CSched : Real-time disk scheduling with concurrent 1/0O request
Carl Staelin, Gidi Amir, David Ben-Ovadia, Ram Dagan, Michael Melamed, Dave Staas

HP Laboratories
HPL-2011-11

Keyword(s):
Real-time disk scheduling, storage systems

Abstract:

We present a new real-time disk scheduling algorithm, Concurrent Scheduler or CSched, which
maximizes throughput for modern storage devices while providing real-time access guarantees,
with computational costs of O(log n). To maximize performance it ensures request concurrency
at the device and maximizes the depth of a new Limited Cyclical SCAN (L-CSCAN) queue that
optimizes the request sequence sent to the device. For realtime requests there is an additional
SCAN-EDF queue in front of the L-CSCAN queue to absorb bursts of realtime requests until
they can be drained to the L-CSCAN queue. The real-time guarantees are provided by managing
the worst-case latency at each stage of the pipeline: SCAN-EDF, L-CSCAN, and device. CSched
is configured by the tuple {A, o, 0, ©(r), N}, where A and ¢ are the minimal initial slack time and
workload burstiness and are properties of the workload, and where 6, 1(r), and N are the
deviceworst-case latency, worst-case throughput rate time for a request, and maximal number of
concurrent requests, and are experimentally determined properties of the storage device. An
experimental evaluation of CSched shows that given sufficient initial slack time, the system
throughput performance costs of providing real-time guarantees are negligible.

External Posting Date: January 21, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: January 21, 2011 [Fulltext]

© Copyright 2011 Hewlett-Packard Development Company, L.P.



CSched Real-timedisk scheduling with concurrent I/O requests

Carl Staelin, Gidi Amir, David Ben-Ovadia, Ram Dagan, Miehslelamed, and Dave Staas
Hewlett-Packard

Abstract tees.

. . . . Real-time disk scheduling is an old and important
We present a new real-time disk scheduling algorithm g b

. e topic, but most work assumes that it is scheduling for
tChoncquenttfSche%uleortCScheg Wh'Ch ??X'm'ze_; a single disk, and that it is the only scheduler in the
roughputfor modern storage devices while providing, , However, most large systems no longer use solitary
real-time access guarantees, with computational costs %a

o T T ; it isks, but rather arrays of disks, usually with some data
(logn). To maximize€ periormance It ensures requestredundancy, so storage performance increases as you al-
concurrency at the device and maximizes the depth of

. . W more concurrent requests, particularly with small re-
new Limited Cyclical SCAN (L-CSCAN) queue thatop- oo Also, nearly all disk devices incorporate an in-

:!m|zes the r;aqijhest sc_equencgds_te_nt t? ?g:ﬁvggi:':or reat'lligent positional-aware disk scheduling algorithm so
Ime requests there 1s an additiona ) queug, many instances the disk itself may do more intelli-

ifn front of thte L-(i?tCrZIAN quege ;O gbszrtb t;ﬁrslt_sgfsrg:klgent and efficient scheduling than external schedulers.
Ime requests untit they can be drained fo e L- Finally, disk scheduling may be present in multiple lo-

queue. The real-time guarantees are provided by manadtions in the hardware, such as the disk itself and the
ing the worst-case latency at each stage of the plpellne"QAlD controller

SCAN-EDF, L-CSCAN, and device. CSched is config- '
ured by the tuple{)\, o, d, 7(r), N}, whereX ando

are the minimal initial slack time and workload bursti- L[ [ [] cSched
ness and are properties of the workload, and where |

7(r), andN are the device worst-case latency, worst-case I I | I I I (ON
throughput rate time for a request, and maximal num- |

ber of concurrent requests, and are experimentally deter- I | | I I I RAID controller
mined properties of the storage device. An experimental :

evaluation of CSched shows that given sufficient initial | | | disks
slack time, the system throughput performance costs of o AEmnl —m

providing real-time guarantees are negligible.

1 Introduction

CSchedis a real-time disk scheduling algorithm for
mixed real-time and non-real-time workloads that is de- ) )
signed to provide performance similar to non-real-time Figure 1. Multi-level scheduler.

disk schedulers. It does this by maximizing disk request

concurrency; the system will never reduce the number As shown in Figure 1, we are building a multi-level
of concurrent outstanding requests at the storage devicgcheduling solution. The application can only submit
in order to satisfy a real-time deadline. It uses a vari-disk requests to the operating system; it cannot influ-
ant of the simple and efficient scheduler, Cyclical Scanence or control any of the scheduling decisions taken
(CSCAN) [34], to provide performance as close to op-at the other schedulers in the operating system, RAID
timal as possible while still providing real-time guaran- controller, and disk. In particular, the application must




assume that: (1) requests are non-preemptible, (2) corion of disk addresses. Their deadlines were uniformly
current requests may be serviced in any order, and (33paced through time to match the desired throughput
the operating system and device schedulers may not bate given the request size. New real-time requests were
fair and may starve requests. In addition, the applicaadded to the queue when needed to ensure the thirty sec-
tion’s scheduler should submit requests to the operatingnd initial slack time, regardless of whether or how pre-
system in a way that allows the lower-level schedulers tovious real-time requests had already been serviced.
optimize performance, while still providing the soft real-
time performance guarantees. . . 2 Prior Work

From a performance standpoint, the intra-device

queues are responsible for the more sophisticated rotarpere is a rich body of work on disk scheduling algo-
tional positional aware scheduling within the relatively rithms for non real-time applications and environments.
small set of concurrent requests. The job of the applicaa ¢|assic algorithm which requires minimal complexity
tion scheduler is to try and cluster requests as closely i q provides acceptable performance is the SCAN [6],
space and time so that the low-level, intra-device schedy, glevator algorithm, also sometimes called LOOK. In
ulers have a richer set of optimization possibilities be-ig case, pending requests are sorted according to disk
cause at any given pointin time, the small set of concuryffset and are submitted to disk in order. When the al-
rent requests are clustered tightly enough that the rotggorithm reaches the end of the disk, it reverses direction.
tional positional aware scheduling can make a differencep petter variant of this algorithm is Cyclical SCAN or
We definethroughputrate times the average time be- CSCAN [34], and a variant called Cyclical LOOK or C-
tween request completions, which may be defined as theoOK [22]. In this case, when there are no more re-
inverse of the IOPS. Throughput rate times usually dequests in the current direction of travel, it jumps to the
pend on at least the request size, whether the request figst request and begins again. This approach has bet-
Sequential or random, whether it is a read or write operter performance than SCAN and may also result in bet-
ation, and the number of concurrent requests allowed &r fairness. N-Step SCAN [7] is a variant of SCAN or
the device. We define worst-case throughputrate time fot SCAN designed to improve fairness, or rather to limit
a request as(r), which is the throughput rate time with ynfairness, whereby the request stream is divided into
full N concurrency for a fully random request stream. As v-request sized chunks, and SCAN is used within each
described in Section 3;(r) is measured experimentally chunk.
offline. We use this value instead of the average service However, these early algorithms overlook one aspect
time of a request because of the concurrency of the syssf modern disk drives, namely that rotation delay may
tem. Using throughput rate time as the expected resourdge dominant compared to seek time for short seek dis-
requirement for a request allows simpler and more accutances. A variety of algorithms, such as shortest time
rate accounting of expected device utilization. first (STF), grouped shortest time first (GSTF), and aged
The results of various performance experiments arghortest time first (ASTF) [36, 16, 45], attempt to im-
presented throughout the paper. These results wergrove disk utilization and throughput by taking into ac-
generated on an HP DL380 server with two quad-corecount rotational position as well as seek position, result-
2.93GHz Intel Xeon X5570 processors and 8GB of RAMing in generally improved utilization. Pure STF tends to
running Windows Server 2008 64-bit. The storage ar-suffer from starvation and long maximal service times.
ray used for the performance testing was built from eightGSTF and ASTF attempt to reduce these issues by forc-
146GB 15k RPM SAS disks, attached on two SCSI caing STF to occasionally “jump” from one area of the disk
bles (four disks on each cable) to an HP P410i storagéo another, which likely also has a higher density of wait-
controller. The storage was configured into a RAIDO ar-ing requests. Later innovations also took into account
ray with 128kB stripes and a total usable size of 1.1TB.on-disk caching and pre-fetching, yielding further per-
The software accessed the raw device directly, ratheformance improvements in some cases [45].
than using a file system, and it utilized threading and Starting in the early 1990's, SCSI disks [1], and later
Windows’ asynchronous 1/O capabilities to send multi- ATA disks [15, 5], supported multiple concurrent disk
ple 1/Os to the device at once. requests utilizing positional aware disk scheduling al-
Unless otherwise stated, the benchmarks used gorithms in the disk to provide higher performance. In
closed-loop environment with uniform random disk ad- combination with the widespread adoption of RAID de-
dresses. Usually there were four thousand (4,000) bestices, device-level support for concurrent 1/O requests
effort read requests in the queue waiting to be sent to theneans that it is generally necessary to send multiple con-
device, and the device had sixty (60) concurrent requestg&urrent requests to storage devices to obtain optimal per-
Real-time requests usually had an initial slack time offormance. This shift to concurrent I/0Os and intra-device
thirty (30) seconds, and used a uniform random distribuscheduling means that even physical clients of storage ar-



rays have at least a three-level scheduling solution: tlienitation that they only schedule a single request at a time
operating system, controller, and disk. Additionally,lwit to disk, which limits performance on multi-disk RAID
the advent and popular adoption of virtualization tech-systems by ignoring available parallelism and on single-
nologies, the single operating system scheduler in thelisk systems by not leveraging the disk’s internal rota-
client may be replaced with the scheduler in the virtualtional position-aware scheduler which may further im-
client OS and potentially a second scheduler in the virprove performance. In addition, these algorithms are typ-
tual monitor. This layering of schedulers may result inically computationally expensive.

unexpected and undesired scheduling behavior [47]. DS-SCAN [10] manages a mix of real-time and best-

As an aside, this trend towards virtualization andeffort requests by ensuring that real-time requests are is-
shared resources makes real-time scheduling difficult osued in time to meet their deadlines but otherwise uses
impossible, as accurate worst-case service estimation ifficient non-real-time scheduling. It is a combination
non-trivial when the low-level device may behave unpre-of earliest deadline first (EDF) real-time disk scheduling
dictably due to competing requests from other systemand CSCAN disk scheduling. When real-time requests
and the lack of any priority system at the hardware in-are not in danger of missing their deadlines, both real-
terconnect layers. Unless or until such functionality istime and best-effort requests are passed to storage one
added to the standard I/O interfaces, real-time systemat a time using the CSCAN algorithm. However, when
must use dedicated hardware that behaves in a reasosdbmitting a request might cause a real-time to miss its
ably predictable fashion. However, there has been recerteadline, DS-SCAN submits the nearest-deadline-first
work on improving fairness and performance isolationrequest, regardless of its “position” on the disk. DS-
for such shared storage servers, such as[35, 8,11, 12, 18|CAN is similar in effect, although not architecture, to

Typically, real-time systems avoid using disks, be-the “slack-stealing” solution developed as part of RT-
cause of the variability in disk access latencies. How-Mach[24]. CDS-SCAN [37] extends DS-SCAN to allow
ever, with the advent of applications such as video-onand account for concurrent outstanding requests at the
demand in the early 1990s, with soft real-time constraintglevice, yielding significant performance improvements
and massive data storage requirements, real-time diskhen using RAID devices.
scheduling algorithms became important, and research Nearly all the papers assume that the worst-case ser-
in this area blossomed over the last two decades. A wideice time must be used for all requests when analyzing
variety of real-time disk scheduling algorithms have beenor managing a stream of real-time requests, meaning that
developed, largely for these multimedia storage serverthe system assume that every single request in a stream
[29, 24,14, 2,4, 25, 3, 38, 13, 30, 19, 27, 39, 48]. will (or may) perform in a worst-case fashion. In con-

A simple algorithm is earliest deadline first (EDF) trast, Fahrrad [27] assumes that a batch of requests will
[21], where requests are processed according to the dealle served in the average service time, and the worst case
line order, from earliest to latest. However, this algarith assumption isV - 5 + s+ WhereN is the number of
is known to suffer from poor disk performance becausgequests in the batch,is the average service time for a
it makes no attempt to minimize seek and rotational defequest, and .. iS the worst case service time for a
lays [29]. SCAN-EDF [29] is a variant developed for request. However, Fahrrad also has the assumption that
multimedia systems, where large batches of I/Os are subin a given batch it may cancel requests (not submit them
mitted periodically, so many I/Os have the same completo the disk) if the system is running behind and sending
tion deadline. The variation is that all 1/Os with the samethe next request to the device may cause the batch to use
completion deadline are processed in SCAN order, yieldmore than its allotted worst-case time estimate. For ex-
ing far higher performance than EDF in this application. ample, if at request, k < N, N -5 < 3% s;, then the

One approach used by a variety of real-time diskremaining requests in the batch are postponed to the next
scheduling algorithms, such as [4, 3, 25, 2, 19] is toPeriod.
build an initial EDF-based schedule, and to then revise Only one paper [14] appears to investigate concurrent
that schedule to optimize latencies (typically just seekl/O with a real-time scheduler, EDF [21] and SCAN-
delays) while still meeting the deadline requirements EDF [29], and found that performance improved when
For example, one approach is to sequentially find theallowing a second request to be overlapped with the first
maximal group of EDF requests whose requests may beequest. In this paper most of the gain was obtained by
scheduled in SCAN order [2]. Some variants can alsocoverlapping execution of different portions of the I/O ser-
incorporate or intersperse best-effort requests in the revice, such as SCSI protocol overheads for the next re-
quest stream, such as RG-SCAN [3]. Related algorithmgluest overlapped with the seek, rotational, and data trans-
include MS-EDF [13], which uses a branch-and-boundfer delays of the previous request.
search strategy to find a minimal seek cost disk sched- One recent paper [41] appears to improve performance
ule. However, all these approaches suffer from the lim-by briefly idling the disk after completing synchronous



disk requests, in the expectation that an application willvice when a real-time request is in danger of missing its

quickly submit a request for the next block. deadline. Option (2) starves the intra-device schedulers
pClock [12] is the most similar to our proposed so- of alternative requests to service and forces it to service

lution, except that it allows itself the freedom to revise the threatened request. As we shall see, it is vital that

deadlines if a real-time stream uses more allocated bandhe concurrency be maximized at all times or else perfor-

width. It allows concurrent requests to be sent to themance suffers. This means that we must submit real-time

device, but it assumes that requests will finish within arequests to the device at least the worst-case service time

small ammount of time. It characterizes workflows us-in advance of their deadlines so that they will complete

ing 3-tuples: (o, p, A), whereo is the maximum burst in time.

size (number of 1/0s)p is the arrival rate (in 1/0s per

second or IOPS), anilis an upper bound on the latency

of an I/O request (in ms)pClock uses deaky bucket

model [26, 32] with the parametessandp above to de- & 100

~

scribe and limit a real-time stream’s request submissio
rate and burstiness. Briefly, the leaky bucket model may=
be described as follows. Trarival functionfor a re-
quest streami(s, t) is the total number of I/O requests
man in the time intervals, t]. A request stream iwell
behavedf R(s,t) < o + p(t — s) for all time intervals ]
[s,1]. | 1MB
Empiric disk modeling and characterization has been 1
done for years [31]. Often such models assume some 50 100 150 200
general knowledge of the internal workings and data Outstanding I/Os
layout of the disk drive, sometimes with more detailed
knowledge discovered by querying the device [46, 33]. Figure 2: Throughput vs. Outstanding I/Os
However, aggregated storage devices, such as disk ar-
rays, are far more complex, so it is difficult or impossible Figure 2 shows throughput as a function of request
to develop accurate low-level models of all the parts [43].. ;¢ ;rrency at the device for two representative request
One approach has been to treat the prediction of requeg{zes, 4kB and 1MB. The benchmark was done using a
;ervices_tir_nes and device throughput as a machine Iea”&]osed-loop system with four thousand (4,000) requests
ing prediction problem [17, 23, 42, 40, 44]. In general, ;siny 5 yniform random distribution of disk addresses,

the models can accurately precisterageresponse time 54 ‘hassed through a CSCAN queue. Clearly there is

and throughput as a function of device load (number ofgjynificant performance benefit to using concurrent re-

pending or concurrent requests) and workload (randomests hut the benefits seems to reach the knee of the

10

Throughpu

versus sequential). curve by about sixty (60) concurrent requests. Since this
is also about the maximal concurrency available in the
3 Device Characterization SCSiI protocol, we use this as the default concurrency for

our device in the rest of the experiments.

In order to provide real-time guarantees, we must first Figure 3 shows throughput as a function of the request
characterize the device. There are a number of paransize when there is a single request at a time at the device
eters that may impact the device performance, such agnd when there are sixty concurrent requests at a time.
concurrency, request size, and request sequentiality. AcFhis curve demonstrates that the benefits of utilizing the
curately characterizing the device is complicated by theavailable concurrency are consistently significant across
fact that there are potentially several devices intergctin the whole range of request sizes, and not just a few sizes.
in interesting ways, such as the disk scheduler within the Figure 4 demonstrates how performance changes as
operating system, the disk scheduler and write cache il function of the size of the CSCAN queue size. The
the RAID controller, and the disk scheduler in the disklarger the CSCAN queue is, the better job the CSCAN
itself. queue can do of clustering requests in space and time.

Once a real-time request has been sent to the devicghe more tightly clustered requests are when they are
the application may not cancel or interrupt the requestsent to the disk, the better job the rotational positional
The only way to ensure that outstanding real-time re-aware scheduler may do to service multiple requests in a
guests complete in time is to either: (1) submit real-timesingle rotation [9]. In fact, if you look at the two curves
requests far enough in advance so that they always conwith sixty outstanding requests in Figure 4, you can see
plete in time, or (2) not send any more requests to the dethat as the CSCAN queue size increases, so does disk



We must measure the device's worst-case latency and
throughput rate time for random and sequential request
streams and store them in a configuration file. Calculat-
ing or determining worst-case service latency becomes
much more interesting as soon as there are multiple out-
. standing requests at the disk, as there are a variety of
104 .~ new aspects that must be taken into account. For ex-

1 ample, there is the queuing algorithm in the disk itself,
—— 1 outstanding which may be an algorithm such as SATF, which is not
4 60 outstanding “fair” and may starve requests [16]. Similarly, if there

3 are N concurrent requests outstanding at the disk, how
does one compute the worst-case service time for those
requests, especially if the requests were sent to the disk
over time and so they do not have identical start times?
To make matters even more difficult, workloads may
have a mixture of request sizes, so how is that taken into
account? The short answer is that we avoid all those is-
sues by measuring the worst-case latency with full con-

———————————————————————— currency, across the spectrum of request sizes, and across
T the range of CSCAN queue sizes, and choose the maxi-
mal value.

100+

Throughput (MB/s)

i T T T I T T T T T I T T T 1
1k 4k 16k 64k 256k 1M 4M  16M
Request size (MB)

Figure 3: Throughput vs. Request size

100~

10 o 1500
] outstanding 1, request size 4kB ]
]- — - outstanding 1, request size 1MB
1------ outstanding 60, request size 4kB
1--—-- outstanding 60, request size 1MB

Throughput (MB/s)

1000+

AL AL AL rorrrTm
1 10 100 1000

Queuesize

latency (ms)

500

queue size 1
Figure 4: Throughput vs. CSCAN queue size 1 queue size 4000

0 ; ; ; : : : .

1k 4k 16k 64k 256k 1M 4M  16M
throughput. request size (MB)

Clearly, it is important tdooth maintain concurrency
and maximize CSCAN queue size to maximize through-  Figure 5: Worst-case service time vs. request size
put. For this device, and likely for most disk arrays,

throughput increases as a function of concurrency and Figure 5 shows the worst-case latency as a function
CSCAN queue size. Concurrency, up to about sixty re-of request size, with a purely random request stream for
quests, is more important than CSCAN queue size, sgixty outstanding requests, with both a large 4,000 re-
maximizing concurrency should be prioritized over max-quest CSCAN queue before the disk, and without any
imizing CSCAN queue size. gueue before the disk. One interesting observation is
It is important that performance not degrade as loadthat the worst-case time is shorter when the requests are
increases, because otherwise the system can get intogiven in random order (CSCAN queue length 1). This
negative feedback cycle where increased load causes dsuggests that perhaps the lower-level schedulers are us-
graded performance which causes further load increaseing an unfair scheduler such as SATF or ASATF [16, 45]
So long as the algorithm is able to maximize concur-and since the CSCAN does such a good job of clustering
rency, or at least maintain maximal concurrency underrequests spatially, once the head moves away from a re-
load, and so long as increased load yields increasing, ajuest, that request can starve. A second observation that
non-decreasing, CSCAN queue sizes, performance willhe worst-case service time for 60 outstanding requests
not decrease under increased load. and a CSCAN queue of 4,000 requests is relatively sta-
Assuming we are given a device which we will con- ble at about 1,100ms across nearly the whole range of re-
trol using CSched, how do we characterize that devicequest sizes, suggesting that the lower-level scheduler has



some sort of anti-starvation parameter with a threshold otial and random operations. If the storage system is us-
aging parameter set to about that value. Since worst-caseg RAID5 or some other configuration where there is an
performance is generally much worse for larger CSCANasymmetry between read and write operation costs, then
gueue sizes, and since itis relatively stable across réequethe characterization should measure the throughput rate
sizes, approximating the worst-case latency by the maxtime for the cross product of read vs. write, and random
imal value, about 1.6 seconds, generally doesn’t overvs. sequential configurations.
estimate the worst-case by much. Additionally, some larger and more modern storage
The worst-case throughput rate timg-) is measured systems automatically manage the placement of storage,
using an experiment similar to that in Figure 2, exceptso it is difficult or impossible to ensure that the actual
with an empty CSCAN queue so that the device is prephysical disks holding the data for the logical disk, usu-
sented with a uniform random request stream. The conally called a LUN, that is being used for the real-time
figuration file simply stores the worst-case latency withdata transactions, does not have other conflicting traf-
full concurrency and the worst-case throughput as a funcfic from other LUNSs that happen to be held on the same
tion of request size. physical disks. In this case, probably the best option, if it
is available, is to use some algorithm or solution such as
pClock [12] to manage or control the data rates available
to each LUN and configure CSched for those guaranteed
worst-case rates. If that is not possible, then probably
the best option is to characterize the LUN when other
3 LUNs are under load, and then add a fudge factor to the
1o U measured values worst-case service time and through-
e - put rate times to provide additional protection against
014 resource contention caused performance reductions. It
I random . may also be possible or desireable to dynamically track
—-—- random, queue size 4000 . .
] sequential the observed throughput rate times to dynamically con-
0.01 — trol the system in response tc_> the current activity and per-
1k 4k 16k 64k 256k 1M 4M 1em formance of the storage device.

request size (MB)

10

throughput rate time (ms)

Figure 6: Throughput rate time vs. request size, for ran—4 Architecture

dom requests
SCAN-EDF OS &
Figure 6 shows the throughput rate time as a funCyeyl_time L-CSCAN  device
tion of request size for various request streams with sixty
(60) concurrent requests at the device. The Worst-caslgzest_effort CiﬁﬁﬂN :ﬂ]ﬂ]#:ﬂ]]]]
throughput rate time is the random request stream, be-
cause _the request stream, as submitteq to the deViCSackground:ﬂ]]]]
is maximally randomized. For comparison, we also
show the throughput rate time when the request stream g ¢ >|< 9]
is passed through a CSCAN queue that holds 4,000 re- SCAN-EDE L-CSCAN  OS & device
guests, and the improved reference locality does improve
performance, especially for smaller requests where the . . .
. . estimate estimate estimate
seek and rotational delay overheads dominate the to- A
tal transfer costs. Performance for sequential request|< H
streams is by far the best.
We computer(r) using a set of lookup tables derived Figure 7: CSched architecture
from the data in Figure 6. There is one table each for
random and sequential requests, holdi(ig) for various The architecture of CSched is shown in Figure 7. Just
request sizes. When necessary, we linearly interpolatbefore the device, with its internal black-box queueing,
between measured values. there is an L-CSCAN queue, which provides worst-case
One note is that RAIDO does not incur any additionalqueueing delay guarantees, and which may contain real-
penalty or overhead for write operations compared tatime, best-effort, and background requests that are sorted
read operations, so the models here do not include sefir CSCAN order to maximize performance. To help limit
arate values for read and write operations, just sequerthe worst-case queue delay, the L-CSCAN queue size is

Wworst-case worst-case worst-case

Total worst-case estimate



bounded, so new requests may have to wait to enter thand potentially unlimited worst-case performance, par-
L-CSCAN queue. To the left of the L-CSCAN queue, ticularly when the request stream contains a significant
there is a SCAN-EDF queue for the real-time requestdraction of sequential requests. The behavior that results
which are also waiting to be admitted to the L-CSCAN is that once the CSCAN scheduler reaches the first se-
gueue, and CSCAN queues for the best effort and backguential request, the scheduler keeps servicing the se-
ground requests that cannot yet be admitted to the Lguential requests. Since each dispatch of a sequential
CSCAN queue. request will often result in the submission of another se-

The CSCAN, L-CSCAN, and SCAN-EDF algorithms quential request, the CSCAN scheduler can be “stuck”
are discussed in more detail in Sections 5, 6, and 7.1 reservicing the sequential requests for arbitrary and un-
spectively. bounded periods of time. This means that the tradi-

Figure 7 also suggests how one must calculate antlonal CSCAN architecture may offer rguaranteesas
control the worst-case behavior of the various element$ worst-case queueing delay. The solution is to limit
to ensure that the real-time deadlines are met. Since thiée time duration of a single scan, and once that limit
system is configured as a pipeline, each element of this reached, new requests are scheduled for the next scan
pipeline may be considered independently: SCAN-EDFregardless of their location on the device.

L-CSCAN, and OS & device. The burstiness or variability of the real-time load im-
Most of the configuration parameters are shown inpacts the worst-case time budget allocation. One option
Figure 7. X is the smallest initial slack time for real- isto measure the burstiness, and another option is to have

time requests, and is a workload characteristic given téhe application declare its burstiness. Similar to the L-
CSchedy is the burstiness of the workload as computedCSCAN queue, the time a real-time request spends in
using aleaky buckemodel as in [26, 32, 12], except that the SCAN-EDF queue is a function of the length of the
instead of being specified in terms of requests it is specSCAN-EDF queue and the worst-case throughput rate.
ified in terms of time. Similar to [12] we define tlee- ~ The purpose of the SCAN-EDF queue is to absorb bursts,
rival function of a request stream to (s, ¢) and itis ~ and hold the real-time requests until they may be submit-
the sum of the worst-case throughput rate timgg for ~ ted to the L-CSCAN queue. Using a SCAN-EDF queue
all requests made in the time interyal¢], or R(s,t) =  ensures that real-time requests are submitted to the L-
27’7:6(8715) 7(r;). We definer = max; {R(s,t)—(t—s)} CSCAN_queue acco.rding to deadline and reduges the
for all time intervals[s, t]. & is the worst-case device la- probability that real-time requests that are submitted to
tency, and is measured experimentally offline, along WithCSched out of order will miss _their deadlines. In addi-
7(r). N is the maximum number of concurrent requeststion, when the request stream is very bursty, so many re-
allowed at the device( is a derived configuration pa- guests share a common deadline, requests with the same
rameter that governs the maximal delay allowed in thedeadline are sorted in SCAN order, which makes it easier
L-CSCAN queue. for the L-CSCAN queue to process the real-time requests
Please note that this is a general architecture whict @ Single pass, or at least in as few passes as possible.
may be modified to fit other requirements. For exam-
ple, itis possible to replace the single best-effort CSCAN5  CSCAN
gueue with a Fahhrad-like queueing system [27] to en-
sure fairness of best-effort request streams across multéSCAN is a well known, popular, and efficient disk
ple clients. scheduling algorithm. For random request streams, it has
The central element of the architecture is the L-excellentfairness characteristics, and optimal or near op
CSCAN queue, which is a fair variant of the mostly-fair timal performance, especially when used in a layered ar-
CSCAN with bounded worst-case queue delays. Sincehitecture with a positional-aware scheduling algorithm
we need to ensure that all real-time requests enter the Lat the device[9].
CSCAN queue in time to meet their deadlines, then we CSCAN consists of two algorithmgidd and Pop, as
need to allow extra time in the budget for requests curshown in Figures 8 and 9, which add a new request to the
rent in the L-CSCAN queue to drain to make room for queue and schedule the next request respectively.
real-time requests. The worst-case time inthe L-CSCAN CSCAN is often implemented using a pair of ordered
gueue is a function of the number of requests in the queusets, one current and one next. The current set contains
and therate at which those requests are served. those requests whose addresses are greater than the cur-
We based L-CSCAN on CSCAN because of its fair- rent disk location, while the next set contains those re-
ness properties [20, 28] and because it interacts weljuests whose disk locations are less than the current disk
with lower-level schedulers [9] yielding nearly optimal location. There is also the notion of the current disk head
overall system performance. However, we could not usdocation, of f set , which sweeps from one end of the
CSCAN because it occassionally has fairness problemdisk to the other, before jumping back to the beginning.



1: Algorithm Add(Requestr) 6 Limited CSCAN

2: if r.offset< offsetthen

3 next.insert(r) We introduce a new variant of CSCAN, the Limited

4: else CSCAN, or L-CSCAN, algorithm which provides hard

5. curr.insert(r) guarantees on the worst-case queue delay. The behavior

6: end if that causes starvation is the potentially unlimited dura-

tion of a single scan. Assuming that the size the queue is

Figure 8: Adding a request to CSCAN limited, then we can control the length of a single scan

with additional tests before adding new requests to the
current scan.

Algorithm Add in Figure 8 shows the algorithm for ~ Compared to CSCAN, L-CSCAN needs has one new
adding a new request to a CSCAN queue. Essentially, itonfiguration paramete¢, and four new state parame-
the request's address is smaller than diid set , then  ters:st art , 7o, Toest, andcl osed, and it relies on
the request will need to be serviced in the next scan so igccurate worst-case throughput rate time estimates
is added to theext set. Otherwise the request’s addressfor each request; defines the maximum time a request
is greater or equal to the current head location and thenay wait in the queuest art is the time at which the
request can still be processed in this scan, so it is addeglirrent scan startedy.,.. = 3, ... 7(r) is the sum
to the current seturr . of the expected throughput rate times for the requests in

In our implementation, the current and next sets areghe current scan7,cat = Y. cpeqe 7(7) is the sum of
implemented using C++ STL set classes which are imnthe expected throughput rate times for the requests in the
plemented as binary trees, sothesert ,del et e,and next scan, andl osed is a boolean specifying whether
smal | est operations each tak@(logn) time. In this  new requests may still be added to the current scan.

case, Algorithm Add in Figure 8 také&3(log n) time. The worst-case throughput rate time estimate) is
derived from the experimental assessment of the stor-
1: Algorithm Pop() age device from Section 3. It would take into account
2: if curr.empty(then three characteristics of the requestze, read | write,
3. Swap(curr, next) andsequential, wheresize is the request size in bytes,
4: end if read | write specifies whether the request is@ud or
5: result«— curr.smallest() awrite request, andequential is a boolean that spec-
6: curr.delete(result) ifies whether the request is sequential or not. In gen-
7: offset« result.offset eral,sequential may be determined using a simple filter,
8: return result but in the general casequential merely states whether
there is a pending request in the queue with the same
Figure 9: Popping a request from CSCAN read | write state as the current request that addresses

the bytes immediately preceding the start address of the

Algorithm Pop in Figure 9 shows the algorithm for CUrrentrequest.

choosing the next request to be submitted to the device. ;. Algorithm Add(Request r)
First, it checks to see if the current scan is done; and ,. if offset< r.offset AND§ < (now() - start) +7.,,,.
if it is, then it swaps the current and next sets to begin 7(r) then
the next scan. It then chooses the smallest request in;.  |osed— true
the current scan and does some basic bookkeeping 0py. end if
erations: removing the chosen request from the currents. if 1 offset< offset OR closedhen
set and updating the current head location. Algorithm . next.insert(r)
Pop also take§)(log n) time. Note thatitis possibleto ;. 7 . 7 4 (r)
create an implementation of the set data structure thatg. gge
merges the two operationsurr. smal | est () and o:  currinsert(r)
curr.del ete() into a single operation, or at least 5. 7 . 7 +7(r)
that does not require a second traversal of the tree strucg;. gng if
ture, yielding a factor of two performance improvement.
With a uniform random access stream, the worst-case Figure 10: Adding a request to L-CSCAN
delay in a CSCAN queue is proportional to rougly,
or twice the queue size. With mostly sequential ac- Algorithm Add in Figure 10 shows the Limited
cess streams, the worst-case delay may be effectively uteSCAN algorithm. The primary differences betwen Al-
bounded. gorithm Add in Figure 8 and Algorithm Add in Figure 10



is the test at Line 2 that checks whether adding this reSCAN-EDF, L-CSCAN, and device modules. Since the
guest to the current scan would cause the scan to exceelgvice time budget is defined solely by the device worst-
the allowed time. Since all requests will be serviced bycase service time, this i The next step is to determine
the end of the second scan, the maximum time allowedhe time budget which must be allocated to the SCAN-
for a single scan ié. Because the primary differences EDF queue to absorb bursts, and this is simply the time
between Algorithm Add in Figure 8 and Algorithm Add required to process the largest burstcor Finally, the

in Figure 10 are th€(1) tests and sums in Lines 2, 3, 7, remaining budget is assigned to the L-CSCAN queue,

and 10, the running time is stild(log n). leaving( = A — o0 — 4.

1: Algorithm Pop() 1: class CSched

2: if curr.empty(then 2.  LCSCAN* Icscan

3:  Swap(curr, next) 3:  Sched** pending

4. start— now() 4: int nqueues

5: Z:u,rr — Lnext 5: time_t g

6. Theaxt < O 6: CSched(time.t o, time.t \, time.t §)

7:  closed«— false 7. (—WAN—0-9)

8: end if 8: lcscan— new LCSCAN()

9: result— curr.smallest() 9:  pending— new Sched*[nqueues + 1]
10: curr.delete(result) 10:  pending[0]— new SCANEDF

11: offset« result.offset 11:  for iin 1:nqueuesio

12: Tewrr < Tewrr - 7(7) 12: pending[i]«— new CSCAN

13: return result 13:  end for

Figure 11: Popping a request from L-CSCAN Figure 12: CSched data structure and initialization

_The primary differences between Algorithm Pop in - g re 12 describes the CSched data structures and
Figure 9 and Algorithm Pop in Figure 11 are the gnqs how the various elements are initialized.
bookeeping changes in Lines 3 — 7 to reset the various

state variables at the beginning of each scan and in Line1: Algorithm Add(Requestr)
12 to updatel,.,,,, S0 the running time is stitD(log n). 2. if Tpesoan +7(r) < % then
The reason we developed L-SCAN rather than us- 3:  {L-CSCAN is not full
ing an existing algorithm such as N-Step SCAN [7]is 4: Icscan.Add(r)
that disk performance is optimized with longer scans. s: gseif 0 < r.deadlinehen
CSCAN yields scans that are as long as possible, ande:  {real-time request
longer in some cases, and as a result its performancer.  pending[0].Add(r)
is excellent. N-Step SCAN arbitrarily limits the num- g glse
ber of requests that can be bundled into a single scan tog:  {best-effort or background requést
N, which can provide tighter guarantees on worst-casejo:  pending]r.priority]. Add(r)
queue delay time, but the scans would generally be muchi: end if
smaller than necessary, which may result in much worse
performance than necessary. Figure 13: Adding a request to CSched

7 CSched Algorithm Add in Figure 13 shows how requests
are added to the CSched queue. Please note that
CSched is designed to provide optimal, or near optimalZ;,cscan = Zewrr + Tnest, and is the sum of the worst-
performance, with minimal performance penalty for of- case throughput rate times for all requests currently held
fering real-time deadline guarantees. In addition to ann the Icscan queue. First, if adding the request to the L-
accurate device characterizatiéf 7(r), N} from Sec- CSCAN queue would not cause it to exceed the allowed
tion 3, it requires two workload-related configuration pa- size (as specified in terms of time according to Algo-
rameters:{o, A}, with o defined as the maximal burst rithms Add in Figure 10 and Algorithm Pop in Figure11),
size in seconds anddefined as the minimal initial slack then the request is simply added to the L-CSCAN queue.
time for real-time requests. Otherwise the request is added to the appropriate pending
The primary internal configuration parameter is thequeue, which is SCAN-EDF for real-time requests and
allocation of the available time budget, between the CSCAN for best-effort and background requests. Note



that this code is general and may use any other scheduscheduling delay is limited so that real-time guarantees

ing system for these non-real-time requests. may be provided by the solution as a whole.
1. Algorithm Pop() 71 SCAN-EDF
2: result— Icscan.Pop()
3: for i =0 to nqueueslo The SCAN-EDF queue absorbs bursts, so we can limit
4. if pending[i]-emptythen the size of the L-SCAN queue to provide the real-time
5: r — pending[i].Head() guarantees. The primary reason for using a SCAN-EDF
6: if Tnescan +7(r) > % then rather than a FIFO or EDF queue is for potentially im-
7 {L-CSCAN is now full proved performance, particularly with bursty workloads,
8 return result and as some small protection against clients who do not
9 end if necessarily submit real-time requests in order with re-
10: r «— pending]i].Pop() spect to deadlines.
11: Icscan.Add(r) For example, our workload tends to be very bursty,
12:  endif with new “batches” of data needed every 130ms, where
13: end for a batch may contain as many as thousands of small re-
14: return result quests which are submitted to the storage device in ran-
dom order with respect to the disk address. In this case,
Figure 14: Popping a request from CSched using SCAN within each batch means that the requests

are sent to the L-CSCAN queue in a partially optimized

Algorithm Pop in Figure 14 shows what happens WhenfaShion, so the overall throughput may be maximized.
one removes a request from the queue to submit it to the
storage device. First the algorithm removes the nextre7 2 CSCAN schedulers
guest from the L-CSCAN queue in line 2. Since remov-
ing a request from the L-CSCAN queue likely meansThe CSCAN schedulers hold non-real-time requests un-
that there is now room to add a request from the pendtil there is space available in the L-CSCAN queue. Re-
ing queues, the system iteratively checks each pendinguests are passed from these queues in priority order, so
queue, starting with the real-time SCAN-EDF queue,for example background requests would only be passed
looking for requests. So long as there is room to add refrom the background CSCAN queue to the L-CSCAN
quests to the L-CSCAN queue, it will do so. As soongueue if and only if both the real-time SCAN-EDF and
as the L-CSCAN queue is full or the pending queuesPest effort CSCAN queues were empty.
are empty, it stops. Note that the test on line 6 is the One should note that it is entirely possible, and poten-
same as that on line 2 in Algorithm Pop in Figure 13tially even desireable to utilize alternative architeesyr
above. Also, line 5 merely returns the next request thapuch as that opClock [12] to control the submission
will be popped from the queue without actually remov- Of requests from various non-real-time streams to the L-
ing the request. It is roughly equivalent to the line—  CSCAN queue. Basically, if you look at the architecture
curr.snal | est () atline 9 in Algorithm Pop in Fig-  figure in thepClock paper, you can replace the device
ure 11 above. block in the paper with our L-CSCAN and device blocks.
Since peak performance is obtained using concurrency
of roughly sixty (60) (see Figure 2), and since increasingg Results
concurrency beyond this number only increases the de-
vice worst-case latency without improving performance,We demonstrate that CSched’s performance is essentially
the system must maintain this maximal concurrency sdndistinguishable from that of CSCAN, a high perfor-
long as there are any queued requests. Secondly, singgancenon real-time disk scheduling algorithm [9], ex-
performance is improved by having larger CSCAN (or L- cept that CSched provides real-time guarantees and has
CSCAN) queues in front of the device (see Figure 4), weno missed deadlines while CSCAN providegeal-time
need to maximize the L-CSCAN queue size. Howeverguarantees. We analyze the system performance under
we must limit this queue size to ensure that the worsttwo extremum workload conditions: uniform random
case queue delay does not exceed the budget. real-time request streams with various workloads with
The Limited CSCAN, L-CSCAN, scheduler’s role is either uniform random or sequential best-effort request
to: (1) submit requests to the device in an optimal fash-streams. Overall system performance is minimized when
ion, so that the lower-level location-aware scheduler'sboth the real-time and best-effort requests streams are
can better utilize its request reordering capabilities touniform random, while a sequential best-effort request
maximize throughput, and (2) ensure that worst-casetream provides the most adversarial request stream from

10



a fairness standpoint. In reality, many best-effort work-curves, which represent the optimal performance with

loads will be some mixture of uniform random and se-and without real-time guarantees respectively, demon-
guential requests, so real performance will likely bestrate that CSched also obtains nearly optimal throughput
somewhere between these two extremes. for this other extreme workload.

Our application’s workload can be characterized by As an aside, in the experiments above, L-CSCAN was
the case with uniform random real-time and best-effortconfigured to allow a maximal latency of 28.6 seconds,
request streams. However, we will have a mixture of reso at any given time L-CSCAN could hold at m&é}ﬁ
guest sizes, rather than a uniform 4kB size. seconds worth of requests. On our device with 4KB

random requests, the throughput rate time is 0.39ms,
T2 which implies that our L-CSCAN queue holds roughly
100_' “‘\\\\‘ T~ 18,.333 requests. ' .
A For comparison to any or all real-time disk schedul-
~ ing algorithms that do not permit concurrent requests at
S, the device, please see Figures 3 and 4. The solid line in
i ~o Figure 3 shows the maximal performance for real-time
50-] --- sequential b.e., CSCAN >~ scheduling algorithms on this device which do not allow

~

...... sequential b.e., L-CSCAN gy concurrent requests at the device across the range of re-
random b.e., L-CSCAN "N, questsizes. The solid line in Figure 4 shows the range of
performance for real-time scheduling algorithms which
y do not allow concurrent requests at the device for 4kB
0O+———7———7——————— fequests, from 0.77MB/s for fully random requests at the
0 5 10 15 20 left-most point (EDF-like behavior), to 1.37MB/s for ef-
Real-timerate (MB/s) ficiently scheduled requests at the right-most point. Con-
versely, the dotted line in Figure 3 shows the achievable
Figure 15: Throughputvs. Real-time rate performance range for algorithms that do allow concur-
rent requests at the device. The dotted line in Figure 4
Figure 15 shows the throughput for two workloads as ashows that the range of performance for algorithms that
function of real-time data-rate requirements when usinglo allow concurrent requests at the device for 4kB re-
a standard CSCAN queue. The first workload is a uni-quests, is roughly from 9.38MB/s to 19.5MB/s. Note that
form random request pattern for both the real-time andCSched more than achieves this maximal performance
best-effort requests, and the second workload is a univalue because of its larger queue size, and the fastest
form random request pattern for the real-time requestseal-time disk scheduling algorithm that does not allow
and a sequential pattern for the best-effort requests. Theoncurrent requests would likely reach 1.4MB/s for the
real-time request stream is “smooth”, meaning that if thesame workload on the same hardware.
real-time data rate iX MB/s, then the real-time 4KB re- Similar observations may be made regarding 1MB re-
quests are submitted eve#?%19% seconds. Real-time quest streams from the dashed and dot-dashed curves in
requests have an initial slack time of thiry (30) secondsFigure 4. EDF would provide about 100MB/s (the left-
and CSched is configured with zero (0) seconds allocatethost point on dashed curve), while the most efficient
to SCAN-EDF and 1.4 seconds allocated to the deviceeal-time disk scheduler that did not permit concurrent
worst case, leaving 28.6 seconds maximal latency for Lrequests could likely reach about 140MB/s (the right-
SCAN. most point on dashed curve). In comparison, CSched
The first thing to notice is that the performance for theshould typically reach about 420MB/s (the right-most
uniform random workload is invariant to the real-time re- point on the dot-dash curve) on the same hardware with
guest load. The fact that this curve is flat with respect tothe same request stream.
real-time data rates, and that its value matches the op- As described above in Section 6, the standard CSCAN
timal value observed for this workflow (the right-most scheduler’s fairness is impaired as the request stream
point of the dotted curve in Figure 4), demonstrates thabecomes more sequential and less random. Figure 16
CSched obtains optimal achievable performance for thishows the fraction of real-time requests that miss their
workload on this device. deadlines when the best-effort request stream is sequen-
As expected, as the real-time request rate increasesial. Clearly, when the fraction of random real-time re-
the total system throughput with the sequential bestquests is low compared to the sequential best-effort re-
effort request stream decreases, as the real-time requesfgests, the random real-time requests get starved. As
absorb an increasing proportion of the available resourcadescribed earlier, this happens because the best-effort re
However, the two curves, the dotted and the dasheduests may keep entering the CSCAN queue fast enough

Throughput (MB/s)
/

11



1.05 ure 15. So, performance is relatively invariant to bursti-

ness in the real-time request stream, so long as the system

0.8 is properly configured to handle bursts.
1 One note is in order here. The above calculations
0.6 are done using theorst-caseéhroughput rate time data,

which may be substantially different than thgpected
throughput rate time (please see Figure 6). The through-

Missed deadlineratio

049 put of the system with the worst-case throughput rate
time is about 10.5MB/s, while the expected through-
0.2+ put of the system with thousands of queued requests is
roughly 22MB}/s.
00— 7 T ———-
0 5 10 15 20 | Uy
Real-timerate (MB/s) P
& 60 Pl
Figure 16: Missed deadlines vs. Real-time rate, Defauls //’
=
CSCAN - 40 ,/ - — — - sequential b.e., CSCAN
8_ ,/ ------ sequential b.e., L-CSCAN
< i
to cause each scan to spend an inordinate amount of tir@ ~ { / random b.e., L-CSCAN
on the best-effort sequential requests, before it may prog 20 /
ceed to service the real-time requests, thereby starving !
at other addresses. In comparison, L-CSCAN has
missed deadlines. 0
""""" L B
= 0 10 20 30
1w Initial slack time(s)
100 RN
@ . RN Figure 18: Throughput vs. Initial slack timg smooth
i) ~ .
s ~_ 9.5MB/s real-time request stream
= ] _ e Figure 18 shows how system throughput varies with
& 50— ----sequential b.e., CSCAN S . .
g X ' ~< with a constant real-time data rate of 9.5MB#s= 0Os,
o 4 ------ sequential b.e., L-CSCAN ~ . .
= random b.e.. L-CSCAN >~ andd = 1.4s. Sincel € {1.5,...,30}s, this means that
= ’ ¢ €{0.1,...,28.6}s. Clearly, performance improves as
| ¢ and consequently the L-CSCAN queue size increases,
0 which agrees with the results shown in Figure 4 above,
0 T 10 15 59 namely that increasing the size of the scheduling queue
Real-time rate (MB/s) improves the disk performance.

Figure 19 is similar to Figure 15, except that it also
Figure 17: Throughput vs. Real-time rate, bursty real-Shows how the best prior scheduler, CDS-SCAN [37],
time request stream behaves. Note how CSched and CDS-SCAN's perfor-
mance is the same when there are no real-time requests,
but then how CDS-SCAN's performance on the random
best-effort request stream drops while CSChed’s perfor-
fance remains constant. Also note how CDS-SCAN’s

worth of real-time requests at a time. If the worst-casgP€formance for the sequential best-effort stream drops

expected throughput rate time for 4KB random real-time™ '€ precipitously than CSched's as the real-time rate

requests on our test hardware is 0.39mspécted = Increases.

0.00039), and the desired real-time data rateXiMB/s,

then number of requestsinagivenburstis ;5255 ~ 9 Future Work

12,820 requests or 53MB of cache, and the burst inter-

arrival rate for 4KB requests i%. If X =  As\decreases, agreater fraction of the initial slack time
1MB/s, then the burst inter-arrival rate is 52.5 secondswill have to be allocated to the worst-case device ser-

Clearly, the performance is essentially identical to Fig-vice time, leaving less latency allocated to the L-CSCAN

Figure 17 is similar to Figure 15, except that instead
of having a “smooth” real-time request stream, it has

12



\ of this paper, and for their many suggestions which im-
1004\ proved the paper. We should also like to thank David
& 1~ Lehavi, Arif Merchant, and Kimberly Keeton for their
o) i S~e interesting and stimulating discussions and feedback on
2 Tl this work.
< _|— - - sequential b.e., CDS-CSCAN ~~ _
S ®09_._.. random b.e., CDS-CSCAN S References
= sequential b.e., L-CSCAN S [1] SCSI architecture model - 3 (SAM3). Tech. Rep. T10 Projec
[ random b.e., L-CSCAN 1561-D, revision 14, International Commitee for Inforroati
| Technology Standards (INCITS), T10 Technical Committee,
T Sept. 2004.
0 T T T T T T T T T [2] CHANG, H., CHANG, R., CHANG, R.,AND SHIH, W. Enlarged-
0 2 4 6 8 Maximum-Scannable-Groups for Real-Time disk scheduling i
Real-timerate (MB/s) a multimedia system. 184th International Computer Software
and Applications Conferend@aipei, Taiwan, Oct. 2000), IEEE
Figure 19: Throughput vs. Real-time rate Computer Society.
[3] CHANG, H., CHANG, R., SHIH, W., AND CHANG, R.
Reschedulable-Group-SCAN scheme for mixed real-time/non
queue. This, in turn, implies that the size of the L- ;%a';'(rggodl';klj‘g'_i%“z“”g in a multimedia systed Syst. Softw.
CSCAN queue will be reduced, negatively impacting ' ' _
formance. If the real-time workloads are very bursty [4] ChANG, R., SHIH, W. AND CHANG, R.  Realtime
per . ) . ) . i y o disk scheduling for multimedia applications with deadline
i.e. o is large, then still further time will be “stolen modification-scan schemimternational Journal of Time-Critical
from the L-CSCAN queue. One avenue for future re- Computing Systems 12000), 149-168.
search is to explore ways to reduce the impact @ind [5] DEEs, B. Native command queuing - advanced performance in

the average size of the SCAN-EDF queue by allowing
real-time requests to pre-emptively remove the most re-[6]
cently added non-real-time requests from the L-CSCAN
gueue and push them onto a holding stack. Later, as
space opens up on the L-CSCAN queue, requests on thé/!
holding stack would be re-added to the L-CSCAN queue,
thereby mostly preserving fairness among the non-real-!
time requests.

10 Conclusion (9]
In conclusion, we have presented a new, efficient,
O(logn), real-time disk scheduler that imposes al-
most no performance penalty over non-real-time optimal10]
schedulers when given sufficient slack time. We demon-
strated how the performance may improve as more re-
sources (slack time and buffer space for pending re-
quests) are allocated. We showed how to characteriz[all]
a device’s performance. Given the workload and de-
vice characterizations, we have shown how to configure
CSched, and demonstrated its performance over a range?]
of workloads. We have also presented L-CSCAN, a mod-
ification to CSCAN that preserves fairness with defined
maximal queue delay even in the presence of sequential
I/O streams, with minimal performance cost. [13]

Acknowledgment
[14]

We should like to thank Ron Banner and Mani Fischer
for the time and effort they spent reviewing various drafts

13

desktop storagePotentials, IEEE 244 (2005), 4-7.

DENNING, P. J. Effects of scheduling on file memory operations.
In Proceedings of the April 18-20, 1967, spring joint computer
conferencgAtlantic City, New Jersey, 1967), ACM, pp. 9-21.

FRANK, H. Analysis and optimization of disk storage devices for
Time-Sharing systemsl. ACM 16 4 (1969), 602—-620.

8] GANG, P.,AND CKER CHIUEH, T. Availability and fairness sup-

port for storage QoS guarantee. Distributed Computing Sys-
tems, 2008. ICDCS '08. The 28th International Conference on
(2008), pp. 589-596.

GiLL, B. S.,AND MODHA, D. S. WOW: wise ordering for
writes — combining spatial and temporal locality in nonatde
caches. IrProceedings of the 4th USENIX Conference on File
and Storage Technologi¢San Francisco, California, Dec. 2005),
USENIX.

GoOPALAN, K. Real-time disk scheduling using deadline sensi-
tive SCAN. Technical Report TR-92, Experimental Computer
Systems Labs, Department of Computer Science, State Univer
sity of New York, Stony Brook, NY, Jan. 2001.

GULATI, A., MERCHANT, A., UYSAL, M., PADALA, P.,AND
VARMAN, P. Efficient and adaptive proportional share 1/0
scheduling.SIGMETRICS Perform. Eval. Rev.,37(2009), 79—
80.

GULATI, A., MERCHANT, A., AND VARMAN, P. J. pClock: an
arrival curve based approach for QoS guarantees in shamedst
systems. IrProceedings of the 2007 ACM SIGMETRICS inter-
national conference on Measurement and modeling of compute
systemgSan Diego, California, USA, 2007), ACM, pp. 13-24.

HUANG, Y., AND HUANG, J. Disk scheduling on multimedia
storage serversComputers, IEEE Transactions on,58(2004),
77-82.

HWANG, K., AND CHoI, C. Y. Overlapped disk access for
real-time disk 1/0. InReal-Time Computing Systems and Ap-
plications, 1999. RTCSA '99. Sixth International Confersion
(1999), pp. 263-269.



[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32

INTEL, AND SEAGATE. Serial ATA native command queuing,
July 2003.

JacoBsoNn, D. M., AND WILKES, J. Disk scheduling algo-
rithms based on rotational position. Technical Report HFSP-

91-7, Computer Systems Project, Hewlett-Packard Laboeato
Palo Alto, CA, Mar. 1991.

KELLY, T., COHEN, |., GOLDSZMIDT, M., AND KEETON, K.
Inducing models of black-box storage arrays. TechnicaloRep
HPL-2004-108, Hewlett-Packard Laboratories, Palo Alt&, C
June 2004.

KESAVAN, M., GAVRILOVSKA, A., AND SCHWAN, K. Differ-
ential virtual time (DVT): rethinking 1/O service differéiation
for virtual machines. IfProceedings of the 1st ACM symposium
on Cloud computindindianapolis, Indiana, USA, 2010), ACM,
pp. 27-38.

Kim, T., SONG, E., KOH, Y., WON, Y., AND KOH, K. G-
SCAN: a novel real-time disk scheduling using grouping and
branch-and-bound strategy. @omputational Science and Its
Applications - ICCSA 20Q6vol. Volume 3980/2006 ofecture
Notes in Computer Scienc8pringer Berlin / Heidelberg, May
2006, pp. 1062-1071.

KUMAR, R. Fairness in disk schedulingViasters thesis, Indian
Institute of Science, Bangalore, India, Jan. 1993.

Liu, C. L., AND LAYLAND, J. W. Scheduling algorithms for
multiprogramming in a Hard-Real-Time environmeni. ACM
20,1 (1973), 46-61.

MERTEN, A. G. Some quantitative techniques for file organiza-
tion. Ph.D. thesis, University of Wisconsin — Madison, 1970.

MESNIER, M. P., WACHS, M., SAMBASIVAN, R. R., ZHENG,
A. X., AND GANGER, G. R. Modeling the relative fithess of
storage SIGMETRICS Perform. Eval. Rev.,35(2007), 37-48.

MoLANO, A., JUVVA, K., AND RAJKUMAR, R. Real-time
filesystems. guaranteeing timing constraints for disk s&e® in [42]
RT-Mach. InReal-Time Systems Symposium, 1997. Proceedings.,
The 18th IEEF1997), pp. 155-165.

OZGUR, E., KALLAHALLA , M., AND VARMAN, P. J. Real-time
parallel disk scheduling for VBR video servers. Rmoceedings
of Fifth International Conference on Computer Science amd |

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

. 4
formatics(Feb. 2000). [43]
PAREKH, A., AND GALLAGER, R. A generalized processor
sharing approach to flow control in integrated services astst
the single-node caséletworking, IEEE/ACM Transactions on 1 [44]

3(1993), 344-357.

POVZNER, A., KALDEWEY, T., BRANDT, S., GOLDING, R.,

WONG, T. M., AND MALTZAHN, C. Efficient guaranteed disk
request scheduling with fahrrad. Rroceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systen{ﬁS]
2008(Glasgow, Scotland UK, 2008), ACM, pp. 13-25.

PRADHAN, T., AND HARITSA, J. R. Efficient fair disk sched-
ulers. InCurrent Trends in Advanced Computi(angalore, In-
dia, Dec. 1995), Tata-McGraw-Hill, pp. 236—243.

REDDY, A. L. N., AND WYLLIE, J. Disk scheduling in a multi-  [46]
media I/O system. ACM, pp. 225-233.
ReDDY, A. L. N., WyLLIE, J.,AND WIJAYARATNE, K. B. R.
Disk scheduling in a multimedia 1/0O systetACM Trans. Multi-
media Comput. Commun. Appl.1(2005), 37-59.
[47]

RUEMMLER, C.,AND WILKES, J. An introduction to disk drive
modeling. Computer 273 (1994), 17-28.

SARIOWAN, H., CRUZ, R.,AND PoLYZ0S, G. Scheduling for [48]
quality of service guarantees via service curves.Cbmputer
Communications and Networks, 1995. Proceedings., Fourth |
ternational Conference of1995), pp. 512-520.

14

SCHINDLER, J., AND GANGER, G. R. Automated disk drive
characterization (poster session). Rmoceedings of the 2000
ACM SIGMETRICS international conference on Measurement
and modeling of computer systenfSanta Clara, California,
United States, 2000), ACM, pp. 112-113.

SEAMAN, P. H., LIND, R. A.,AND WILSON, T. L. An analysis
of auxiliary-storage activity. IBM System Journal ,53 (1966),
158—170.

SEELAM, S.,AND TELLER, P. Fairness and performance isola-
tion: an analysis of disk scheduling algorithms.Qluster Com-
puting, 2006 IEEE International Conference @006), pp. 1-10.

SELTZER, M., CHEN, P.,AND OUSTERHOUT, J. Disk schedul-
ing revisited, Jan. 1990.

STAELIN, C., AMIR, G., BEN-OVADIA, D., DAGAN, R.,
MELAMED, M., AND STAAS, D. Real-time disk scheduling al-
gorithm allowing concurrent I/O requests. Tech. Rep. HRDX2
244, Hewlett-Packard Laboratories, Oct. 2009.

TsAl, C., CHu, E. T.,AND HUANG, T. WRR-SCAN: a rate-
based real-time disk-scheduling algorithm.Proceedings of the
4th ACM international conference on Embedded softwRiea,

Italy, 2004), ACM, pp. 86-94.

Tsal, C., HuANG, T., CHu, E., WEI, C., AND TsAl, Y.
An efficient Real-Time Disk-Scheduling framework with adap
tive quality guaranteeComputers, |IEEE Transactions on,%
(2008), 634—-657.

UYsAL, M., ALVAREZ, G., AND MERCHANT, A. A modular,
analytical throughput model for modern disk arrays.Maodel-
ing, Analysis and Simulation of Computer and Telecommunica
tion Systems, 2001. Proceedings. Ninth International $gmm

on (2001), pp. 183-192.

VALENTE, P., AND CHECCONI, F. High throughput disk
scheduling with fair bandwidth distributionEEE Transactions
on Computers 59May 2010), 1172-1186.

VARKI, E., MERCHANT, A., XU, J.,AND QIU, X. An inte-
grated performance model of disk arrays.Modeling, Analysis
and Simulation of Computer Telecommunications Systerfi8, 20
MASCOTS 2003. 11th IEEE/ACM International Symposium on
(2003), pp. 296-305.

VARKI, E., MERCHANT, A., XU, J.,AND QIU, X. Issues and
challenges in the performance analysis of real disk arréaeal-

lel and Distributed Systems, IEEE Transactions oné.§004),
559-574.

WANG, M., Au, K., AILAMAKI, A., BROCKWELL, A.,
FALOUTSOS, C., AND GANGER, G. R. Storage device perfor-
mance prediction with CART models. Rroceedings of the joint
international conference on Measurement and modeling of-co
puter system&New York, NY, USA, 2004), ACM, pp. 412-413.

WORTHINGTON, B. L., GANGER, G. R., AND PATT, Y. N.
Scheduling algorithms for modern disk drives. Rnoceedings

of the 1994 ACM SIGMETRICS conference on Measurement
and modeling of computer systefhgashville, Tennessee, United
States, 1994), ACM, pp. 241-251.

WORTHINGTON, B. L., GANGER, G. R., RATT, Y. N., AND
WILKES, J. On-line extraction of SCSI disk drive parameters. In
Proceedings of the 1995 ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems
(Ottawa, Ontario, Canada, 1995), ACM, pp. 146-156.

Yu, Y. J., $HIN, D. I., EOM, H., AND YEOM, H. Y. NCQ
vs. I/O scheduler: Preventing unexpected misbehavidrans.
Storage 61 (2010), 1-37.

ZHu, Y. Evaluation of scheduling algorithms for real-time disk
I/0. Tech. rep., Department of Computer Science and Enginee
ing, University of Nebraska — Lincoln, May 2002.



