the real testbed. Finally,
by using SimMR we analyze and compare the performance of
two novel deadline-driven schedulers over a diverse set of real
and synthetic workloads.
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I. INTRODUCTION

The MapReduce model is becoming popular for per-

forming advanced analytics over unstructured information

and for enabling efficient “Big Data” processing. The list

of companies exploiting Hadoop and new data processing

opportunities is growing every day2. Cheap data storage and

the scalable operational model underlying Hadoop allows

users to apply advanced data mining and machine learning

algorithms to extract information and discover novel data

insights in non-traditional, game-changing ways. Typically, a

MapReduce cluster is used for hosting different datasets, and

its compute capacity is shared among multiple applications.

One of the most challenging tasks in such shared en-

vironments is the ability to tailor and efficiently control

resource allocations among different jobs for achieving

their performance goals. Often, the jobs are partitioned in

different classes of service (e.g., platinum, silver, and bronze

at Facebook [1]) and then processed by different Hadoop

clusters with specially created management and resource

allocation strategies. This is mainly done in order to guaran-

tee performance isolation and have a predictable completion

1This work was partially completed during A. Verma’s internship at HP Labs. R.
Campbell and A. Verma are supported in part by NSF CCF grant #0964471.

2“Powered by” Hadoop, http://wiki.apache.org/hadoop/PoweredBy

time for production jobs. However, when there is a need to

expand the set of production jobs with new applications and

additional data processing, first, one has to evaluate whether

additional resources are required, and then how they should

be allocated for meeting performance goals of the jobs in the

extended set. To assist system administrators in performance

evaluation and simplify MapReduce cluster management,

new fast and accurate tools are needed.

In the past couple of years, job scheduling and workload

management issues in MapReduce environments have re-

ceived much attention. Currently, there are at least three dif-

ferent schedulers broadly used for job processing: the default

FIFO scheduler, the Capacity scheduler [2], and the Hadoop

Fair Scheduler (HFS) [3]. Each scheduler’s decisions are

based on several factors like simplicity, throughput, fairness,

data locality, capacity guarantee, etc. Moreover, there are

several research prototypes, e.g., FLEX [4], Dynamic Pri-

ority (DP) scheduler [5], ARIA [6], that aim to enhance

the existing schedulers by exploiting new principles and

performance models for supporting additional features.

Designing, prototyping, and evaluating new resource al-

location and job scheduling algorithms in large-scale dis-

tributed systems such as Hadoop is a challenging, labor-

intensive, and time-consuming task. Experiments performed

in a real MapReduce testbed can take hours (to days) to

obtain any preliminary results. Such evaluation is often

limited to a set of specific applications (or benchmarks)

available for experimentation. These experiments cannot be

performed in production clusters of interest. Our goal is

to design an accurate and fast simulation environment for

evaluating workload management and resource optimization

decisions in MapReduce environments. It will assist Hadoop

cluster administrators in their daily tasks, helping them avoid

error-prone, guess-based decisions.

In this work, we present a new MapReduce simulator,

called SimMR (pronounced as simmer), that can replay exe-

cution traces of real workloads collected in Hadoop clusters

(as well as synthetic traces based on statistical properties of

workloads) for evaluating different resource allocation and

scheduling ideas in MapReduce environments.

SimMR consists of the following three components:

1) Trace Generator – a module that generates a re-

playable workload trace by processing the job tracker

logs or using a synthetic workload description.

2) Simulator Engine – a discrete event simulator that

accurately emulates the Hadoop job master decisions

for map/reduce slot allocations across multiple jobs.



3) Scheduling policy – a pluggable scheduling module

that dictates the ordering of jobs and the amount of

allocated resources to different jobs over time.

We validate the accuracy of SimMR by, first, executing a

set of realistic MapReduce applications in a 66-node Hadoop

cluster and then replaying the collected job execution traces

in SimMR. The simulator accurately reproduces the orig-

inal job processing with less than 2.7% average (6.6%
maximum) error across the applications in the simulated

set. We compare SimMR with the available open source,

Apache’s MapReduce simulator, called Mumak [7]. This

simulator replays traces collected with a log processing tool,

called Rumen [8]. In our evaluation study, we observe that

Mumak’s trace replay deviates significantly from the original

job processing: Mumak’s simulation exhibits 37% average

(51.7% maximum) error while replaying the same traces.

The main difference between Mumak and SimMR is that

Mumak omits modeling the shuffle/sort phase. For many

applications this could lead to a significant error in com-

pletion time estimates and inaccurate workload modeling

over time. We believe that the modeling framework proposed

in SimMR for replaying the shuffle/sort and reduce phases

could be adopted by Mumak to make it more accurate.

To assess the simulator speed, we collected traces from

1148 jobs run on our 66 node cluster during the last 6

months. The results show that SimMR replays these jobs

in 1.5 seconds, while Mumak’s execution takes 680 seconds

to replay the same set of jobs. Thus, SimMR is two orders

of magnitude faster than Mumak.

Finally, we present a case study with SimMR that is used

for a fast (but accurate) performance analysis and compari-

son of two different deadline-driven Hadoop schedulers over

a diverse set of workloads.

This paper is organized as follows. Section II provides a

brief background on the MapReduce framework and moti-

vates the problem. Section III describes the design choices

and overall architecture of SimMR. We evaluate SimMR in

Section IV. Section V provides a case study with SimMR

by comparing two different deadline schedulers. Section VI

describes the related work. Finally, we summarize the results

and outline future work in Section VII.

II. BACKGROUND AND MOTIVATION

MapReduce jobs are distributed and executed across mul-

tiple machines. The map stage is partitioned into map tasks

and the reduce stage is partitioned into reduce tasks.

Each map task processes a logical split of the input data

that generally resides on a distributed file system. The map

task applies the user-defined map function on each record

and buffers the resulting output. This intermediate data is

hash-partitioned for the different reduce tasks and written to

the local hard disk of the worker executing the map task.

The reduce stage consists of three phases: shuffle, sort and

reduce phase. In the shuffle phase, the reduce tasks fetch the

intermediate data files from map tasks, thus following the

“pull” model. In the sort phase, the intermediate files from

all the map tasks are sorted. An external merge sort is used

in case the intermediate data does not fit in memory. After

all the intermediate data is shuffled, a final pass is made to

merge all these sorted files. Thus, the shuffle and sort phases

are interleaved. We call this combined phase as just a shuffle

phase. Finally, in the reduce phase, the sorted intermediate

data is passed to the user-defined reduce function. The output

from the reduce function is generally written back to the

distributed file system.

Job scheduling in Hadoop is performed by the job master

node called the JobTracker, which orchestrates a number

of worker nodes called TaskTrackers in the cluster. Each

TaskTracker has a fixed number of map and reduce slots,

which can run tasks. The number of map and reduce slots is

statically configured (typically to one or two per core). The

TaskTrackers periodically send heartbeats to the JobTracker

reporting the number of free slots and the progress of

the tasks that they are currently running. Based on the

availability of free slots and the rules of the scheduling

policy, the JobTracker assigns map and reduce tasks to slots.

The amount of allocated resources may have a significant

performance impact on the job completion time. Let us

consider WordCount, a popular MapReduce application that

counts the word frequencies in a text corpus. The map task

tokenizes each line into words, while the reduce task counts

the occurrence of each word. In our example, this job has

200 map tasks and 256 reduce tasks. Let us demonstrate

and explain differences between the job executions as a

function of the amount of resources allocated to the job. For

this purpose, we have modified the default FIFO scheduler

in Hadoop such that it allocates a requested number of

map/reduce slots for a job execution (instead of maximum).

First, in the 64 worker-node cluster configured with 2 map

and 2 reduce slots per node, we run WordCount with 128

map and 128 reduce slots (the testbed’s remaining details

can be found in Section IV). Figure 1 shows the progress
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Figure 1. WordCount with 128 map and 128 reduce slots.

of the map and reduce tasks over time (on the x-axis) vs

the 128 map slots and 128 reduce slots (on the y-axis).

Since there are 200 map tasks, while only 128 map slots
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Figure 2. WordCount with 64 map and 64 reduce slots.
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Figure 3. Comparison of CDFs of task durations for WordCount under two different resource allocations.

are allocated to the job, the map stage proceeds in multiple

rounds of slot assignment, i.e., with 2 map waves clearly

observed in Figure 1. Similarly, the reduce stage proceeds in

2 waves as well. We split each reduce task into its constituent

shuffle and reduce phases. The shuffle phase begins only

after the first map task has completed. The shuffle phase (of

any reduce wave) can be completed when the entire map

stage is complete and all the intermediate data generated by

the map tasks has been shuffled to the reduce tasks and has

been sorted. As seen in the figure, a part of the first shuffle

phase overlaps with the map stage. Only when the shuffle

phase completes, the reduce phase is performed.

Next, we run WordCount with lesser resources: 64 map

slots and 64 reduce slots. As shown in Figure 2, both map

and reduce stages proceed in 4 waves. The shuffle phase

of the first reduce wave is significantly different from the

shuffle phase in the next reduce waves (see Fig. 1, 2). This

happens because the “first” shuffle phase overlaps with the

entire map stage, and hence it depends on the number of map

waves and their durations. Therefore we consider two sets

of measurements: first shuffle, i.e., the shuffle phase of the

first reduce wave, and typical shuffle, i.e., the shuffle phase

of the other waves. Since we are looking for measurements

that are invariant to the amount of allocated resources to

the job, we characterize the first shuffle in a special way:

the measurements represent only non-overlapping portions

of the first shuffle with the map stage.

In our earlier work [6], we used a compact job profile

comprised of performance invariants that characterize the

job execution during map, shuffle, and reduce phases via

average and maximum task durations. We demonstrated

that these simple metrics are very stable (within 10-15%)

across different job executions. These earlier results are

encouraging for generating synthetic distributions driven

by these parameters. The question we need to answer is

whether the distributions of task durations (in addition to

their averages and maxima) are also similar for different

job executions? Figure 3 shows the distributions of map,

reduce, and shuffle task durations for two job executions

with different resources. Indeed, the duration distributions of

these two different executions are very similar. To perform

a more representative study, we compared the distributions

(map, shuffle, and reduce task durations) of five different

executions of six applications (these applications are de-

scribed in more detail in Section IV). The Kullback-Leibler

divergence [9], [10] is often used as a standard measure to

compare the difference (or distance) between two probability

distributions P and Q. The KL divergence of a distribution

function Q from the distribution function P is defined as:

D(P ||Q) =
∑

i

P (i) · log
P (i)

Q(i)

We use a symmetric version of KL divergence defined as

D′(P ||Q) =
1

2
(D(P ||Q) + (D(Q||P )

Table I shows the summary of KL divergence for 10 pairwise

comparison of different executions of the same application.

We show the minimum, average and 95-th percentile of

collected KL values.

Application
Map (in seconds) Shuffle (in seconds) Reduce (in seconds)

Min Avg Max Min Avg Max Min Avg Max
WordCount 0.05 0.07 0.09 0.13 0.34 0.72 0.00 0.04 0.07
WikiTrends 0.09 0.10 0.13 0.71 2.44 3.94 0.11 0.25 0.35
Twitter 0.04 0.06 0.08 0.28 0.84 1.39 0.02 0.07 0.12
Sort 0.02 0.09 0.20 0.35 1.69 3.42 0.11 0.22 0.33

TFIDF 0.00 0.02 0.05 0.14 1.39 4.40 0.07 0.27 0.73
Bayes 0.07 0.12 0.15 0.19 0.57 1.14 0.02 0.04 0.07

Table I
KULLBACK-LEIBLER VALUES FOR DIFFERENT APPLICATIONS.

Indeed, these values are very small. On the other hand,

when we compared the runs of different applications, the

(min, avg, max) KL values for map task were (7.34, 11.56,

13.25), for shuffle task were (11.31, 13.05, 13.49) and



reduce task were (9.11, 12.66, 13.30). These values are

much higher than the KL values for executions of the same

application. Thus, the phase duration distributions are very

similar for the same application and different for different

applications. Therefore any one of the executions (as a job

representative) can be used for a future job replay in the

simulation environment when exploring different resource

allocation and scheduling policies.

III. SIMMR DESIGN

Our goal is to build a simulator which is capable of

replaying the scheduling decisions over a large workload

(several months of job logs) in a few minutes on a single

machine. We focus on simulating the job master decisions

and the task/slot allocations across multiple concurrent jobs.

This would aid in understanding the efficacy of our schedul-

ing and resource allocation algorithms. It is a non-goal to

simulate details of the TaskTracker nodes (their hard disks or

network packet transfers) as done by MRPerf [11]. Instead,

we use job profiles (with task durations) to represent the

latencies during different phases of MapReduce processing

in the cluster.

Figure 4 shows the overall design of SimMR. The job

traces can be generated using two methods. Firstly, they can

be obtained from actual jobs executed on the real cluster

using the MRProfiler. Alternatively, the trace can be syn-

thetically generated using Synthetic TraceGen by observing

the statistical properties of the workloads. These collected

traces are stored persistently in the Trace Database. Using

the job trace and a Scheduling policy as input, the Simu-

lator Engine replays the trace by enforcing the scheduling

and resource allocation decisions and generates the output

log. Various scheduling policies, such as FIFO, MinEDF

and MaxEDF that are considered in these paper, can be

enforced by SimMR.

Figure 4. SimMR Design

A. Trace Generation

We can generate job traces using two methods: MR-

Profiler and Synthetic TraceGen. MRProfiler extracts the

job performance metrics by processing the counters and

logs stored at the JobTracker at the end of each job. The

job tracker logs reflect the MapReduce jobs’ processing

in the Hadoop cluster. They faithfully record the detailed

information about the map and reduce tasks’ processing. The

logs also have useful information about the shuffle/sort stage

of each job. Alternatively, we can model the distributions

of the durations based on the statistical properties of the

workloads and generate synthetic traces using Synthetic

TraceGen. This can help evaluate hypothetical workloads

and consider what-if scenarios. We store job traces persis-

tently in a Trace database (for efficient lookup and storage)

using a job template. The job template summarizes the job’s

essential performance characteristics during its execution in

the cluster. We extract the following metrics for each job J :

• (NJ

M
,NJ

R
) - the number of map tasks and reduce tasks

respectively that constitute job J ;
• MapDurations (MJ ): the array consisting of NJ

m

durations of map tasks.

• FirstShuffleDurations (ShJ
1 ): the array representing

durations of non-overlapping part of first shuffle tasks.

• TypicalShuffleDurations (ShJ
typ): the array represent-

ing the durations of the typical shuffle tasks.

• ReduceDurations (RJ ): the array consisting of NJ
R

durations of reduce tasks.

B. Simulator Engine

Simulator Engine is the main component of SimMR

which replays the given job trace. It manages all the discrete

events in simulated time and performs the appropriate action

on each event. It maintains data structures similar to the

Hadoop job master such as a queue of submitted jobs jobQ.

The slot allocation algorithm makes a new decision when a

map or reduce task completes. Since our goal is to be fast

and accurate, we simulate the jobs at the task level and do

not simulate details of the TaskTrackers.

The simulator engine reads the job trace from the trace

database. It communicates with the scheduler policies using

a very narrow interface consisting of the following functions:

1) CHOOSENEXTMAPTASK(jobQ),

2) CHOOSENEXTREDUCETASK(jobQ)

These two functions ask the scheduling policy to return the

jobId of the job whose map (or reduce) task should be

executed next.

The simulator maintains a priority queue Q for seven

event types: job arrivals and departures, map and reduce

task arrivals and departures, and an event signaling the

completion of the map stage. Each event is a triplet

(eventT ime, eventType, jobId) where eventT ime is the

time at which the event will occur in the simulation;

eventType is one of the seven event types; and jobId is

the job index of the job with which the event is associated.

The simulator engine fires events and runs the correspond-

ing event handlers. It tracks the number of completed map

and reduce tasks and the number of free slots. It allocates the

map slots to tasks as dictated by the scheduling policy. When

minMapPercentCompleted percentage of map tasks are

completed (it is the parameter set by the user), it starts



scheduling reduce tasks. We could have started the reduce

tasks directly after the map stage is complete. However,

the shuffle phase of the reduce task occupies a reduce slot

and has to be modeled as such. Hence, we schedule a filler

reduce task of infinite duration and update its duration to the

first shuffle duration when all the map tasks are complete.

This enables accurate modeling of the shuffle phase.

C. Scheduling policies

Different scheduling and resource allocation policies can

be used with SimMR for their evaluation, e.g.:

• FIFO: This policy finds the earliest arriving job that

needs a map (or reduce) task to be executed next.

• MaxEDF: Similar to FIFO, this policy finds the job

with the earliest deadline which has an unscheduled

map (or reduce) task.

• MinEDF: This policy calculates the minimum number

of map and reduce slots that need to be allocated for the

job to be completed within the user specified deadline,

when the job arrives into the system as described later

in Section V. It also keeps track of the number of

running and scheduled map and reduce tasks so that

they are always less than the “wanted” number of slots.

IV. SIMMR EVALUATION

In this section, we evaluate the accuracy and performance

of SimMR, and compare it against the open source, Apache’s

MapReduce simulator, called Mumak [7].

A. Mumak and Rumen

Rumen [8] is a data extraction and analysis tool built

for MapReduce environments. Rumen (similar to our MR-

Profiler) can process job history logs to generate trace

files describing the task durations, the number of bytes

and records read and written, etc. The trace files generated

by Rumen can be replayed by the MapReduce simulator

Mumak [7]. Rumen collects more than 40 properties for

each map/reduce task and all the job counters. On the other

hand, our MRProfiler is selective and stores only the task

durations. However, MRProfiler is easily extendable if we

find that additional job metrics are needed for the simulation.

An overarching design goal for Mumak is that it aims

to execute the exact same MapReduce schedulers “as-is”

without any changes. SimMR, on the other hand, does

not have this objective and interfaces with the scheduling

policy using a very narrow interface. Mumak does not

simulate the running of the actual map/reduce tasks. Similar

to SimMR, Mumak uses a special AllMapsFinished event

generated by the SimulatedJobTracker to trigger the start of

the reduce-phase. However, Mumak models the total runtime

of the reduce task as the summation of the time taken for

completion of all maps and the time taken for an individual

task to complete the reduce phase (without the shuffle).

Thus, Mumak does not model the shuffle phase accurately.

B. Experimental Testbed

We perform our experiments on 66 HP DL145 GL3

machines. Each machine has four AMD 2.39MHz cores, 8

GB RAM and two 160GB hard disks. The machines are set

up in two racks and interconnected with gigabit Ethernet. We

used Hadoop 0.20.2 with two machines for JobTracker and

NameNode, and remaining 64 machines as worker nodes.

Each slave is configured with a single map and reduce slot.

The default blocksize of the file system is set to 64MB and

the replication level is set to 3. We disabled speculation as

it did not lead to any significant improvements.

C. Workload Trace

Our workload consists of a set of representative applica-

tions executed on three different datasets as follows:

1) Word count: This application computes the occur-

rence frequency of each word in 32GB, 40GB and

43GB Wikipedia article history dataset.

2) Sort: The Sort application sorts 16GB, 32GB and

64GB of random data generated using random text

writer in GridMix23.

3) Bayesian classification: We use a step from the

example of Bayesian classification trainer in Mahout4.

The mapper extracts features from the input corpus

and outputs the labels along with a normalized count

of the labels. The reduce performs a simple addition of

the counts and is also used as the combiner. The input

dataset is the same Wikipedia article history dataset,

except the chunks are split at page boundaries.

4) TF-IDF: The Term Frequency - Inverse Document

Frequency application is often used in information

retrieval and text mining. It is a statistical measure

to evaluate how important a word is to a document.

We used the TF-IDF example from Mahout and used

the same Wikipedia articles history dataset.

5) WikiTrends: We use the data from Trending Topics

(TT)5: Wikipedia article traffic logs that were collected

(and compressed) every hour in April, May and June

2010. Our MapReduce application counts the number

of times each article has been visited.

6) Twitter: This application uses the 12GB, 18GB and

25GB twitter dataset created by Kwak et. al. [12]

containing an edgelist of twitter userids. Each edge

(i, j) means that user i follows user j. The Twitter

application counts the number of asymmetric links in

the dataset, that is, (i, j) ∈ E, but (j, i) /∈ E.

D. SimMR Accuracy

First, we evaluate the accuracy of SimMR and compare it

against Mumak using the FIFO scheduler (this scheduler is

3http://hadoop.apache.org/mapreduce/docs/current/gridmix.html
4http://http://mahout.apache.org/
5http://trendingtopics.org
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Figure 5. Simulator accuracy across different scheduling policies. The numbers in the parentheses above the bars represent the actual job completion
time in seconds.

available in both simulators). We collected a real workload

trace consisting of three executions of the six applications.

We replay this trace using SimMR and Mumak. Figure 5(a)

shows a comparison of the duration of the simulated job with

respect to the real job duration across different applications.

We observe that SimMR faithfully replays the traces with

less than 2.7% average (6.6% maximum) error across all

the applications. On the other hand, Mumak underestimates

the job completion time and has 37% average (51.7%
maximum) error while replaying the same traces.

Additionally, we validate the accuracy of SimMR by

simulating MinEDF and MaxEDF schedulers (discussed in

more detail in the next Section V) and comparing the sim-

ulation results to the testbed runs respectively. We collected

a real workload trace consisting of three executions of the

six applications using both the schedulers. Figures 5(b)

and 5(c) show a comparison of the duration of the simulated

job with respect to the real job duration across different

applications. We observe that SimMR replays the traces with

less than 3.7% average (8.6% maximum) error across all the

applications for MaxEDF and less than 1.1% average (2.7%

maximum) error for MinEDF.

In summary, for considered diverse applications and dif-

ferent schedulers, SimMR replays traces with high fidelity.

E. SimMR Performance

We collected traces from 1148 jobs run on our 66 node

cluster during 6 months of November 2010 to April 2011.

We created a single trace file (without inactivity periods) and

replayed it using SimMR and Mumak. These jobs would

take about a week (152 hours) if they were to be executed

serially. Figure 6 shows the performance comparison of the

two simulators. Note, that Y-axes are in log scale. SimMR

replays these jobs in 1.5 seconds, while Mumak takes 680
seconds to replay the same set of jobs. Thus, SimMR is more

than 450 times faster than Mumak in simulating these traces.

On closer inspection, we observe that Mumak simulates the

TaskTrackers and the heartbeats between them, which leads

to greater number of simulated events and computation.

V. CASE STUDY: COMPARING TWO SCHEDULERS

In this section, we introduce two different deadline-

based schedulers and demonstrate how to use SimMR for
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Figure 6. Performance comparison of simulators.

comparing them. Originally, Hadoop employed a simple

FIFO job scheduler for efficient batch processing. Later, the

Capacity scheduler [2] and Hadoop Fair Scheduler [3] were

introduced for enabling multiple concurrent job executions

on the same Hadoop cluster. However, these schedulers do

not aim at a tailored control of allocated resources to achieve

the application performance goals, e.g., the job completion

time within a given (soft) deadline.

A. Deadline-based Scheduling: MaxEDF and MinEDF

The deadline-based scheduler should answer two inter-

related questions: which job should the slots be allocated

and how many slots should be allocated to the job? In this

work, we consider two policies: MaxEDF and MinEDF.

Both schedulers execute the Earliest Deadline First algo-

rithm (EDF) for job ordering since this real-time scheduling

is known to maximize the utility function of all the users.

The difference comes in the amount of resources allocated

to the job by these schedulers.

The MaxEDF scheduler aims to allocate the maximum

available number of map (or reduce) slots for each job in

the queue (i.e., apart from the EDF job ordering, the resource

allocation per job is the same as under the FIFO policy). In

such a way, the job might finish much earlier than the given

deadline. Intuitively, such an approach optimizes pipelining

of map and reduce stages of different jobs as follows. Once

a map stage of a first job is completed and it proceeds to the

reduce stage execution, the next job could start processing

its map stage, etc. Typically, such a pipelined execution

might result in the best makespan (completion time) for

a given set of jobs. However, the possible drawback of

the proposed schema might be that in many cases, it is



impossible to preempt the already allocated resources to

the earlier job (without killing its currently running tasks)

to provide resources for a newly arrived job with a more

“urgent” deadline.

The MinEDF scheduler allocates the minimal amount of

map and reduce slots that would be required for meeting

a given job deadline. So, this approach aims to allocate

the minimum sufficient resources to the job for completing

within the deadline and leaves the remaining, spare resources

to the next arriving job. This minimal amount of resources

is computed with a specially designed performance model

introduced in [6] and briefly described below.

The proposed MapReduce performance model evaluates

lower and upper bounds on the job completion time. It

is based on a general model for computing performance

bounds on a makespan of a given set of n tasks that are

processed by k servers (e.g., n map tasks are processed

by k slots in MapReduce environment). Let T1, T2, . . . , Tn

be the duration of n tasks in a given set. Let k be the

number of slots that can each execute one task at a time.

The assignment of tasks to slots is done using an online,

greedy algorithm: assign each task to the slot with the

earliest finishing time. Let avg and max be the average

and maximum duration of the n tasks respectively. Then the

makespan of a greedy task assignment is at least (n ·avg)/k
and at most (n− 1) · avg/k+max. These lower and upper

bounds on the completion time can be easily computed if

we know the average and maximum durations of the set of

tasks and the number of allocated slots.

As motivated by the above model, in order to approximate

the overall completion time of a MapReduce job, we need

to estimate the average and maximum task durations during

different execution phases of the job, i.e., map, shuffle/sort,

and reduce phases. The MRProfiler (described in Section III)

creates the detailed job template which characterizes the

task durations during all the phases of the job execution.

This data is used to compute average and maximum task

durations in different phases, and then to compute lower

and upper bounds for each execution phase of the job. By

applying the bounds model, we can express the estimates for

job completion time (lower bound T low
J and upper bound

Tup
J ) as a function of map/reduce tasks (NJ

M , NJ
R) and the

allocated map/reduce slots (SJ
M , SJ

R) using the following

equation form:

T low
J = Alow

J ·
NJ

M

SJ
M

+Blow
J ·

NJ
R

SJ
R

+ Clow
J (1)

The equation for Tup
J can be written similarly (for details,

see [6]). Typically, the average of lower and upper bounds

is a good approximation of the job completion time.

Note, that once we have a technique for predicting the job

completion time, it also can be used for solving the inverse

problem: finding the appropriate number of map and reduce

slots that could support a given job deadline. Equation 1

yields a hyperbola if SJ
M and SJ

R are the variables. All

integral points on this hyperbola are possible allocations

of map and reduce slots which result in meeting the same

deadline. There is a point where the sum of the required map

and reduce slots is minimized. We calculate this minima on

the curve using Lagrange’s multipliers [6], since we would

like to conserve (minimize) the number of map and reduce

slots required for the adequate resource allocation per job.

In such a way, the MinEDF scheduler allocates the

minimal amount of map and reduce slots that would be

needed for meeting a given job deadline.

In the simulations and the respective testbed evaluations,

we will assess the quality of scheduling and resource allo-

cation decisions by observing the following metric. Let the

execution consist of a given set of n jobs J1, J2, . . . , Jn with

corresponding deadlines D1, D2, . . . , Dn. Let these jobs be

completed at times T1, T2, . . . , Tn, and let Θ be the set

of all jobs whose deadline has been exceeded. Then we

compute the following utility function:
∑

J∈Θ

TJ−DJ

DJ
This

function denotes the sum of relative deadlines exceeded. The

scheduling and resource allocation policy that minimizes this

value is a better candidate for a deadline-based scheduler.

To compare performance of MaxEDF and MinEDF, we

analyze these policies with our simulator SimMR and the

following workloads:

1) A real testbed trace comprised of multiple job runs in

our 66-node cluster, and

2) A synthetic trace generated with statistical distribu-

tions that characterize the Facebook workload.

B. Replaying Real Traces with SimMR

For the real workload trace, we use a mix of the six

realistic applications with different input dataset sizes as

introduced and described in Section IV-C. We run these

applications with three different datasets in our 66-nodes

Hadoop testbed, and then by using MRProfiler, create the

replayable job traces for SimMR. We generate an equally

probable random permutation of arrival of these jobs and

assume that the inter-arrival time of the jobs is exponential.

The job deadline (which is relative to the job completion

time) is set to be uniformly distributed in the following

interval [TJ , df · TJ ], where TJ is the completion time of

job J given all the cluster resources (i.e., maximum amount

of map/reduce slots that job can utilize) and where df ≥ 1
is a given deadline factor.

We run the simulation 400 times and report the average

deadline exceeded metric while varying the mean of the

exponential inter arrival times and the deadline factor as

shown in Figure V-A.

When the deadline factor is set to 1, i.e., df = 1, then
the performance of MinEDF and MaxEDF policies coincide

as shown in Figure 7(a), because the maximum amount of

map/reduce slots that job can utilize should be allocated

under both policies. The relative deadline exceeded metric
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Figure 7. Simulating MaxEDF and MinEDF with Real Testbed Workload.
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Figure 8. Simulating MaxEDF and MinEDF with Synthetic Facebook Workload.

decreases as the arrival rate of jobs decreases and a larger

fraction of them is capable of meeting the targeted deadline.

There is a slight “bump” around the mean arrival time of

100s. On closer inspection we found that this is caused

because the scheduler does not pre-empt tasks themselves.

So, if a decision to allocate resources to a task has been

made the slot is not available for allocation to the earlier

deadline job which just arrived.

When the deadlines are relaxed by a factor of 1.5,

MinEDF allocates the minimum required slots and shares the

cluster resources among multiple jobs more efficiently. This

leads to a smaller value of relative deadline exceeded metric

as shown in Figure 7(b). The performance gap between

MinEDF and MaxEDF policies increases when the deadline

is further relaxed by a factor of 3 as shown in Figure 7(c).

In summary, for the realistic testbed workload and a

variety of studied parameters, the MinEDF scheduler shows

superior results compared to the MaxEDF policy.

C. Replaying Synthetically Generated Facebook Trace

In this section, we extend the performance comparison

of MinEDF and MaxEDF policies by using SimMR and

a set of synthetically generated traces. Zaharia et. al. [3]

provide a detailed description about MapReduce jobs in

production at Facebook in October 2009 (we use Figure 1

and Table 3 from [3]). We extract the CDF from the plot

of map and reduce durations in Figure 1 of [3], and then

we try to identify the statistical distributions which best fits

the provided plot. We fit more than 60 distributions such

as Weibull, LogNormal, Pearson, Exponential, Gamma, etc.

using StatAssist6. Our analysis shows that the LogNormal

distribution fits best the provided CDF of the Facebook

task duration distribution. LN(9.9511, 1.6764) fits the map

6http://www.mathwave.com/help/easyfit/html/tools/assist.html

task CDF with a Kolmogorov-Smirnov value of 0.1056,

where LN(x;µ, σ) = 1

xσ
√
2π

e−
(ln x−µ)2

2σ2 is the Log-normal

distribution with mean µ and variance σ. For the reduce

task duration, LN(12.375, 1.6262) fits with a Kolmogorov-

Smirnov value of 0.0451.

In our Synthetic TraceGen module, we use these re-

spective LogNormal distributions to generate a synthetic

workload that is similar to a reported Facebook workload.

Figure 8 shows the SimMR’s outcome of replaying the

generated synthetic workloads with MinEDF and MaxEDF

policies. The performance results are consistent with the out-

come of testbed traces’ simulations: the MinEDF scheduler

significantly outperforms the MaxEDF policy.

VI. RELATED WORK

While MapReduce is a relatively new programming

paradigm, there are a few on-going efforts on developing

simulation tools for MapReduce environments.

The designers of MRPerf [11] aim to provide a fine-

grained simulation of MapReduce setups throughout dif-

ferent phases. To model inter- and intra rack task com-

munications over network as well as to accurately model

the network behavior, MRPerf is based on the widely-used

ns-2 network simulator [13]. The authors are interested in

modeling different cluster topologies and in their impact

on the MapReduce job performance. For map/reduce task

modeling, MRPerf creates a number of simulated nodes,

where each node might have several processors and a

single disk (it is the MRPerf limitation). There are a few

simplifying assumptions about the application behavior: that

a job has simple map and reduce tasks with compute time

requirements that are proportional to the data size but not

the content (or type of processing) of the data.



In our work, we focus on simulating the job master deci-

sions and the task/slot allocations across multiple jobs. We

do not simulate details of the TaskTrackers (their hard disks

or network packet transfers) as done by MRPerf. In spite

of this, our approach accurately reflects the job processing

because of our profiling technique to represent job latencies

during different phases of MapReduce processing in the

cluster. Our approach does not have many of MRPerf’s

limitations. Moreover, it is very fast compared to MRPerf

which deals with network-packet level simulations.

Another effort presents a simulator [14] that utilizes Sim-

Java [15] and GridSim [16]. This tool is in very early stages

of development. In the short paper, authors describe their

goals to build a simulator for assessing a future application

design (i.e., the applications that do not yet exist) rather than

replaying traces of already existing applications. The authors

are interested is evaluating the application scalability and

parameter/configuration tuning.

Cardona et al. [17] discuss how to build a federated

MapReduce environment on top of different Hadoop clus-

ters. There are quite a few issues that need to be reconsidered

in Hadoop while building such a system. One of the issues is

that the original Hadoop assumes a homogeneous environ-

ment, and there are a few internal mechanisms that utilize

this assumption. The authors discuss the modifications to

Hadoop that are useful to support heterogeneity. To justify

the set of proposed modifications the authors design a

simulation environment based on GridSim [16].

The closest approach to our SimMR is the open source,

Apache’s MapReduce simulator, called Mumak [7]. This

simulator replays traces collected with a log processing tool,

called Rumen [8]. We discussed Mumak implementation

details in Section IV. The main difference between Mumak

and SimMR is that Mumak omits modeling the shuffle/sort

phase. As we have shown it could lead to inaccurate results.

We believe that the modeling approach undertaken in our

simulator SimMR could be adopted by Mumak.

VII. CONCLUSION

To become enterprise-ready, the Hadoop open-source

stack needs to be enhanced with new tools required in

enterprise environments to support robust performance man-

agement. Due to lack of performance guarantees for job

completion times when executed in shared environments

(while many enterprise applications require such time guar-

antees), there is a need for new workload management

strategies and supporting tools. In this work, we introduce

a simulation environment SimMR that can assist system

administrators in performance analysis and evaluation of

new resource allocation and job scheduling algorithms in

large-scale distributed systems such as Hadoop and other

performance related tasks in MapReduce cluster manage-

ment. The proposed SimMR simulator is accurate and fast:

it can simulate a complex multi-hour workload in less than a

second. It is aimed at helping Hadoop administrators in their

daily tasks: SimMR can quickly replay production cluster

workloads with different scenarios of interest, assess various

what-if questions, and help avoiding error-prone decisions.

In our future work, we plan to design a trace-scaling

technique where from the trace of a job execution on a

small dataset, we could generate a trace that represents

job processing of a larger dataset. We intend to analyze

how SimMR can incorporate other useful job metrics and

be integrated with complementary simulation tools, e.g.,

network simulators for modeling the shuffle phase.
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