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Abstract— End-user privacy in smart meter measurements
is a well-known challenge in the smart grid. The solutions
offered thus far have been tied to specific technologies such
as batteries or assumptions on data usage. Existing solutions
have also not quantified the loss of benefit (utility) that results
from any such privacy-preserving approach. Using tools from
information theory, a new framework is presented that abstracts
both the privacy and the utility requirements of smart meter
data. This leads to a novel privacy-utility tradeoff problem
with minimal assumptions that is tractable. Specifically for a
stationary Gaussian Markov model of the electricity load, it is
shown that the optimal utility-and-privacy preserving solution
requires filtering out frequency components that are low in power,
and this approach appears to encompass most of the proposed
privacy approaches.

I. INTRODUCTION

Information collection and dissemination, some of it using

smart meters, are critical to the smart grid. But information

about electricity consumption that is collected and harnessed

for a more efficient and multi-faceted grid may be used for

purposes beyond electricity consumption, thereby making it

potentially dangerous to individual privacy. The privacy con-

sequences of smart grid development are hard to understand

for two principal reasons: (i) the full range of technological

capabilities and information extraction possibilities have not

been laid out, and (ii) our concept of privacy in this space

are yet poorly defined and shifting. Smart meters are an

indispensable enabler in the context of smart grids, which

deploy advanced information and communication technology

to control the electrical grid.

The main motivations for high-resolution energy usage data

collection are to forecast load demand and to provide opti-

mized service to consumers in the form of pricing structure [1].

An electricity provider can use this information to facilitate

more efficient network management, peak load reduction, load

shaping, and a number of other such uses. However, it has been

known for some time that the information of appliance use can

be reconstructed from the overall real-time load using libraries

of appliance load signatures that could be matched to signals

found within the noise of a customer’s aggregated electricity

use and a large amount of detail concerning customer usage

habits can be discerned [2]. [1] cites a list of privacy-sensitive

characteristics that may be inferred from electricity load data

ranging from house occupancy to personal habits and routines.
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The NIST Smart Grid Interoperability Panel has also un-

derlined risk to privacy of personal behavior because new

types of energy use data are created and communicated by

smart meters, such as unique electric signatures for consumer

electronics and appliances, thereby opening up further oppor-

tunities for general invasion of privacy. [3] suggest that there

will always “be the temptation to sell such information such as

energy usage or appliance data, either in identifiable customer

level, anonymized or aggregate form to third parties such as

marketers seeking commercial gain.”. Thus, a desired feature

of privacy design in the smart grid would be “positive-sum,

not zero-sum” in that it seeks to accommodate all legitimate

interests and objectives in a fair manner without completely

sacrificing privacy for utility or vice-versa.

A typical approach to privacy in smart meter data is

aggregation along dimensions of space (using neighborhood

gateways, e.g. [4]), time (using battery storage, e.g. [5]), or

precision (by noise addition, e.g. [6]). These solutions seek

to support utility and privacy in different ways; however,

they do not have a robust theoretical basis for both privacy

and utility. Such a basis is important for several reasons.

First, a theoretical abstraction allows us to recast the problem

in a technology-independent manner – we need a privacy

framework that not only addresses the capabilities of current

non-intrusive load monitoring (NALM) techniques but is also

extensible to future ones. Second, a theoretical framework

enables us to examine the costs of lost privacy against the

benefits of data dissemination, namely, the tradeoff between

privacy and utility. It would be desirable to give each customer

the ability to decide that tradeoff and also to give the electricity

provider the ability to incentivize the customer to participate

in such a bargain by offering interesting points of tradeoff.

Finally, a theoretical framework for privacy and utility may

expose points of tradeoff that are unexpected.

We propose a general theoretical framework that brings

most current treatments of the privacy-utility tradeoff into a

single model – it enables us to look at a spectrum of abstract

privacy-utility choices and enables us to find maximal points

on such a tradeoff curve. It also suggests new possible ways

of achieving this tradeoff that have not been considered thus

far.

What we have found is that suppressing low power com-

ponents would be consistent with intuitive notions of privacy

in smart meter data. At the same time, our utility constraints

guarantee that the bulk of the energy consumption information

in the load measurements is retained in the revealed data. This



suggests that it may indeed be possible to reveal significant

energy consumption information without also revealing a lot of

personal information and the resulting tradeoff can be tuned.

This would be an interesting avenue for further exploration.

The paper is organized as follows. In Section II, we outline

current approaches to smart meter privacy. In Section III, we

develop our model, metrics, and the privacy-utility tradeoff

framework and illustrate our results in Section IV.

II. RELATED WORK

The advantages and usefulness of smart meters in general is

examined in a number of papers; see for example [7] and the

references therein. [5] presents a pioneering view of privacy

of smart meter information: the authors identify the need

for privacy in a home’s load signature as being an inference

violation (resulting from load signatures of home appliances)

rather than an identity violation (i.e. loss of anonymity).

Accordingly, they propose home electrical power routing using

rechargeable batteries and alternate power sources to moderate

the effects of load signatures. They also propose three different

privacy metrics: relative entropy, clustering classification, and

a correlation/regression metric. However they do not propose

any formal utility metrics to quantify the utility-privacy trade-

off.

Recently, [8] proposes additional protection through the

use of a trusted escrow service, along with randomized time

intervals between the setup of attributable and anonymous data

profiles at the smart meter. [9] shows, somewhat surprisingly,

that even without a priori knowledge of household activities or

prior training it is possible to extract complex usage patterns

from smart meter data such as residential occupancy and

social activities very accurately using off-the-shelf statistical

methods. [4] and [9] propose privacy-enhancing designs using

neighborhood-level aggregation and cryptographic protocols to

communicate with the energy supplier without compromising

the privacy of individual homes. However, escrow services and

neighborhood gateways support only restricted query types and

do not completely solve the problem of trustworthiness. [10]

presents a formal state transition diagram-based analysis of the

privacy afforded by the rechargeable battery model proposed

in [5]. However, [10] does not offer a comparable model of

utility to compare the risks of information leakage with the

benefits of the information transmitted.

In, [6] the authors present a method of providing differential

privacy over aggregate queries modeling smart meter measure-

ments as time-series data from multiple sources containing

temporal correlations. While their approach has some similar-

ity to ours in terms of time-series data treatment, their method

does not seem generalizable to arbitrary query types. On the

other hand, [11] introduces the notion of partial information

hiding by introducing uncertainty about individual values in a

time series by perturbing them. Our method is a more general

approach to time series data perturbation that guarantees that

the perturbation cannot be eliminated by averaging.

III. OUR CONTRIBUTIONS

The primary challenge in characterizing the privacy-utility

tradeoffs for smart meter data is creating the right abstraction

– we need a principled approach that provides quantitative

measures of both the amount of information leaked as well as

the utility retained, does not rely on any assumptions of data

mining algorithms, and provides a basis for a negotiated level

of benefit for both consumer and supplier [3]. [10] provides

the beginnings of such a model – they assume that in every

sampling time instant, the net load is either 0 or 1 power unit

represented by the smart meter readings Xk, k = 1, 2, ..., are

a discrete-time sequence of binary independent and identically

distributed values. They model the battery-based filter of [5]

as a stochastic transfer function that outputs a binary sequence

X̂k that tells the electricity provider whether the home is

drawing power or not at any given moment. The amount

of information leaked by the transfer function is defined to

be the mutual information rate I(X; X̂) between the random

variables X and X̂ . By modeling the battery charging policy

as a 2-state stochastic transition machine, they show that there

exist battery policies that result in less information leakage

than from the deterministic charging policy of [5]. Though

[10] does not provide a general utility function to go with

the chosen privacy function and the modeling assumptions are

extremely simplistic, it nevertheless provides a good starting

point for our framework.

In our model, we assume that the load measurements are

sampled (at an appropriate frequency) from a smart meter,

that they are real-valued, and can be correlated (models

the temporal memory of both appliances and human usage

patterns). Rather than assume any specific transfer function,

we assume an abstract transfer function which maps the input

load measurements X into an output sequence X̂ . As in [10],

we assume a mutual information rate as a metric for privacy

leakage; however, we allow for the fact that a large space of

(unknown to us) inferences can be made from the meter data –

we model the inferred data as a random variable Y correlated

with the measurement variable X . Thus, the privacy leakage

is the mutual information between Y and X̂ . We also provide

an abstract utility function which measures the fidelity of the

output sequence X̂ by limiting the Euclidean distance (mean

square error) between X and X̂ . Using these abstractions

and tools from the theory of rate distortion we are able to

meet all our requirements for a general but tractable privacy-

utility framework: the privacy and utility requirements provide

opposing constraints that expose a spectrum of choices for

trading off privacy for utility and vice-versa.

A. Model

We write xt, t = 1, 2, . . . , n, to denote the sampled load

measurements from a smart meter. In general, xt are complex

valued corresponding to the real and reactive measurements

and are typically vectors for multi-phase systems [2]. For

simplicity and ease of presentation, we model the meter mea-

surements as a sequence of real-valued scalars (for example,



such a model applies to two-phase 120 V appliances for which

one of the two phase components is zero).

For appropriately small sampling intervals, the smart me-

ter time-series data that result from sampling the underly-

ing continuous-time continuous-amplitude processes can be

viewed as being generated by a random source with memory.

The memory models the continuity and the effect of both

short-term and long-term correlations in the load measure-

ments. The short term correlations typically model the effect

of the set of appliances in use over the said duration while

the long term correlations model the long term power usage

pattern of the human user. We model the continuous valued

smart meter data as a sequence . . . ,Xk−1,Xk,Xk+1, . . ., of

random variables Xk ∈ X , −∞ < k < ∞, generated by a

stationary continuous valued source with memory. Specifically,

we model the continuous valued discrete-time smart meter data

as a sequence . . . ,Xk−1,Xk,Xk+1, . . ., of Gaussian random

variables Xk ∈ X , k = 0,±1, ..., generated by a stationary

Gaussian source with memory captured via the autocorrelation

function

cXX (m) = E [XkXk+m] ,m = 0,±1,±2, .... (1)

The assumption of normal distribution for total load is a

simplification from empirical observations [12] that the power

consumption pattern of a typical appliance in the on state is

approximately Gaussian.

B. Utility and Privacy Metrics

Since continuous amplitude sources cannot be transmitted

losslessly over finite capacity links, a sampled sequence of

n load measurements Xn is compressed before transmission.

In general, however, even if the sampled measurements were

quantized a priori, i.e., take values in a discrete alphabet, there

may be a need to perturb (distort) the data in some way to

guarantee a measure of privacy. However, such a perturbation

also needs to maintain a desired level of fidelity.

Intuitively, utility of the perturbed data is high if any

function computed on it yields results similar to those from

the original data; thus, the utility is highest when there is

no perturbation and goes to zero when the perturbed data is

completely unrelated to the original. Accordingly, our utility

metric is an appropriately chosen average ‘distance’ distortion

function between the original and the perturbed data.

Privacy, on the other hand, is maximized when the perturbed

data is completely independent of the original. Our privacy

metric measures the difficulty of inferring any private infor-

mation of the data collector’s choice, defined as a sequence

{Yk} of random variables Yk ∈ Y , -∞ < k < ∞, which

is correlated with and can be inferred from the revealed

data. The random sequence {Yk} for all k along with the

joint distribution pXnY n mathematically captures the space

of all inferences that can be made from the measurements.

We quantify the resulting privacy loss as a result of revealing

perturbed data via the mutual information between the two

data sequences.

As an aside, we note here that our model of privacy is

between a single user (household) and the electricity provider.

It does not consider the leakage possibilities of comparing the

perturbed data from two or more different users. On the other

hand it can address the possibility of side-information such as

income level of the user that may cause further information

leakage. If we know the statistics of the side-information that

we can incorporate the possible leakage into the model and

derive the consequent modified privacy-utility tradeoff. For

simplicity we ignore the side-information aspect in this paper.

C. Perturbation: Encoding and Decoding

Encoding: We assume that a meter collects n ≫ 1 mea-

surements in an interval of time prior to communication and

that n is large enough to capture the source’s memory. The

encoding function is then a mapping of the resulting source

sequence Xn = (X1 X2 X3 . . . Xn), where Xk ∈ R, for all

k = 1, 2, . . . , n, to an index Wn ∈ Wn given by

FE : Xn → Wn ≡ {1, 2, . . . ,Mn} (2)

where each index represents a quantized sequence.

Decoding: The decoder (at the data collector) computes an

output sequence X̂n =
(

X̂1 X̂2 X̂3 . . . X̂n

)

, X̂k ∈ R, for

all k, using the decoding function

FD : W → X̂n. (3)

The encoder is chosen such that the input and output sequences

achieve a desired utility given by an average distortion con-

straint

Dn =
1

n

n
∑

k=1

E

[

(

Xk − X̂k

)2
]

(4)

and a constraint on the information leakage about the desired

sequence {Yk} from the revealed sequence
{

X̂k

}

is quantified

via the leakage function

Ln =
1

n
I

(

Y n; X̂n
)

(5)

where E [·] denotes the expectation over the joint distribution

of Xn and X̂n given by p
XX̂

(xn, x̂n) = Pn
Xn (xn) pt(x̂

n|xn)
where pt(x̂

n|xn) is a conditional pdf on x̂n given xn. The

mean-square error (MSE) distortion function chosen in (4) is

typical for Gaussian distributed real-valued data as a measure

of the fidelity of the perturbation (encoding).

Note that Dn and Ln are functions of the number of mea-

surements n and for stationary sources converge to limiting

values [13]. Let D and L denote the corresponding limiting

values for utility and privacy, respectively, i.e.,

D ≡ lim
n→∞

Dn and L ≡ lim
n→∞

Ln. (6)

D. Utility-Privacy Tradeoff Region

Formally, the utility-privacy tradeoff region T is defined as

follows.

Definition 1: The smart meter utility-privacy tradeoff re-

gion T is the set of all (D,L) pairs for which there ex-

ists a coding scheme given by (2) and (3) with parameters



(n,Mn,Dn+ǫ, Ln+ǫ) satisfying (4) and (5) for n sufficiently

large and ǫ > 0.

Rate-Distortion-Leakage: The above utility-privacy tradeoff

problem does not explicitly bound the number Mn of encoded

(quantized) sequences. An explicit constraint on

Mn ≤ 2n(Rn+ǫ) (7)

results in a rate-distortion-leakage (RDL) tradeoff problem for

which the feasible region is defined as follows. Let R =
limn→∞ (log Mn) /n.

Definition 2: The rate-distortion-leakage tradeoff region

RRDL is the set of all (R,D,L) tuples for which there exists

a coding scheme given by (2), (3), and (7) with parameters

(n,Mn,Dn+ǫ, Ln+ǫ) satisfying (4) and (5) for n sufficiently

large and ǫ > 0. The function λ (D) quantifies the minimal

leakage achievable for a feasible distortion D such that the set

of all (R,D, λ(D)) are the boundary points of RRDL.

Theorem 1: T = {(D,L) : (R,D,L) ∈ RRDL,D ∈ [0,
Dmax], L ≥ λ (D)} .

Proof sketch: The crux of our argument is the fact that

for any feasible utility vector D, choosing the minimum rate

R (D,λ(D)), ensures that the least amount of information is

revealed about the source via the reconstructed variable. This

in turn ensures that the minimal leakage λ(D) of the correlated

sequence Y n is achieved for that utility. For the same utility

constraint, since such a rate requirement is not a part of the

utility-privacy model, the resulting maximal privacy achieved

is at most as large as that in RRDL.

E. Rate-Distortion-Leakage Tradeoff

We now use Theorem 1 to precisely quantify the utility-

privacy tradeoff via the RDL tradeoff region. The proof is

a direct generalization of the RDL region for memoryless

sources (see, for example, [14], [15]), and hence, is omitted

for lack of space. Intuitively, the proof follows from upper

and lower bounding the minimal communication rate R as a

function of D and L and the minimal leakage rate λ as a

function of D.

Theorem 2: The rate-distortion-leakage region for a source

with memory subject to distortion and leakage constraints in

(4) and (5) is given by the rate-distortion and minimal leakage

functions

R(D,L) = lim
n→∞

inf
p(xn,yn)p(x̂n|xn)

1

n
I

(

Xn; X̂n
)

(8)

λ(D) = lim
n→∞

inf
p(xn,yn)p(x̂n|xn)

1

n
I

(

Y n; X̂n
)

. (9)

The utility-privacy tradeoff is captured by λ(D) which is the

minimal privacy leakage for a desired distortion (utility) D.

Remark 1: The Markov relationship Y n − Xn − X̂n is

captured via the set of all distributions in (8) and (9) which

minimize R(D,L) and λ(D).
Corollary 1: For Yk = Xk, for all k, i.e., for the case

in which the actual measurements need to be undisclosed,

λ(D) = R(D,L) = R(D) where R(D) is the rate-distortion

function for the source.

In general, the optimal distribution minimizing the rate

subject to both the distortion and leakage constraints depends

on the joint distribution of the measurement and inference

sequences. Modeling this relationship is, in general, not

straightforward or known a priori. Given this limitation, we

consider a simple linear inference model given by

Yk = αkXk + Zk, for all k, (10)

where Zk ∼ N (0, 1) is independent of Xk, and αk are

constants. In this paper, we limit our results to these models

to simplify our analysis and develop the intuition that can

eventually lead us to develop complete solutions for a more

general inference model. The following theorem captures our

result.

Theorem 3: The utility-privacy tradeoff for smart meter

measurements modeled as a Gaussian source with memory

with Yk = αkXk + Zk, for all k, is given by the leakage

function λ(D) which results from choosing the distribution

p (x̂n|xn) as the rate-distortion (without privacy) optimal

distribution.

Proof: The proof follows directly from noting that, for a

given jointly Gaussian distribution of the source and correlated

hidden sequence, pXnY n , the infimum in (8) and (9) is strictly

over the space of conditional distributions of the revealed

sequence given the original source sequence as a result of

the Markov chain relationship Y n − Xn − X̂n. Expanding

the leakage as I(Y n; X̂n) = h(Y n) − h(Y n|X̂n), and using

the fact for correlated Gaussian processes, Yk = αkXk + Zk,

for all k, where {Zk} is a sequence independent of {Xk}
and αk is a constant for each k, one can show that the jointly

Gaussian distribution of Xn and X̂n which minimizes (8) also

minimizes (9).

Remark 2: Theorem 3 simplifies the development of the

RDL region for Gaussian sources with memory for which the

rate-distortion function is known. For Gaussian sources with

memory the rate-distortion function is known and lends itself

to a straightforward practical implementation that we discuss

in the following section.

F. Rate-Distortion for Gaussian Sources with Memory

In general, the rate distortion functions for sources with

memory are not straightforward to compute. However, for

Gaussian sources, the rate-distortion function R(D) (without

the additional privacy constraint) is known and can be obtained

via a transformation of the correlated source sequence Xn to

its eigen-space in which the transformed sequence X̃n is a

collection of independent random variables with, in general,

different variances.

A standard approach to analyze correlated data is to project

the data to an orthogonal basis in which the leakage and distor-

tion constraints remain invariant. Since the data is random, we

project on to the principal axes of the n×n correlation matrix

GXX whose entry in the ith row and jth column is c (i − j)
defined in (1) for which the mean-square error (Euclidean

distance) function and the mutual information leakage are

invariant. Thus, while the constraints for the original and
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transformed measurements are the same, the advantage of the

transformation is that the resulting measurements in any block

of length n are statistical independent.

We write SX (f) denote the unitary transformation of the

correlation matrix GXX , i.e., SX (f) is the power spectral

density (PSD) of the time series process {X (n)}, at discrete

frequencies, f = 0, 1, 2, ..., n − 1. We henceforth refer to the

transform domain as the spectral domain in keeping with the

literature. Similarly, let SY (ω) and SXY (ω) denote the PSDs

of the {Yk} and the {XkYk} processes where SXY (ω) is the

transform of the cross-correlation function cXY (m) of the

two sequences. Let φ denote the Lagrangian parameter for

the distortion constraint (4) in the rate minimization problem.

Explicitly denoting the dependence on the water-level φ, the

rate-distortion function Rφ (D) and the average distortion

function D (φ) are given by [16]

Rφ (D) =

∫ π

−π

max

(

0,
1

2
log

SX(ω)

φ

)

dω

2π
(11)

D (φ) =

∫ π

−π

min (SX(ω), φ)
dω

2π
. (12)

Note that the water-level φ is determined by the desired

average distortion D (φ) = D. Thus, R(D) for a Gaussian

source with memory can be expressed as an infinite sum of the

rate-distortion functions for independent Gaussian variables,

one for each angular frequency ω ∈ [−π, π]. The “water-

level” φ captures the average time-domain distortion constraint

across the spectrum such that the distortion for any ω is the

minimum of the water-level and the PSD. The privacy leakage

λ(D (φ)) is then the infinite sum of the information leakage

about {Yk} for each ω, and is given by

λ (D (φ)) =

∫ π

−π

1

2
log

(

SY (ω)

SXY (ω)g (ω) + SY (ω)

)

dω

2π
(13)

where g (ω) ≡ (min (SX(ω), φ) − 1) .
Remark 3: The transform domain “waterfilling” solution

suggests that in practice the time-series data can be filtered

for a desired level of fidelity (distortion) and privacy (leak-

age) using Fourier transforms. The privacy-preserving rate-

distortion optimal scheme thus reveals only those frequency

components with power above the water-level φ. Furthermore,

at every frequency only the portion of the signal energy which

is above the water level φ is preserved by the minimum-rate

sequence from which the source can be generated with an

average distortion D.

IV. ILLUSTRATION

The following example illustrates our results. We assume

that the private information to be hidden is the measurement

sequence itself, i.e., Yk = Xk, for all k. For the meter

measurements modeled as a stationary Gaussian time series

{Xk} , we choose Xk ∼ N (0, 1) for all k ∈ I, and an

autocorrelation function

cm = E[XkXk+m] =















1 m = 0,
0.3 m = ±1,
0.4 m = ±2,
0 otherwise.

The power spectral density PSD (frequency domain represen-

tation of the autocorrelation function) of this process is given

by

S(ω) =
∞
∑

m=−∞

cm exp(imω) = 1+0.6 cos(ω)+0.8 cos(2ω),

− π ≤ ω ≤ π. (14)

In order to obtain the rate-distortion function Rφ(D) for this

source, for a given D we have to find the water-level φ
satisfying (12).

Figure 1 shows the PSD function cm. Determining φ is

equivalent to determining the height of the horizontal line,

such that the area below the curve and the line equals D as

given by (12). Having determined φ, Rφ(D) is then given by

(11). S(ω) takes its minimum value at ω0 = arccos(−3
16 ) ≃

1.7594. Thus, for D ≤ S(ω0) ≃ 0.1437, φ = D such that

R(D) = 1
4π

∫ π

−π
log (S(ω)/D) dω,which is the same as the

rate-distortion function for a Gaussian source with variance

σ̃2 = 1
2π

∫ π

−π
log S(ω)dω, i.e., when the distortion falls below

a certain threshold, the rate required to reproduce the source

at the receiver with the desired fidelity is the same as that of

a memoryless Gaussian source. Finally, since we have chosen

to hide the original meter measurements, for this problem, the

privacy leakage is the same as the rate distortion. The resulting

tradeoff between is shown in Fig. 2.

V. DISCUSSION AND CONCLUDING REMARKS

The theoretical framework that we have developed here

allows us to precisely quantify the utility-privacy tradeoff

problem in smart meter data. Given a series of smart meter

measurements X , we reveal a perturbation X̂ that allows us

to guarantee a measure of both privacy in X and utility in X̂ .

The privacy guarantee comes from the bound on information

leakage while the utility guarantee comes from the upper

bound on the MSE distance between X and X̂ .
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Our model of privacy, namely information leakage, does not

depend on any assumptions about the inference mechanism

(i.e. the data mining algorithms); instead it presents the least

possible (on average) guarantee of information leakage about

X , while the utility is preserved in an application-agnostic

manner. Our framework is also agnostic about how the per-

turbation is achieved; for example it can be achieved using a

filter such as a battery or by adding noise.

Modeling a smart meter as a Gaussian source with memory

and extending known results from rate distortion theory, we

show that a utility-privacy tradeoff framework can be con-

structed that gives tight bounds on the amount of privacy that

can be achieved for a given level of utility and vice-versa.

The critical parameter of choice in the utility-privacy tradeoff

is the water level φ, which in turn depends on the bound

on the distortion that is acceptable. The choice of φ dictates

the extent to which the original signal (meter measurements)

can be distorted and the rate Rφ (D) is the maximum data

precision allowed for which information leakage is at most

λ(D (φ)). In a practical context, the choice of φ is dictated by

the choice of the privacy-utility tradeoff operating point, which

in turn has to be negotiated between the energy provider and

consumer.

Our distortion model can be viewed as a filter on the load

signal X – it filters out all frequencies that have power below

a certain threshold (determined directly by φ). This filter is

novel and comes directly as a result of our model. From

a practical point of view, it makes sense in the following

way. From the appliance signature chart in [1], frequency

components that have low power typically correspond to

fluctuations in energy consumption that are short-lived, which

in turn are caused by appliances such as kettles and television

sets and transmit the bulk of information about underlying

human behavior. Frequency components that have high power

tend to caused by continuously running appliances such as

air conditioning units and refrigerators that reveal much less

about human behavior. Suppressing low power components

would thus reduce or eliminate the components of the signal

that are likely to be most revealing about human behavior

and thus match our intuition on privacy protection in smart

meter data. At the same time, our utility constraints guarantee

that most of the useful energy consumption information is

retained in the revealed load data. This holds out hope that we

can reveal significant energy consumption information while

at the same time protecting significant personal information

in a tunable tradeoff. This would be an interesting avenue

for further exploration. Another interesting avenue to explore

would be to apply and demonstrate the power of these concepts

in a practical context.
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