

Keyword(s):

Abstract:



Routing Optimization for Ensemble Routing

Wenfei Wu, Yoshio Turner, Michael Schlansker

HP Laboratories
HPL-2011-125

Routing VLAN placement; Linear programming traffic splitting

The Ensemble Routing architecture (presented at ANCS 2010) implements multipath routing for data
center networks. Rather than managing individual flows, ensemble routing manages flows in groups or
ensembles to provide scalable responsive management using simple hardware. Ensemble Routing
combines: routing VLANs that define a set of diverse paths through complex networks, and load balancing
algorithms to split traffic among those VLANS and optimize traffic flow. This extended abstract describes
improved algorithms for the formation of routing VLANs and traffic load-balancing for Ensemble routing.
The VLAN formation algorithms are improved by incorporating traffic flow estimates into the VLAN
formation heuristics. The previous load balancing algorithm using a greedy heuristic is replaced by linear
programming that determines optimal traffic splitting among VLANs. Simulations show that these
mechanisms significantly enhance performance.

External Posting Date: August 21, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: August 21, 2011 [Fulltext]

Copyright 2011 Hewlett-Packard Development Company, L.P.

Routing Optimization for Ensemble Routing
Wenfei Wu1

University of Wisconsin-Madison
wenfeiwu@cs.wisc.edu

Yoshio Turner
HP labs

yoshio_turner@hp.com

Mike Schlansker
HP labs

mike_schlansker@hp.com

ABSTRACT

The Ensemble Routing[1] architecture (presented at ANCS 2010)

implements multipath routing for data center networks. Rather

than managing individual flows, ensemble routing manages flows

in groups or ensembles to provide scalable responsive

management using simple hardware. Ensemble Routing

combines: routing VLANs that define a set of diverse paths

through complex networks, and load balancing algorithms to split

traffic among those VLANS and optimize traffic flow. This

extended abstract describes improved algorithms for the formation

of routing VLANs and traffic load-balancing for Ensemble

routing. The VLAN formation algorithms are improved by

incorporating traffic flow estimates into the VLAN formation

heuristics. The previous load balancing algorithm using a greedy

heuristic is replaced by linear programming that determines

optimal traffic splitting among VLANs. Simulations show that

these mechanisms significantly enhance performance. 1

Categories and Subject Descriptors

C.2.1 Network Architecture and Design

General Terms

Algorithms, Management, Performance, Design

Keywords

Routing VLAN placement, Linear programming traffic splitting.

1. INTRODUCTION
Data center networks are increasingly growing to very large scale.

Multiple paths are needed through these networks to maximize

bisection bandwidth and guarantee efficient all-to-all traffic flow.

A number of previous network architectures have been developed

for multipath routing. For static or random routing[2] protocols

such as Equal Cost Multiple Path (ECMP), potential conflicts may

cause congestion on certain link. In dynamic routing approaches

such as Hedera[3], maintaining per flow state for millions of

flows leads to slow response to changing traffic.

Ensemble routing networks are constructed using enhanced access

switches at the edge of the network that load balance ingress

traffic, and core switches in the interior of the network that carry

standard Ethernet traffic. Routing VLANs are defined so that each

VLAN reaches all access switches. To achieve scalability, all

flows are hashed into several routing classes. Access switches

forward all packets in a routing class to one of the VLANs. The

access switches also measure the traffic on each VLAN and

routing class. A logically central controller periodically reads the

measurements and determines which routing VLAN to use for

each routing class in the next period, re-programming the routing

class to VLAN mapping at each access switch.

In the original Ensemble Routing work[1], routing VLANs were

constructed by placing seeds in the network and growing each

seed into a tree until all access switches are reached by each tree.

1 This work is performed when Wenfei is an intern in HP labs.

The VLAN growing algorithm favors assigning links that are used

by fewer previously placed VLANs. For load balancing, the

routing classes are considered one by one and assigned to VLANs

using a greedy heuristic that favors VLANs using network links

with the least traffic.

We significantly improve these two policies. For VLAN

placement, our improved approach better takes into consideration

the expected traffic inside each VLAN when placing VLANs. For

load balancing, we formalize the problem as a linear programming

problem, and use an LP tool to get the optimal solution.

Simulation results demonstrate that these new approaches lead to

lower load on network links.

2. VLAN Placement

2.1 General Topologies
The original routing VLAN placement algorithm for general

topologies places several seeds in the network, and grows each

seed into a tree until all access switches are reached. A VLAN

counter for each link records how many VLANs use this link.

VLANs are grown breadth-first along shortest hop paths from the

seed to each access switch; if two links reach the same node, the

link with smaller VLAN count is chosen. After a VLAN is placed,

the used links will increase the VLAN counter by 1.

Our improved heuristic still places seeds in the network and uses

minimum hop count to grow each VLAN (Dijkstra). The

difference is that when the new algorithm encounters the choice of

two paths that reach the same node, it prefers the path with less

traffic instead of the lowest VLAN count.

The traffic in each VLAN is estimated as follows. We consider

two routing policies, symmetric and asymmetric. Symmetric

means that each access switch uses the same routing class-VLAN

mapping. Asymmetric allows each access switch to use a unique

routing class-VLAN mapping. For placement, we further assume

uniform all-to-all traffic among all servers. Then we derive for

symmetric/asymmetric the resulting traffic that will appear on

each routing VLAN. That is, for symmetric, each VLAN is

assumed to carry all-to-all traffic. For asymmetric, all traffic on a

VLAN is assumed to originate from the seed switch with uniform

destination distribution to servers not connected to the seed switch

(shortest path).

We replace the VLAN counter for each link with a flow counter.

After a VLAN is built, each used link adds the incremental flow

count to the link flow counter. The algorithm also maintains a

flow counter for each node. This flow counter records the

maximum link load on the path from the VLAN seed to that node.

When the algorithm can choose two paths to the same node, it

uses the node flow counter to avoid the need to traverse the two

entire paths to find the least loaded path.

2.2 HyperX Topology
For the HyperX topology, we propose an optimally balanced

VLAN placement. The HyperX is a generalized hypercube. To

grow VLANs, multiple seeds are placed at each switch. The

VLANs grown from each seed at a particular switch use shortest

VLAN Placement

for each seed si

 Vi=BuildVLAN (si)
 AddFlowCountOnEachLink (Vi)

BuildVLAN(nodeIndex s) //rooted at s

bool reached[n]={false};
double distance[n]={INFINITE};

int previous[n]={NULL};

int flowCount[n]={0};
//initialization

reached[s]=true; distance[s]=0;

//Dijkstra
while(exist unreached access switch)

 k=Find nearest unreached node to root

 reached[k]=true;
 UpdateNeighbor (k)

UpdateNeighbor (nodeIndex k)

for each node i in node k’s neighbor set

 int newPathFC=min(flowCount[k],

 FlowCount(link(k,i)));

 if (distance[k] + 1 < distance[i])
 previous[i] = k;

 distance[i] = distance[k] + 1;

 flowCount[i]= newPathFC
 else if (distance[k]+1==distance[i])

 if(newPathFC<flowCount[i])

 flowCount[i]=newPathFC;
 previous[i]=k

hop paths, and each of these VLANs traverses the dimensions in a

different order, such that all dimensions and links are uniformly

covered by the resulting trees.

Consider, for example,

a 3-dimension HyperX

(with dimension X, Y,

Z). For each node, we

could build 6 VLANs

by extending the three

dimensions in sequence

XYZ, XZY, YXZ,

YZX, ZXY, ZYX; so

that all dimensions are

used uniformly and all

shortest paths are

utilized. We can also

build only 3 VLANs,

like XYZ, YZX, ZXY;

here each dimension

and physical link is still

used uniformly, but not

all shortest paths are

supported. For HyperX,

this extend-dimension

algorithm gives the

optimum balance solu-

tion.

3. Traffic Splitting
Once the VLAN placement is done, the central controller will

split the traffic among all VLANs to balance link load for uniform

or non-uniform traffic. The controller reads the measured traffic

matrix (not necessarily uniform traffic) from each access switch,

uses linear programming to get the best traffic splitting for each

VLAN, and then sends the new routing class-VLAN mapping to

access switches. We plan to explore the use of this linear

programming for both online and offline load-balancing.

Access switches are indexed from 0 to n-1 and denoted by s0, …,

sn-1; links are indexed from 0 to m-1; an order pair <si, sj> is

indexed by i×n+j, denoted by pi×n+j. Then traffic matrix can be

denoted by a vector T=(t0, t1, …, tn×n-1), where ti is the traffic

between pair pi. The fraction of traffic assigned to the k VLANs is

denoted by f0, f1… fk-1, where Σ(i) fi=1.

For each VLAN l, we use a matrix Bl to describe its path

information. The columns denote links and the rows denote pairs.

For each pair pi, if its path includes the j-th link, we set bij=1;

otherwise bij=0.

The traffic in VLAN i is given by T×fi. So T×fi×Bi is the traffic

on each link introduced by VLAN i. We use aijfi to denote traffic

on link j in VLAN i. So the total traffic on a link j is lj=Σ(i)aijfi

Our goal is to minimize the load on the most-loaded link, i.e. to

minimize u=max(l0, l1, …, lm-1). This min-max problem is

equivalent to a linear programming problem:

min u, s.t.

L=AF, L = (l0, l1, …, lm-1), F = (f0, f1, …, fk-1),

u≥l0, u≥l1, …, u≥lm-1

After the traffic portion to each VLAN is known, the central

controller will map a number of routing class to that VLAN. The

portion of routing classes to a certain VLAN is approximately

equal to the portion given by the LP solver.

4. Simulation

4.1 VLAN placement
We compare link loads using the original VLAN placement

algorithm (link-VLAN heuristic), our algorithm (link-load

heuristic) and extend-dimension algorithm(Ext-Dim). Following

table shows min,max,average link loads under uniform traffic

(matrix of all 1’s) with equal traffic splitting across VLANs.

HyperX Symmetric Asymmetric

5x5x5 Max Min Aver Max Min Aver

LVLANHeu 74.2 24.3 46.8 44.3 10.3 25

LLoadHeu 55.4 19.3 46.8 31.3 18.3 25

Ext-Dim 45.9 45.9 45.9 25 25 25

10x10 Max Min Aver Max Min Aver

LVLANHeu 25.0 10.4 19.1 16.5 3.5 10

LLoadHeu 23.7 6.4 19.1 10 10 10

Ext-Dim 18.9 18.9 18.9 10 10 10

The results show that our new heuristic reduces the max link load

by 10%. In 2-D HyperX, our algorithm matches the optimum Ext-

Dim solution for asymmetric routing.

4.2 Traffic Split
We use HyperX10x10, symmetric flow pattern, and uniform

traffic (matrix all 1’s). VLANs are derived using our new

heuristic VLAN placement. The traffic splitting algorithm leads to

the following link usage:

HyperX Symmetric

5x5x5 Max Min Aver

Equ-Spt 55.4 19.3 46.8

LP 48.7 19.3 46.8

10x10 Max Min Aver

Equ-Spt 23.7 6.4 19.1

LP 20.54 6.3 19.1

The results show that our LP solver reduces the max load by at

least 10% compared to naïve equal splitting across all VLANs.

5. Conclusion and Next Steps
Our improved VLAN placement and traffic splitting algorithms

appear promising. We plan to extend this work: examining non-

uniform topologies (e.g. after link/switch failure) and traffic

patterns, and adding the algorithms to the Open vSwitch testbed

implementation of Ensemble Routing.

6. References
[1] Schlansker, M. et al. Ensemble Routing For Datacenter

Networks. ANCS 2010.

[2] Albert Greenberg, et al. VL2: A Scalable and Flexible Data

Center Network. SIGCOMM 2009

[3] Mohammad Al-Fares, et al. Hedera: Dynamic Flow

Scheduling for Data Center Networks. NSDI 2010

