

Keyword(s):

Abstract:



Ally: OS-Transparent Packet Inspection using Sequestered Cores

Jen-Cheng Huang, Matteo Monchiero, Yoshio Turner, Hsien-Hsin S. Lee

HP Laboratories
HPL-2011-124

multicore; packet inspection; isolation; computer architecture; multicore partitioning

This paper presents Ally, a server platform architecture that supports compute-intensive management
services on multicore processors. Ally introduces simple hardware mechanisms to sequester cores to run a
separate software environment dedicated to management tasks, including packet processing software
appliances (e.g. for Deep Packet Inspection, DPI) with efficient mechanisms to safely and transparently
intercept network packets. Ally enables distributed deployment of compute-intensive management services
throughout a datacenter. Importantly, it uniquely allows these services to be deployed independent of the
arbitrary OSs and/or hypervisor that users may choose to run on the remaining cores, with hardware
isolation preventing the host environment from tampering with the management environment. Experiments
using full system emulation and a Linux-based prototype validate Ally functionality and demonstrate low
overhead packet interception; e.g., using Ally to host the well-known Snort packet inspection software
incurs less overhead than deploying Snort as a Xen virtual machine appliance, resulting in up to 2x
improvement in throughput for some workloads.

External Posting Date: August 21, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: August 21, 2011 [Fulltext]

Copyright 2011 Hewlett-Packard Development Company, L.P.

Ally: OS-Transparent Packet Inspection Using Sequestered
Cores

Jen-Cheng Huang* Matteo Monchiero† Yoshio Turner‡ Hsien-Hsin S. Lee*

*Georgia Institute of Technology †Intel Labs ‡HP Labs
tommy24,leehs@gatech.edu matteo.monchiero@intel.com yoshio.turner@hp.com

ABSTRACT
This paper presents Ally, a server platform architecture
that supports compute-intensive management services on
multicore processors. Ally introduces simple hardware
mechanisms to sequester cores to run a separate software en-
vironment dedicated to management tasks, including packet
processing software appliances (e.g. for Deep Packet In-
spection, DPI) with efficient mechanisms to safely and
transparently intercept network packets. Ally enables dis-
tributed deployment of compute-intensive management ser-
vices throughout a datacenter. Importantly, it uniquely
allows these services to be deployed independent of the
arbitrary OSs and/or hypervisor that users may choose to run
on the remaining cores, with hardware isolation preventing
the host environment from tampering with the management
environment. Experiments using full system emulation
and a Linux-based prototype validate Ally functionality and
demonstrate low overhead packet interception; e.g., using
Ally to host the well-known Snort packet inspection software
incurs less overhead than deploying Snort as a Xen virtual
machine appliance, resulting in up to 2x improvement in
throughput for some workloads.

1. INTRODUCTION
Packet processing services like Deep Packet Inspec-

tion (DPI) are used in datacenters for functions in-
cluding intrusion detection, content insertion, perfor-
mance monitoring, traffic classification, and flow man-
agement [1]. These services are provided by specialized
appliances deployed at the boundary (e.g. wide-area
network gateway) between the datacenter and the ex-
ternal network to process traffic entering or exiting the
datacenter.

This approach is poorly suited to processing traffic
that remains local to the datacenter, even though local
traffic is growing in importance. To exploit economies
of scale, modern datacenters consolidate many inter-
connected applications and services. This trend is clear
for both private Enterprise datacenters and public cloud
computing datacenters, which support a fast-changing
multitude of mutually untrusted tenants. These models

call for packet processing services to be flexibly placed
on-demand throughout a datacenter rather than just
at the external boundary. An attractive approach
would co-locate packet processing with user applications
throughout a datacenter [2], enabling packet processing
services to leverage the abundant compute and memory
resources on commodity servers.

This paper presents Ally, a server architecture that
provides the basic building block for distributed packet
processing services. Ally adds hardware partitioning to
a server, enabling it to run two parallel and independent
software stacks – one stack for user applications and OS
or hypervisor, and a second software stack for packet
processing. Ally also adds processor support for OS-
transparent network packet interception by the packet
processing stack. Finally, Ally reuses the existing man-
agement network interface on the server for datacenter
administrators to deploy and control packet processing
services.

As we enter the era of processors with a large number
of inexpensive cores, like Intel Many Integrated Core
(MIC) architecture [3] which integrates more than 50
lightweight cores, the approach of Ally is to partition a
processor into a “privileged” set of cores that execute
packet processing services, and an “unprivileged” set
of cores that execute user applications and operating
systems. Completely separate software stacks can run
in parallel in the two partitions. Ally’s hardware
extensions are intentionally minimal. They are invoked
only on low frequency I/O actions (interrupts and
memory-mapped I/O accesses), with no impact on other
computation and negligible impact on processor clock
speed and power consumption.

Using multicore partitioning for packet processing has
important advantages over the alternative approaches
of enhancing NICs or deploying packet processing in
hypervisor-hosted virtual machines (VMs). Compared
to enhancing the NIC, using CPU cores allows new func-
tionality to be provided in software without hardware
changes, and can leverage the large capacity of server
memory and the high performance of modern proces-
sors. General-purpose cores may also be used in future
processors to control on-chip hardware accelerators like

1

GPUs or regular expression engines. Moreover, a CPU-
based approach is not limited to packet processing
but could also support management services related
to storage, power, etc. Compared to using VMs for
isolation, Ally’s hardware partitioning may be more
reliable by avoiding resource and fate sharing, and
by presenting a narrower attack surface than the full
set of hypercall APIs. Hardware partitioning also
preserves existing software generality instead of forcing
datacenters to use a common hypervisor on every server.
Ally preserves and extends existing server management
interfaces and capabilities and supports both virtualized
and non-virtualized OSs.

We carried out functional validation of Ally hardware
extensions using the QEMU [4] full system emulator.
To evaluate Ally’s performance, we built a software
prototype that modifies the Linux kernel to emulate
Ally hardware functions. Using the well-known Snort
packet inspection software, our experimental results
show that Ally+Snort has acceptably low overhead for
packet interception. For the workloads we studied, Ally
achieves from 56% to 100% higher throughput than a
system that uses a Xen hypervisor driver domain to
transparently intercept and inspect packets.

The rest of the paper is organized as follows. Sec-
tion 2 describes our assumptions about the platform
architecture and the NIC-OS model. Section 3 de-
scribes the trust and threat model motivating the design
of Ally. Section 4 describes the Ally architecture,
including core sequestering, memory protection, and
packet interception mechanisms. Section 5 presents the
experimental evaluation. Section 6 discusses related
work, and Section 7 concludes.

2. ASSUMPTIONS
This section describes our baseline architecture and

reviews the interaction between an OS and a NIC.

2.1 Platform Architecture
Figure 1 is a simplified block diagram of a generic

platform architecture, built around a multicore proces-
sor with many cores sharing a Last Level Cache (LLC).
Cores are logically grouped into a privileged partition
and an unprivileged partition. Privileged cores run
management applications, while unprivileged cores run
OS/hypervisor and user applications. As we focus on
DPI as a primary use-case, we often refer to the cores
in the privileged partition as DPI cores and the cores
in the unprivileged partition as OS cores.

Each core has a Memory Management Unit (MMU)
for virtual-to-physical address translation, and a local
interrupt controller (Local APIC). An integrated North-
bridge has a Memory (DRAM) Controller, PCIe I/O
controller, Interrupt Unit to route interrupt signals to
the proper Local APIC from the IOAPIC or through

Figure 1: Target platform architecture

Message Signaled Interupts (MSI), I/O Memory Man-
agement Unit (IOMMU), and a point-to-point high
speed link (e.g., Intel DMI) connecting to a Platform
Controller Hub (PCH).

A service processor (e.g. Intel iAMT [5] or HP
iLO [6]) is used to manage the platform. The service
processor interfaces to the CPU via the PCH. The
service processor has a a dedicated network interface
typically attached to a dedicated management network.
With Ally, datacenter administrators use this manage-
ment network to deploy packet processing services in
the privileged partition.

2.2 OS-NIC Interaction
We describe OS-NIC interaction using the popular

Intel Pro/1000 NIC. The same description applies to
most modern NICs with only minor differences.

The NIC has transmit/receive buffers and a set
of device registers mapped into the system memory
address space. One register points to a transmit
descriptor queue and another one to a receive descriptor
queue. Both queues reside in the host main memory.
Each descriptor contains a pointer to packet data that
must be transmitted or to receive buffers. For each
queue, memory-mapped Head Pointer and Tail Pointer
registers record the head and tail position in the queue
as buffers are posted and as packets are received and
transmitted.

The OS advances the Tail Pointer to notify the
NIC that some descriptors have been posted and await
being consumed (either transmitted or received). The
NIC uses Direct Memory Access (DMA) to transfer
descriptors and packets between the NIC buffers and
the main memory. Once a transfer has completed, the
NIC updates the Head Pointer and raises a completion
interrupt. Most NICs use interrupt coalesce timers
to reduce interrupt frequency and associated software

2

processing overheads by waiting for a batch of packet
I/Os to be completed before signaling an interrupt.
The OS may determine which I/Os have completed by
reading the Head Pointer or by inspecting the status of
the queued descriptors.

3. TRUST AND THREAT MODEL
The trusted entities of an Ally-based system are

the hardware, the firmware (BIOS), and the software
running on the privileged (DPI) cores. We assume that
the BIOS FLASH chips include hardware protection
against re-writing by OSs. For maximum security,
the firmware and the privileged cores’ software are not
directly exposed to the external network. Instead, a
dedicated management channel is provided to configure
the BIOS and to deploy services on the DPI cores,
including platform-specific device drivers. This chan-
nel uses a distinct network interface connected to a
management network via a service processor, as shown
in Figure 1. Additionally, the DPI cores can use this
channel to raise management alerts when suspicious
traffic is detected. Each hardware extension in Ally
is controlled through memory-mapped I/O (MMIO)
configuration registers accessible only to the privileged
cores and exposed to the datacenter via the management
channel.

Ally can be used to deploy a DPI engine to pro-
tect against transmission and reception of malicious
network traffic for the workloads running on unpriv-
ileged cores. As described in Section 4.3, Ally offers
configurable mechanisms for packet interception. This
allows administrators to select the degree of protection
provided depending on the perceived threat level of
the workloads running in the unprivileged domain,
allowing a configurable trade-off between protection and
cost/performance.

Denial of service attacks where software on unprivi-
leged cores guesses the Local APIC ID of the DPI-Core
and generates corresponding interrupts can be avoided
by having the DPI cores configure their Interrupt
Descriptor Tables to ignore all interrupts from non-
authorized devices.

4. ARCHITECTURE
Ally provides an ensemble of hardware, firmware, and

software mechanisms. Ally creates two partitions: a
privileged partition for DPI cores, and an unprivileged
partition for OS cores. Physical memory is split in two
separate regions, one for each partition, and indepen-
dent software stacks boot in each partition. Memory
protection is extended to prevent OS cores from reading
or writing the memory region of the DPI cores, while
allowing DPI cores in the privileged partition to access
OS memory. Simple mechanisms enable DPI cores to
intercept packets exchanged between OS cores and NIC.

Table 1: Hardware/Firmware Modifications

Unit Modification
OS cores’ MMU Prevent memory accesses to DPI memory

from OS cores
IOMMU Prevent non authorized DMA to DPI

memory
IDT Prevent non authorized interrupts

from OS cores to DPI cores
BIOS Boot DPI appliance and hide DPI cores/

memory
Interrupt Unit Redirect NIC interrupts to DPI cores
OS cores’ MMU Redirect MMIO register accesses to

DPI memory
All units Extra MMIO registers to configure Ally

functionalities

Table 1 summarizes the hardware modifications.
Ally’s approach of using hardware partitioning lever-

ages the current trend toward very high core count pro-
cessors. Some cores can be assigned to packet processing
on behalf of other cores, enabling better utilization of
processor resources. Using Ally, a datacenter manager
can adjust the number of sequestered cores at boot
time depending on system load and the computational
intensity of the DPI engine.

4.1 Core Sequestration
Core sequestration enables distinct software environ-

ments to be booted in each partition. Conventional Intel
multiprocessor (MP-compliant) systems use a standard
boot procedure at startup. Ally works with this boot
procedure to launch the DPI environment on the DPI
cores and to conceal the DPI cores from the OS cores.

In the conventional procedure, a core (called BSP
core) wakes up the other cores (called AP cores). Each
AP core runs code loaded from BIOS which executes
a self-test and enters the core’s unique identifier (Local
APIC ID) into the ACPI’s Multiple APIC Description
Table (MADT) and the MP configuration table. The
OS uses the MADT and the MP configuration table to
find all information needed to discover and communicate
with a core. After initialization, each AP core halts and
waits for an Inter-Processor Interrupt (IPI) to resume
execution.

Ally uses a modified BIOS that selects some AP cores
as DPI cores and loads a custom initialization procedure
onto each DPI core. The custom procedure deletes
the DPI core’s entry from the MADT and the MP
configuration table, thus hiding the DPI core from the
OS cores. The DPI cores then load the custom Interrupt
Descriptor Table and begin to load the DPI software
environment.

The DPI cores interact with the built-in service pro-
cessor to request the most up-to-date DPI application
from a remote management server. The service proces-

3

Figure 2: Modified Memory Management Unit.
Ally uses a modified TLB Miss Handler to
protect from unauthorized memory accesses

sor downloads an executable image via the management
network into DPI memory for the DPI cores to execute.

4.2 Memory Protection
Ally splits the physical address space in two regions

identified by a simple range check, i.e., checking whether
physical addresses are above or below a dividing bound-
ary line. Ally adds a memory-mapped I/O (MMIO)
configuration register to the MMU for each core that
stores the boundary address between DPI and OS mem-
ory. This range check is much simpler than adding a new
level of address translation, and is fully compatible with
the existing address translation hierarchy, including
nested or extended page tables.

To prevent OS cores from accessing DPI memory, the
MMU needs a simple address check on each hardware
page table walk, to verify that the translated physical
address falls in an accessible region for the core that
caused the access. The modified TLB Miss Handler
(TMH), shown in Figure 2, verifies that any physical
address, which is being loaded in the TLB on an OS
core, is not in the range of DPI memory. This address
check has very low overhead on the performance of
the system. It has no overhead on TLB hits, since
it happens only for TLB misses. In this case, the
address comparison is likely to take a fraction of cycle,
a negligible overhead for a TLB miss, which may have
orders of magnitude higher latency.

Ally uses a similar check for the I/O Memory Manage-
ment Unit (IOMMU) to prevent non-authorized devices
from performing DMA writes to DPI memory. Both
checks are also used to protect DPI memory in x86 real
address mode (usually only needed early in the boot
process).

4.3 Packet Interception
Ally enables DPI cores to transparently intercept, ex-

amine and potentially modify packets in both transmit
and receive directions between OS and NIC. Packet
interception is accomplished by virtualizing the NIC
descriptor queues. Ally maintains a copy of each

descriptor queue in DPI memory and configures the
NIC to use these queues (DPI queues) instead of the
descriptor queues in OS memory (OS queues) through
configuring the base pointers of descriptor queues. The
DPI cores are thus responsible for synchronizing the
DPI queues with the OS queues.

DPI cores inspect packets referenced by the enqueued
descriptors. Once packet processing is done, DPI
cores transfer descriptors between the virtual descriptor
queues seen by the device driver on OS cores and the
real NIC descriptor queues.

The DPI cores interpose between the OS and the NIC.
This interposition is logically transparent to both the
OS (or hypervisor) running on the OS core and the
NIC because the usage of the descriptor queue is device
dependent, not OS dependent. Thus, no modification
is needed to the OS (including the device driver) or the
NIC.

The DPI cores download modified NIC drivers via
the service processor. The modifications are mostly on
the transmit and receive paths, which previous work
has shown comprises only a small portion of the driver
code, and which can even be separated out using an
automated process [7] [8]. Modified drivers would likely
be provided by the server vendor to increase the value
of their server management components. Develop-
ment costs would be reasonable, since each vendor of
datacenter-class servers ships only a small set of NIC
models to enjoy large volume cost savings and simplify
certification.

Since an OS interacts with a NIC through inter-
rupts and MMIO operations, Ally provides configurable
redirection of these operations to DPI cores for I/O
interception. For interrupt redirection, a DPI core
specifies which NIC interrupts (IOAPIC and MSI) are
to be redirected, and the modified Interrupt Unit in
the Northbridge steers the selected interrupts to DPI
cores. The software on DPI core uses Inter-Processor
Interrupts (IPIs) to mimic NIC interrupts back to the
OS.

For MMIO redirection, any MMIO access performed
by an OS core and directed to the NIC descriptor queue
registers must be redirected to a reserved area of DPI
memory. This leaves the DPI cores in control of the NIC
real registers. The accesses that need to be redirected
include accesses to the base pointers of the descriptor
queues and the Tail/Head registers of each queue. In
addition, accesses to interrupt-related registers must
also be redirected. This allows the DPI cores to control
the interrupt rate based on the packet processing speed
and allows the OS cores to transparently use interrupt
mitigation techniques like Linux NAPI. Overall, there
should be less than ten MMIO registers needed to be
redirected.

Ally enhances the MMU and TLB to provide MMIO

4

Figure 3: Address redirection flow, involving
TLB redirection and access to the Redirection
Table cached in the Last Level Cache

access redirection. Figure 3 shows an efficient im-
plementation. All MMIO remappings are specified in
a Redirection Table in DPI memory. This table is
small, requiring less than ten entries per NIC. Each
entry specifies an MMIO address and the translated
address to the redirected location. On OS core TLB
miss, the TLB Miss Handler (TMH) performs the usual
page table walk. Since MMIO pages are by definition
uncacheable, the TMH checks if the resulting physical
address refers to an uncacheable page (and hence po-
tentially an MMIO page). If the page is uncacheable,
then the TMH checks the Redirection Table to see if
any address in the table belongs to the faulting page.
If so, the TMH sets a new “redirection” bit in the TLB
entry.

Redirection Table lookup also occurs when an OS core
performs a memory access that results in a TLB hit to
an entry that has the redirection bit set. The lookup
determines if the specific address that was accessed has
a remapping. If a remapping is found, the MMU uses
the remapped address as the translated address, and
raises an IPI to notify a DPI core of the access attempt
by the OS core.

For normal memory accesses, the redirection bit is not
set, incurring no extra overhead. For the minority of ac-
cesses that need Redirection Table lookup, Ally uses the
Last Level Cache (LLC) to cache the small Redirection
Table, speeding up table lookup. Overall, Redirection
Table lookup has negligible impact on silicon area, has
no impact on normal memory accesses, and slightly
increases the latency of MMIO accesses comprising only
a small fraction of total memory accesses.

We next describe the steps taken by DPI cores to
intercept packets and virtualize the device queues. Since
the real Head/Tail Pointer registers in the NIC refer
to DPI queues, we call them DPI Head/Tail Pointers,
while the virtual Head/Tail Pointers stored in the

reserved DPI memory region refer to OS queues, so we
call them OS Head/Tail Pointers.

Figure 4 illustrates the operation of the descriptor
queues on packet reception. The OS preallocates
descriptors in the OS queue. A DPI core copies the
descriptors to the DPI queue and updates the DPI
Tail Pointer, which is visible to the NIC, thus notifying
the NIC that descriptors are available for the incoming
packets. The NIC copies the received packets, completes
the descriptors in the DPI queue, and updates the DPI
Head Pointer. At this point the DPI processes the
received packets. To allow the OS to consume the
received descriptors, the DPI marks the descriptors as
complete in the OS queue and updates the OS Head
Pointer. Finally, the DPI sends an IPI to an OS core to
notify it that reception is complete. The OS can thus
proceed to consume the received packets.

In the case of packet transmission, the OS posts
descriptors in its transmit queue and advances the Tail
Pointer. Ally intercepts the write to the Tail Pointer
which is not propagated to the NIC, but to the copy kept
in DPI memory, i.e., the OS Tail Pointer. The OS core’s
MMU raises an IPI to a DPI core, enabling the DPI
core to detect that the Tail Pointer has been updated.
The DPI copies the newly posted descriptors from the
OS queue to the DPI queue. It processes the packets
referenced by the descriptors, and updates the DPI Tail
Pointer. This Tail Pointer is visible to the NIC, which
then fetches the descriptors from the DPI queue and
also the corresponding packets. After transmission is
complete, the DPI core marks the descriptors complete
in the OS queue and raises an IPI to notify the OS core.

The packet interception mechanism is sufficient to
protect low threat workloads on OS cores from inadver-
tently reading uninspected packet data on the receive
path. In order to maliciously transmit uninspected
data, the OS core software would need to modify the
packet data after inspection completes but before the
data DMA to the NIC completes – a time window that
cannot be predicted in general.

To provide higher levels of protection, Ally could
operate in conjunction with slightly enhanced NIC hard-
ware. Current NICs compute packet data checksums,
and could be extended to write checksum values to
the receive descriptor queue, and verify DPI-computed
checksum values that it reads from the transmit de-
scriptor queue, thereby enabling full detection of packet
content tampering. Alternatively, a naive software-only
solution to enhance protection for high threat workloads
is to copy packet data between OS and DPI memory,
incurring higher overheads.

4.4 User-Kernel Space Interaction
Ally supports the execution of a complete operating

system in DPI cores with separate kernel-level and user-

5

(a) Descriptors are made available by the OS
in the OS descriptor queue. OS increases OS
Tail Pointer

(b) DPI gets interrupted by the OS core, copies
descriptors, and updates DPI Tail Pointer

(c) NIC copies received packets and descrip-
tors, marking descriptors as completed in the
DPI queue. NIC updates DPI Head Pointer.
DPI processes packets

(d) DPI marks descriptors in the OS queue as
completed. DPI updates OS Head Pointer.
The OS can thus consume the packets and
clean the OS queue

Figure 4: Receive: Evolution of the descriptor
queues in Ally

level execution modes. In this case, the DPI engine
can be deployed as a user space application. This
has several advantages in terms of programmability,
allowing the use of standard libraries and debugging
tools, but requires efficient kernel space - user space
communication.

The basic Ally services (packet interception) run in
the kernel, while packet inspection is performed in user
space. We developed an efficient software mechanism
to deliver intercepted packets from kernel space to user

Table 2: QEMU Results
TCP STREAM TCP MAERTS TCP RR

Instructions/pct 21.33 71.99 246.40
Interrupts/pct 0.04 0.39 1.98
Data movements 19.34 31.88 63.05
(bytes/pct)

space on DPI cores leveraging Ally’s operating model.
Since all code on DPI cores is trusted, the DPI cores can
fetch packet data directly from the kernel-level packet
buffers pointed to by the NIC TX and RX descriptors.
This is accomplished by mapping the whole kernel space
into DPI address space (e.g. using /dev/mem in Linux).
In addition, we use a socket-like mechanism (netlink in
Linux) to communicate updates of the descriptor head
and tail pointers to the DPI engine. For example, when
the OS tries to transmit packets by updating the tail
register of the virtual TX queue, the updated value
is sent as a netlink message to the user space packet
inspection software, which inspects all packets enqueued
between the old and new value of the tail register.

5. EVALUATION
We employ a dual strategy to evaluate Ally. First, we

validate the functionality of the proposed hardware and
firmware modifications by adding Ally enhancements
to an x86 full system emulator (QEMU [4]). Second,
to assess the performance of Ally on real hardware,
we built a Linux-based prototype. The prototype
modifies Linux to emulate the key functionality of Ally
needed for packet interception. The resulting system
has performance that should approach the performance
of real Ally hardware.

For both the QEMU-based and Linux-based pro-
totypes, we use the Netperf micro-benchmarks (www.
netperf.org) as the initial application workload run-
ning on an OS core. We use the two Netperf streaming
tests, TCP STREAM for transmit and TCP MAERTS
for receive, and the request-reply TCP RR test. In all
cases, an additional machine running unmodified Linux
was used as the network client. Finally, we evaluate
Ally performance using SPECWeb2005, a more realistic
workload scenario than Netperf in which application
processing is significant relative to packet processing.

5.1 Full System Emulation
The QEMU-based system successfully boots unmodi-

fied Debian Linux onto a subset of the emulated CPUs,
while retaining one core for exclusive use by the DPI
engine. Through modifications of the BIOS of QEMU,
Linux does not detect the existence of the reserved
DPI core. In addition, the DPI core executes custom
code loaded from the modified BIOS. This custom code
intercepts all packets between Linux and the emulated

6

Intel Pro/1000 Ethernet device in order to verify our
queue virtualization technique. After intercepting each
packet, the custom code simply forwards it to the NIC
or the OS core. To provide insight into the basic cost of
packet interception, the custom code on the DPI core
was designed only to intercept packets and does not
perform actual DPI processing in this initial test.

We extended QEMU to measure significant events
for Ally. As shown in Table 2, we measured the
baseline overhead of Ally in terms of the number of
extra instructions, memory accesses, and interrupts per
packet. By packet, we mean an Ethernet frame that is
transmitted or received over the external network link.
The size of a packet can range from minimum Ethernet
frame size to full size 1514-byte frame. All results shown
in this Table measure cost on the DPI-core only. Using
three Netperf benchmarks, the results indicate that Ally
requires at most a few hundred instructions per packet,
and tens of bytes of data movement for MMIO and
receive descriptors. This overhead would typically be
dwarfed by the processing required for an actual DPI
application.

5.2 Linux-Based Prototype
To estimate the performance of Ally on real hardware

instead of QEMU emulated hardware, we extended
Linux with kernel software modifications that emulate
Ally hardware extensions. We favor this evaluation
approach over using an architectural simulator. This
is because the additional latency of Ally’s hardware
operations such as MMIO redirection is small (Sec-
tion 4.3), and so software emulation of these operations
is likely to be conservative. In addition, architecture
simulators are very slow, precluding accurate evaluation
for realistic workloads having non-trivial runtimes. In
contrast, our approach enables accurate evaluation of
Ally performance for realistic workloads while fully
incorporating the software and hardware complexity of
a real system.

Our prototype extends Linux 2.6.28.7 running on
an Intel Core 2 Duo (2GHz) and an Intel PRO/1000
gigabit Ethernet card. The prototype emulates core
sequestration by pinning all the OS activity on one core
with Linux CPUSETS, and the DPI environment on
the other core. It is configured to direct NIC interrupts
to the DPI core, and we manually inserted instructions
into the NIC driver source code to generate IPIs when
virtualized registers are accessed. Another change is for
the NIC driver to notify the DPI application when the
DPI core receives an IPI. This requires sending a Netlink
message from kernel to user space. This somewhat
violates the isolation property since the DPI core uses
the Netlink Service provided by the Linux kernel.
However, further investigation shows that this adds
almost no overhead to the Linux kernel. In this way,

the prototype emulates in software the redirection of the
accesses to the NIC registers that would be provided in
the Ally hardware by the modified MMU. The prototype
provides timing-faithful results not possible to obtain
with QEMU.

To evaluate Ally in the context of real packet inspec-
tion software, we deployed Snort (www.snort.org) on
the DPI core. Snort is a popular open source Intrusion
Detection/Prevention System. All packets intercepted
on the DPI core are processed by Snort before being
forwarded to the NIC or the OS core. We modified
Snort for Ally to use our kernel-user communication
mechanism described in Section 4.4.

While Ally can use an arbitrary number of cores, we
limited experiments to one core for DPI. This is due
to the single threaded nature of Snort. Parallelization
techniques could be used to enable multicore scalability
of Snort, but this is out of the scope of this paper.

We compare our prototype, Ally, with two alternative
systems. The first, Linux, deploys Snort on unmodified
Linux. Linux is configured such that NIC interrupts
and Snort are pinned on one core (“DPI core”), while
all other activities are pinned on a second core (“OS
core”). We stress that this Linux system is not a viable
alternative to Ally since it provides no transparency
whatsoever. We use it only to verify that Ally does
not increase processing costs significantly compared to
native Linux, and to evaluate the benefits of Ally’s
user-kernel interaction mechanism. For the second
system, Xen, we deployed two virtual machines (VMs),
Dom0 and DomU. Each domain has one virtual CPU
(VCPU). Snort runs in Dom0, which intercepts all
packets to/from DomU. The Dom0 VCPU acts as DPI
core while the DomU VCPU acts as OS core. Since the
number of VCPUs is equal to the number of physical
cores, we use core pinning between virtual and physical
CPU to avoid performance loss due to VCPU schedul-
ing, context switching and migration. In addition,
Dom0 and DomU are paravirtualized (PV) domains,
which continue to provide higher performance than fully
virtualized (HVM) domains even with modern hardware
support for virtualization. The resulting configuration
with VCPU pinning and PV domains is arguably the
most efficient setting we can use in the current Xen
implementation.

Figure 5 shows the throughput achieved by Ally,
Linux, and Xen for the Netperf benchmarks. For the
streaming workloads, the DPI core is saturated for all
three systems and limits the achieved throughput. For
Ally and Linux this is mainly a result of choosing a
highly CPU-intensive ruleset for Snort as our example
use case. Less CPU-intensive packet processing use
cases – e.g., passive monitoring, load balancing – would
likely achieve full line rate bandwidths. Ally achieves
25-32% higher throughput than Linux for the streaming

7

0

1000

2000

3000

4000

5000

6000

7000

0

100

200

300

400

500

600

Ally Linux Xen Ally Linux Xen Ally Linux Xen

TCP_MAERTS TCP_STREAM TCP_RR

Tr
an

sa
ct
io
n
s/
s

M
b
/s

Figure 5: Throughput for Ally, Linux, and Xen
running with Snort. Throughput is in Mb/s for
TCP MAERTS and TCP STREAM, left y-axis,
while TCP RR uses transactions/s, right y-axis

benchmarks (TCP MAERTS and TCP STREAM), and
both systems far exceed the performance of Xen. The
low overhead of Ally’s packet interception mechanism
leaves more CPU cycles available for Snort to process
packets when the DPI core is saturated. In contrast,
the transaction rate in TCP RR is limited by the
round-trip latency instead of the CPU cycles Snort
can consume. Ally’s queue virtualization adds a small
delay to the transmit and receive paths compared to
Linux. As a result, Ally achieves similar but slightly
lower TCP RR transaction rates than Linux, and both
systems significantly outperform Xen.

To better understand the reasons behind these high-
level performance results, we used OProfile to analyze
the breakdown of CPU processing cost on each core, as
described next.

5.3 Per-Core Processing Costs
Figure 6 shows the CPU cycles consumed on DPI core

and OS core to process each packet on each system for
the three Netperf benchmarks. Since Snort is the only
user-level process running on the DPI core, we further
divide DPI core cycles into DPI (user) and DPI (kernel)
to explicitly show Snort overhead. The results show
that Snort (i.e. DPI-user) consumes a similar number
of cycles per packet across the three systems. Thus,
Snort performs about the same amount of work per
packet in all three systems. Further studies (not shown)
revealed that most cycles are consumed by Snort’s
pattern matching algorithm, which is used to compare
the packet payload against all rules. Snort consumes
the majority of CPU cycles in TCP MAERTS and
TCP STREAM since many packets with large payload
are inspected. In contrast, for TCP RR, only one small

0

20

40

60

80

100

120

Ally Linux Xen Ally Linux Xen Ally Linux Xen

TCP_MAERTS TCP_STREAM TCP_RR

cy
cl

e
s/

p
ac

ke
t

*
1

0
3

OS core DPI core (kernel) DPI core (user)

Figure 6: CPU cycles (OS core and DPI core)
for Ally, Linux, and Xen running with Snort

Table 3: Classes grouping Linux functions

Class Description
Packet Interception Functions used to intercept packets
Memory copy Functions used to copy data between

kernel and user space
Network Transmit/receive path related functions
Hypervisor Functions in Xen
Other e.g. time, scheduling

packet is inspected at a time.
The three systems have significantly different process-

ing costs for DPI (kernel) and OS core. Ally and Linux
have roughly similar OS core costs which are much lower
than for Xen. Ally has lower DPI (kernel) costs than
Linux and Xen for all three benchmarks.

To analyze these differences, we need a further break-
down of processing costs for DPI (kernel) and OS core.
We thus group source code functions into the cost
categories shown in Table 3. Functions are placed into
these categories based on a static analysis of the Linux
source tree and on an analysis of the dynamic call graph
of kernel execution. The following subsections break
down the cost of DPI (kernel) and OS core according to
these function categories.

5.3.1 DPI Core Costs
Figure 7 shows the breakdown of DPI (Kernel) cost

per packet using the categories of Table 3. We are in-
terested in the comparison of packet interception mech-
anism between Ally and Linux and their corresponding
costs on memory copying. In Linux, Snort normally uses
the libipq mechanism to fetch packets from kernel space.
This mechanism leverages the Linux iptables mechanism
to intercept and enqueue network packets at kernel-
level into a special queue. From there, the packets are

8

0

10

20

30

40

50

60

70

80

Ally Linux Xen Ally Linux Xen Ally Linux Xen

TCP_MAERTS TCP_STREAM TCP_RR

cy
cl

e
s/

p
ac

ke
t

*
1

0
3

Packet Interception Memory Copy Hypervisor Network Other

Figure 7: CPU cycles for DPI core (Kernel) for
Ally, Linux, and Xen

delivered to the user-level Snort application using the
Linux netlink mechanism, which provides a standard
sockets interface for user-kernel communication. Each
netlink message contains one packet and is copied from
kernel space to user space. After inspection, Snort sends
a verdict back into the kernel specifying how to deal with
those packets (ACCEPT or DROP). Packets accepted
by Snort continue to traverse the network stack. This
libipq mechanism is used in the Linux and Xen systems.

As shown in Figure 7, Linux has higher packet inter-
ception overhead than Ally for the streaming workloads.
For libipq used in Linux, the number of netlink messages
is equal to the number of packets that are analyzed by
Snort. Therefore, Linux has similar netlink overhead
per packet in each benchmark. For Ally, the queue
virtualization mechanism generates a netlink message
each time the tail/head pointers are updated. For
the streaming benchmarks, each update corresponds to
multiple packets instead of just one packet, leading to
lower overhead for these workloads than in Linux.

In addition, Ally has the lowest overhead in the
memory copy category. The reason is that in Linux
the libipq uses the netlink mechanism to transport
entire packets to user space whereas in Ally the netlink
connection is only used to transport the descriptor
head and tail pointers to Snort and all packet data
are directly accessed via memory mapping. For all
benchmarks, Ally has no overhead in the network
category. This indicates the overhead incurred on the
DPI core is purely for packet interception.

For the TCP RR benchmark, Ally has higher packet
interception overhead than Linux, for two reasons.
First, the number of updates of the tail/head pointers is
the same as the number of packets, since only one packet
is sent or received at a time. Therefore, the number of
netlink messages is similar for Ally and Linux. Second,

queue virtualization requires updating the real head and
tail pointers by performing costly MMIO accesses whose
latency cannot be hidden in TCP RR.

In all cases Xen has much higher DPI core processing
cost than Ally and Linux. Most of the hypervisor
overhead is due to the expensive grant table mechanism
which is used to remap packets from one domain to
the other. Even the network processing within Dom0
greatly exceeds that of Linux and Ally because of the
complex backend driver and bridge mechanism added
in Dom0. Overall this result reflects a relatively high
cost of packet interception and network interface virtu-
alization in the current Xen implementation. However,
virtualization costs will likely be reduced by future
enhancements to Xen [9,10]. In addition, optimizations
similar to those we added to Ally could potentially be
applied to Dom0 to reduce the cost of intercepting and
sending packets to the user-level Snort application in
Dom0, but this is out of scope of this paper.

In summary, Ally has lower overhead for the stream-
ing workloads due to the queue virtualization mech-
anism and the reduction in memory copies due to
the kernel space to user space communication mech-
anism. Of these two mechanisms, the queue virtual-
ization mechanism contributes a larger portion of the
overhead reduction. For the latency sensitive work-
load (TCP RR), Ally’s mechanisms provide comparable
packet processing latency compared to native Linux. In
all cases, Ally outperforms Xen due to its hypervisor
overheads and less efficient packet interception.

5.3.2 OS Core Costs
Recall from Figure 6 that OS core costs with Ally

are similar to the costs with unmodified Linux. In fact
the costs with Ally are slightly lower. However, the
difference is less than 15%. We found that several causes
for this difference. First, in Ally, the OS core accesses
virtualized NIC registers rather than performing the
MMIO accesses which incur higher latency. (Ally
performs these MMIO accesses on the DPI core, and
their cost is reflected in the results of Figures 7).
Second, Ally incurs a little more overhead in netlink
functions due to the service shared by the DPI core.
Lastly, for the receive-heavy TCP MAERTS workload
in Ally, the DPI core processing can fetch packet data
into the processor cache hierarchy in advance of OS core
processing of the same packets, potentially reducing the
cost of OS core processing.

5.4 SPECWeb Results
While Netperf is useful for understanding system

behavior in network-intensive scenarios that place high
requirements on packet processing services, most real
workloads present a more balanced mix of computing
and networking. We ran experiments using SPEC-
Web2005 to evaluate Ally with a realistic workload

9

0

20

40

60

80

100

120

Ally Linux Xen Ally Linux Xen Ally Linux Xen

Bank Ecommerce Support

cy
cl

e
s/

re
q

u
e

st
 *

 1
0

6

Figure 8: Processing costs for SPECWeb2005
workload

0

2

4

6

8

10

12

14

16

18

20

Ally Native Ally Native Ally Native

Bank Ecommerce Support

C
ac

h
e

 m
is

se
s/

re
q

u
e

st
 *

 1
0

3

OS core (kernel) OS core (user) DPI core (kernel) DPI core (user)

Figure 9: Cache misses for the SPECWeb2005
workloads

presenting a mix of requirements for each resource type.
Each benchmark – Bank, Ecommerce and Support – is
run with 100 simultaneous sessions. Apache is run on
OS core (user) while Snort is run on DPI core (user).

The results in Figure 8 show that Support has the
highest number of packets per request which in turn in-
creases the per-request processing cost of Snort. Traffic
encryption in Bank makes Apache consume much more
cycles among all cases. The kernel cost in Ally shows
that its packet interception mechanism is more scalable
than Xen in which case the hypervisor cost increases a
lot under higher number of packets in Support.

To study the potential cache sharing and interference
effects, we run Apache with and without Snort using
the SPECweb workloads. Results in Figure 9 show that
Apache has a similar number of cache misses running
with or without Snort. The cache misses of OS core

(kernel) in Ally are a little more than in Linux possibly
because of resource contention due to the Netlink service
shared by the DPI core. The majority of remaining
misses are due to kernel page allocation. The cache
misses of Snort (“DPI core (user)”) are mainly due to
packet decoding and payload inspection, since received
packet data is first touched in our solution by Snort
rather than the Linux kernel (zero-copy for inspection).
The DPI core (kernel) cache misses in Ally are due
to descriptor queue synchronization, as descriptors are
invalidated in the cache when the NIC DMAs the
modified descriptors into the main memory. We also
found that there is almost no difference between the
average request latencies of the two cases. The main
contribution to the latency is Apache, not of the packet
processing in Snort.

6. RELATED WORK
Conventional DPI appliances, and other network

packet processing appliances such as firewalls, are typ-
ically implemented as special-purpose devices at a dat-
acenter gateway [11]. Ally enables adding this func-
tionality to standard server platforms enabling dis-
tributed deployment of local packet processing in soft-
ware. Previous work advocated implementing these
functionalities in virtual machines (VMs) running on
a hypervisor along with application VMs, and using
Trusted Computing (TC) hardware in modern proces-
sors to ensure that the I/O appliances are running
authorized code [2]. Ally differs from these approaches
by removing dependence on a hypervisor. By main-
taining independence from host software, Ally provides
a general solution serving a wide variety of customers
with diverse OSes and hypervisor deployments, even in
a shared datacenter. Moreover, the core sequestration
model avoids the complexities of constructing chains of
attestation using TCB.

In the context of business laptops, the Intel Vpro
technology [12] provides limited packet filtering capabil-
ities in the NIC. Ally provides a much more flexible and
powerful infrastructure applicable to packet analysis or
other compute-intensive system management functions.

Similarly to Ally, a hypervisor could be used to
provide system partitioning (OS-partition and DPI-
partition). Hypervisors can additionally host virtual
machines called driver domains to transparently in-
tercept data exchanged between running guest VMs
and I/O devices [13, 14]. Additional packet processing
such as DPI could be performed in software in these
driver domains [15]. In comparison to using software
virtualization for partitioning and I/O interception, the
hardware/software approach provided by Ally has the
conceptual advantage that the “OS-partition” can run
arbitrary user code. In particular, the OS-partition
can itself run a hypervisor. Without hardware par-

10

titioning, this would require full support for nested
layers of virtualization. Recent work indicates that such
nesting may be feasible with reasonable performance
degradation [16]. However, this solution achieved good
performance for I/O only by bypassing the virtualiza-
tion layers, precluding packet interception. In addition,
the hardware-based isolation mechanisms used in Ally
are arguably more resistant to attacks compared to
potentially buggy hypervisor software. This is the
case even if Trusted Computing [17] techniques are
used to verify the authenticity of binary executables.
Some researchers have argued recently that hardware
partitioning offers several significant advantages over
software hypervisors [18]. Ally strikes a balance by fully
supporting OS core use of hypervisors (and hardware
support for virtualization like Intel VT-x and Extended
Page Tables) while providing a simple form of hardware
partitioning that sets aside DPI cores as needed for
transparent datacenter-wide distributed packet process-
ing.

Some techniques that Ally uses for lightweight packet
interception could also be adapted for driver domains
in software virtualized environments. For example, a
running guest VM that has direct access to a NIC
(or virtual context of a NIC) could be transparently
switched on-the-fly by the hypervisor to use a driver
domain that intercepts and inspects packets by virtual-
izing the NIC queue using similar techniques as Ally.

The BitVisor hypervisor aims to provide transparent
I/O services for a single guest VM using device queue
virtualizations that are similar to our approach [19].
BitVisor differs from Ally in not using hardware core
sequestering, and therefore cannot support a full op-
erating system and application stack on a dedicated
DPI core, or run a hypervisor with multiple guest
OSes on the OS cores. TwinDrivers [7] also uses
queue virtualization, but places this functionality in a
hypervisor to accelerate NIC virtualization. Unlike Ally,
TwinDrivers does not try to provide packet processing
services, and thus lacks core sequestering and support
for full software stacks for general packet processing
services.

The use of a high privileged core for security and
monitoring has been proposed for a system called IN-
DRA [20] and by Chen et al. in the context of log-based
architectures [21]. In these systems, the privileged core
is called “resurrector” or “lifeguard”. Ally extends this
functionality providing efficient I/O analysis capabilities
to the privileged core.

7. CONCLUSIONS
Ally enables software-independent and transparent

deployment of packet processing services like DPI on
a multicore processor. Our evaluation on a system
emulator and a prototype Ally system demonstrate

the feasibility of the Ally approach and analyze in
detail the contributions of the design components to
overall performance. Our results demonstrate that Ally
is competitive in efficiency with deploying DPI non-
transparently on native Linux. Ally is more efficient
than a system that uses Xen software virtualization
to achieve transparent packet inspection. Moreover,
Ally is transparent to and supports the use of arbitrary
operating systems and/or hypervisors running in the
OS core partition, and is compatible with the use of
hardware support for virtualization like Intel VT-i.

We plan to extend this work to support and evaluate
packet processing services using emerging multi-context
NICs (PCIe SR-IOV NICs) [22]. Given the low cost of
queue virtualization observed in our current prototype,
it is highly likely that the cost of Ally’s interception
mechanisms will be a function dominated by the link
bandwidth or packet rate, and not by the number
of contexts. In addition, we plan to evaluate Ally
for larger-scale multicore systems. Ally should easily
leverage future processors equipped with several tens of
cores by distributing the packet inspection engine.

Ally and complementary technologies are bringing
greater packet processing capabilities to general purpose
servers with powerful programmable CPUs and large
amounts of memory, enabling new rich network services.
This motivates many potential future research inves-
tigations in the context of large datacenters to study
problems including secure deployment, configuration,
and coordination of an ensemble of Ally instances and
services.

8. REFERENCES
[1] Deep packet inspection: 2009 market forecast.

Lightreading Insider, 8(11), December 2008.
[2] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon,

T. Anderson, and A. Krishnamurthy. Ettm: a
scalable fault tolerant network manager. In
Proceedings of the 8th USENIX conference on
Networked systems design and implementation,
2011.

[3] Intel. Introducing Intel many integrated core
architecture, Online:
http://www.intel.com/technology/architecture-
silicon/mic/index.htm.

[4] F. Bellard. Qemu, a fast and portable dynamic
translator. In ATEC ’05: Proceedings of the
annual conference on USENIX Annual Technical
Conference, pages 41–41. USENIX Association,
2005.

[5] Intel Active Management Technology. Online:
http://www.intel.com/technology/platform-
technology/intel-amt.

[6] HP Integrated Lights-Out (iLO) Standard.
Online: http://www.hp.com/go/ilo.

11

[7] A. Menon, S. Schubert, and W. Zwaenepoel.
Twindrivers: semi-automatic derivation of fast
and safe hypervisor network drivers from guest os
drivers. In Proceeding of the 14th international
conference on Architectural support for
programming languages and operating systems,
ASPLOS ’09, pages 301–312, New York, NY,
USA, 2009. ACM.

[8] V. Ganapathy, M. Renzelmann, A. Balakrishnan,
M. Swift, and S. Jha. The design and
implementation of microdrivers. In Proceedings of
the 13th international conference on Architectural
support for programming languages and operating
systems, ASPLOS XIII, pages 168–178, New York,
NY, USA, 2008. ACM.

[9] J. Santos, Y. Turner, G. Janakiraman, and
I. Pratt. Bridging the gap between software and
hardware techniques for i/o virtualization. In
USENIX 2008 Annual Technical Conference on
Annual Technical Conference, pages 29–42,
Berkeley, CA, USA, 2008. USENIX Association.

[10] K. Ram, J. Santos, Y. Turner, A. Cox, and
S. Rixner. Achieving 10 gb/s using safe and
transparent network interface virtualization. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution
environments, VEE ’09, pages 61–70, New York,
NY, USA, 2009. ACM.

[11] CloudShield Technologies. Online:
http://www.cloudshield.com.

[12] Intel Vpro Technology. Online:
http://www.intel.com/vpro.

[13] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz.
Unmodified device driver reuse and improved
system dependability via virtual machines. In
Proceedings of the 6th Symposium on Operating
Systems Design and Implementation, San
Francisco, CA, December 2004.

[14] K. Fraser, S. Hand, R. Neugebauer, I. Pratt,
Andrew Warfield, and Mark Williams. Safe
hardware access with the Xen virtual machine
monitor. In OASIS ’04: Proceedings of the 1st
Workshop on Operating System and Architectural
Support for the on demand IT Infrastructure,
October 2004.

[15] D. McAuley and R. Neugebauer. A case for
virtual channel processors. In NICELI ’03:
Proceedings of the ACM SIGCOMM workshop on
Network-I/O convergence, pages 237–242, New
York, NY, 2003. ACM.

[16] M. Ben-Yehuda, M. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman,
and B. Yassour. The turtles project: Design and
implementation of nested virtualization. In OSDI
2010.

[17] J. McCune, B. Parno, A. Perrig, M. Reiter, and
H. Isozaki. Flicker: an execution infrastructure for
tcb minimization. In Eurosys ’08: Proceedings of
the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, 2008.

[18] E. Keller, J. Szefer, J. Rexford, and R. Lee.
Nohype: virtualized cloud infrastructure without
the virtualization. In ISCA ’10: Proceedings of the
37th annual international symposium on
Computer architecture, 2010.

[19] T. Shinagawa, H. Eiraku, K. Tanimoto,
K. Omote, S. Hasegawa, T. Horie, M. Hirano,
K. Kourai, Y. Oyama, E. Kawai, K. Kono,
S. Chiba, Y. Shinjo, and K. Kato. Bitvisor: a thin
hypervisor for enforcing i/o device security. In
VEE ’09: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on
Virtual execution environments, pages 121–130,
2009.

[20] Weidong Shi, Hsien-Hsin S. Lee, Laura Falk, and
Mrinmoy Ghosh. An integrated framework for
dependable and revivable architectures using
multicore processors. In ISCA ’06: Proceedings of
the 33rd annual international symposium on
Computer Architecture, pages 102–113, 2006.

[21] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi,
P. Gibbons, T. Mowry, V. Ramachandran,
O. Ruwase, M. Ryan, and E. Vlachos. Flexible
hardware acceleration for instruction-grain
program monitoring. In ISCA ’08: Proceedings of
the 35th International Symposium on Computer
Architecture, 2008.

[22] Y. Dong, Z. Yu, and G. Rose. SR-IOV networking
in Xen: Architecture, design and implementation.
In WIOV ’08: Proceedings of the 1st Workshop on
I/O Virtualization.

12

