

CSched : Real-time disk scheduling with concurrent I/O request

Carl Staelin, Gidi Amir, David Ben-Ovadia, Ram Dagan, Michael Melamed, Dave Staas

HP Laboratories
HPL-2011-11

Keyword(s):
Real-time disk scheduling, storage systems

Abstract:
We present a new real-time disk scheduling algorithm, Concurrent Scheduler or CSched, which
maximizes throughput for modern storage devices while providing real-time access guarantees,
with computational costs of O(log n). To maximize performance it ensures request concurrency
at the device and maximizes the depth of a new Limited Cyclical SCAN (L-CSCAN) queue that
optimizes the request sequence sent to the device. For realtime requests there is an additional
SCAN-EDF queue in front of the L-CSCAN queue to absorb bursts of realtime requests until
they can be drained to the L-CSCAN queue. The real-time guarantees are provided by managing
the worst-case latency at each stage of the pipeline: SCAN-EDF, L-CSCAN, and device. CSched
is configured by the tuple {λ, σ, δ, τ(r), N}, where λ and σ are the minimal initial slack time and
workload burstiness and are properties of the workload, and where δ, τ(r), and N are the
deviceworst-case latency, worst-case throughput rate time for a request, and maximal number of
concurrent requests, and are experimentally determined properties of the storage device. An
experimental evaluation of CSched shows that given sufficient initial slack time, the system
throughput performance costs of providing real-time guarantees are negligible.

External Posting Date: January 21, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: January 21, 2011 [Fulltext]

 Copyright 2011 Hewlett-Packard Development Company, L.P.

CSched: Real-time disk scheduling with concurrent I/O requests

Carl Staelin, Gidi Amir, David Ben-Ovadia, Ram Dagan, Michael Melamed, and Dave Staas
Hewlett-Packard

Abstract

We present a new real-time disk scheduling algorithm,
Concurrent Scheduleror CSched, which maximizes
throughput for modern storage devices while providing
real-time access guarantees, with computational costs of
O(log n). To maximize performance it ensures request
concurrency at the device and maximizes the depth of a
new Limited Cyclical SCAN (L-CSCAN) queue that op-
timizes the request sequence sent to the device. For real-
time requests there is an additional SCAN-EDF queue
in front of the L-CSCAN queue to absorb bursts of real-
time requests until they can be drained to the L-CSCAN
queue. The real-time guarantees are provided by manag-
ing the worst-case latency at each stage of the pipeline:
SCAN-EDF, L-CSCAN, and device. CSched is config-
ured by the tuple{λ, σ, δ, τ(r), N}, whereλ and σ

are the minimal initial slack time and workload bursti-
ness and are properties of the workload, and whereδ,
τ(r), andN are the device worst-case latency, worst-case
throughput rate time for a request, and maximal num-
ber of concurrent requests, and are experimentally deter-
mined properties of the storage device. An experimental
evaluation of CSched shows that given sufficient initial
slack time, the system throughput performance costs of
providing real-time guarantees are negligible.

1 Introduction

CSchedis a real-time disk scheduling algorithm for
mixed real-time and non-real-time workloads that is de-
signed to provide performance similar to non-real-time
disk schedulers. It does this by maximizing disk request
concurrency; the system will never reduce the number
of concurrent outstanding requests at the storage device
in order to satisfy a real-time deadline. It uses a vari-
ant of the simple and efficient scheduler, Cyclical Scan
(CSCAN) [34], to provide performance as close to op-
timal as possible while still providing real-time guaran-

tees.
Real-time disk scheduling is an old and important

topic, but most work assumes that it is scheduling for
a single disk, and that it is the only scheduler in the
path. However, most large systems no longer use solitary
disks, but rather arrays of disks, usually with some data
redundancy, so storage performance increases as you al-
low more concurrent requests, particularly with small re-
quests. Also, nearly all disk devices incorporate an in-
telligent positional-aware disk scheduling algorithm so
in many instances the disk itself may do more intelli-
gent and efficient scheduling than external schedulers.
Finally, disk scheduling may be present in multiple lo-
cations in the hardware, such as the disk itself and the
RAID controller.

...

RAID controller

disks

OS

CSched

Figure 1: Multi-level scheduler.

As shown in Figure 1, we are building a multi-level
scheduling solution. The application can only submit
disk requests to the operating system; it cannot influ-
ence or control any of the scheduling decisions taken
at the other schedulers in the operating system, RAID
controller, and disk. In particular, the application must

assume that: (1) requests are non-preemptible, (2) con-
current requests may be serviced in any order, and (3)
the operating system and device schedulers may not be
fair and may starve requests. In addition, the applica-
tion’s scheduler should submit requests to the operating
system in a way that allows the lower-level schedulers to
optimize performance, while still providing the soft real-
time performance guarantees.

From a performance standpoint, the intra-device
queues are responsible for the more sophisticated rota-
tional positional aware scheduling within the relatively
small set of concurrent requests. The job of the applica-
tion scheduler is to try and cluster requests as closely in
space and time so that the low-level, intra-device sched-
ulers have a richer set of optimization possibilities be-
cause at any given point in time, the small set of concur-
rent requests are clustered tightly enough that the rota-
tional positional aware scheduling can make a difference.

We definethroughput rate timeas the average time be-
tween request completions, which may be defined as the
inverse of the IOPS. Throughput rate times usually de-
pend on at least the request size, whether the request is
sequential or random, whether it is a read or write oper-
ation, and the number of concurrent requests allowed at
the device. We define worst-case throughput rate time for
a request asτ(r), which is the throughput rate time with
full N concurrency for a fully random request stream. As
described in Section 3,τ(r) is measured experimentally
offline. We use this value instead of the average service
time of a request because of the concurrency of the sys-
tem. Using throughput rate time as the expected resource
requirement for a request allows simpler and more accu-
rate accounting of expected device utilization.

The results of various performance experiments are
presented throughout the paper. These results were
generated on an HP DL380 server with two quad-core
2.93GHz Intel Xeon X5570 processors and 8GB of RAM
running Windows Server 2008 64-bit. The storage ar-
ray used for the performance testing was built from eight
146GB 15k RPM SAS disks, attached on two SCSI ca-
bles (four disks on each cable) to an HP P410i storage
controller. The storage was configured into a RAID0 ar-
ray with 128kB stripes and a total usable size of 1.1TB.
The software accessed the raw device directly, rather
than using a file system, and it utilized threading and
Windows’ asynchronous I/O capabilities to send multi-
ple I/Os to the device at once.

Unless otherwise stated, the benchmarks used a
closed-loop environment with uniform random disk ad-
dresses. Usually there were four thousand (4,000) best
effort read requests in the queue waiting to be sent to the
device, and the device had sixty (60) concurrent requests.
Real-time requests usually had an initial slack time of
thirty (30) seconds, and used a uniform random distribu-

tion of disk addresses. Their deadlines were uniformly
spaced through time to match the desired throughput
rate given the request size. New real-time requests were
added to the queue when needed to ensure the thirty sec-
ond initial slack time, regardless of whether or how pre-
vious real-time requests had already been serviced.

2 Prior Work

There is a rich body of work on disk scheduling algo-
rithms for non real-time applications and environments.
A classic algorithm which requires minimal complexity
and provides acceptable performance is the SCAN [6],
or elevator algorithm, also sometimes called LOOK. In
this case, pending requests are sorted according to disk
offset and are submitted to disk in order. When the al-
gorithm reaches the end of the disk, it reverses direction.
A better variant of this algorithm is Cyclical SCAN or
CSCAN [34], and a variant called Cyclical LOOK or C-
LOOK [22]. In this case, when there are no more re-
quests in the current direction of travel, it jumps to the
first request and begins again. This approach has bet-
ter performance than SCAN and may also result in bet-
ter fairness. N-Step SCAN [7] is a variant of SCAN or
CSCAN designed to improve fairness, or rather to limit
unfairness, whereby the request stream is divided into
N -request sized chunks, and SCAN is used within each
chunk.

However, these early algorithms overlook one aspect
of modern disk drives, namely that rotation delay may
be dominant compared to seek time for short seek dis-
tances. A variety of algorithms, such as shortest time
first (STF), grouped shortest time first (GSTF), and aged
shortest time first (ASTF) [36, 16, 45], attempt to im-
prove disk utilization and throughput by taking into ac-
count rotational position as well as seek position, result-
ing in generally improved utilization. Pure STF tends to
suffer from starvation and long maximal service times.
GSTF and ASTF attempt to reduce these issues by forc-
ing STF to occasionally “jump” from one area of the disk
to another, which likely also has a higher density of wait-
ing requests. Later innovations also took into account
on-disk caching and pre-fetching, yielding further per-
formance improvements in some cases [45].

Starting in the early 1990’s, SCSI disks [1], and later
ATA disks [15, 5], supported multiple concurrent disk
requests utilizing positional aware disk scheduling al-
gorithms in the disk to provide higher performance. In
combination with the widespread adoption of RAID de-
vices, device-level support for concurrent I/O requests
means that it is generally necessary to send multiple con-
current requests to storage devices to obtain optimal per-
formance. This shift to concurrent I/Os and intra-device
scheduling means that even physical clients of storage ar-

2

rays have at least a three-level scheduling solution: client
operating system, controller, and disk. Additionally, with
the advent and popular adoption of virtualization tech-
nologies, the single operating system scheduler in the
client may be replaced with the scheduler in the virtual
client OS and potentially a second scheduler in the vir-
tual monitor. This layering of schedulers may result in
unexpected and undesired scheduling behavior [47].

As an aside, this trend towards virtualization and
shared resources makes real-time scheduling difficult or
impossible, as accurate worst-case service estimation is
non-trivial when the low-level device may behave unpre-
dictably due to competing requests from other systems
and the lack of any priority system at the hardware in-
terconnect layers. Unless or until such functionality is
added to the standard I/O interfaces, real-time systems
must use dedicated hardware that behaves in a reason-
ably predictable fashion. However, there has been recent
work on improving fairness and performance isolation
for such shared storage servers, such as [35, 8, 11, 12, 18]

Typically, real-time systems avoid using disks, be-
cause of the variability in disk access latencies. How-
ever, with the advent of applications such as video-on-
demand in the early 1990s, with soft real-time constraints
and massive data storage requirements, real-time disk
scheduling algorithms became important, and research
in this area blossomed over the last two decades. A wide
variety of real-time disk scheduling algorithms have been
developed, largely for these multimedia storage servers
[29, 24, 14, 2, 4, 25, 3, 38, 13, 30, 19, 27, 39, 48].

A simple algorithm is earliest deadline first (EDF)
[21], where requests are processed according to the dead-
line order, from earliest to latest. However, this algorithm
is known to suffer from poor disk performance because
it makes no attempt to minimize seek and rotational de-
lays [29]. SCAN-EDF [29] is a variant developed for
multimedia systems, where large batches of I/Os are sub-
mitted periodically, so many I/Os have the same comple-
tion deadline. The variation is that all I/Os with the same
completion deadline are processed in SCAN order, yield-
ing far higher performance than EDF in this application.

One approach used by a variety of real-time disk
scheduling algorithms, such as [4, 3, 25, 2, 19] is to
build an initial EDF-based schedule, and to then revise
that schedule to optimize latencies (typically just seek
delays) while still meeting the deadline requirements.
For example, one approach is to sequentially find the
maximal group of EDF requests whose requests may be
scheduled in SCAN order [2]. Some variants can also
incorporate or intersperse best-effort requests in the re-
quest stream, such as RG-SCAN [3]. Related algorithms
include MS-EDF [13], which uses a branch-and-bound
search strategy to find a minimal seek cost disk sched-
ule. However, all these approaches suffer from the lim-

itation that they only schedule a single request at a time
to disk, which limits performance on multi-disk RAID
systems by ignoring available parallelism and on single-
disk systems by not leveraging the disk’s internal rota-
tional position-aware scheduler which may further im-
prove performance. In addition, these algorithms are typ-
ically computationally expensive.

DS-SCAN [10] manages a mix of real-time and best-
effort requests by ensuring that real-time requests are is-
sued in time to meet their deadlines but otherwise uses
efficient non-real-time scheduling. It is a combination
of earliest deadline first (EDF) real-time disk scheduling
and CSCAN disk scheduling. When real-time requests
are not in danger of missing their deadlines, both real-
time and best-effort requests are passed to storage one
at a time using the CSCAN algorithm. However, when
submitting a request might cause a real-time to miss its
deadline, DS-SCAN submits the nearest-deadline-first
request, regardless of its “position” on the disk. DS-
SCAN is similar in effect, although not architecture, to
the “slack-stealing” solution developed as part of RT-
Mach [24]. CDS-SCAN [37] extends DS-SCAN to allow
and account for concurrent outstanding requests at the
device, yielding significant performance improvements
when using RAID devices.

Nearly all the papers assume that the worst-case ser-
vice time must be used for all requests when analyzing
or managing a stream of real-time requests, meaning that
the system assume that every single request in a stream
will (or may) perform in a worst-case fashion. In con-
trast, Fahrrad [27] assumes that a batch of requests will
be served in the average service time, and the worst case
assumption isN · s̄ + sworst whereN is the number of
requests in the batch,̄s is the average service time for a
request, andsworst is the worst case service time for a
request. However, Fahrrad also has the assumption that
in a given batch it may cancel requests (not submit them
to the disk) if the system is running behind and sending
the next request to the device may cause the batch to use
more than its allotted worst-case time estimate. For ex-
ample, if at requestk, k < N, N · s̄ <

∑k
i=1 si, then the

remaining requests in the batch are postponed to the next
period.

Only one paper [14] appears to investigate concurrent
I/O with a real-time scheduler, EDF [21] and SCAN-
EDF [29], and found that performance improved when
allowing a second request to be overlapped with the first
request. In this paper most of the gain was obtained by
overlapping execution of different portions of the I/O ser-
vice, such as SCSI protocol overheads for the next re-
quest overlapped with the seek, rotational, and data trans-
fer delays of the previous request.

One recent paper [41] appears to improve performance
by briefly idling the disk after completing synchronous

3

disk requests, in the expectation that an application will
quickly submit a request for the next block.

pClock [12] is the most similar to our proposed so-
lution, except that it allows itself the freedom to revise
deadlines if a real-time stream uses more allocated band-
width. It allows concurrent requests to be sent to the
device, but it assumes that requests will finish within a
small ammount of time. It characterizes workflows us-
ing 3-tuples: (σ, ρ, λ), whereσ is the maximum burst
size (number of I/Os),ρ is the arrival rate (in I/Os per
second or IOPS), andλ is an upper bound on the latency
of an I/O request (in ms).pClock uses aleaky bucket
model [26, 32] with the parametersσ andρ above to de-
scribe and limit a real-time stream’s request submission
rate and burstiness. Briefly, the leaky bucket model may
be described as follows. Thearrival function for a re-
quest stream,R(s, t) is the total number of I/O requests
man in the time interval[s, t]. A request stream iswell
behavedif R(s, t) ≤ σ + ρ(t − s) for all time intervals
[s, t].

Empiric disk modeling and characterization has been
done for years [31]. Often such models assume some
general knowledge of the internal workings and data
layout of the disk drive, sometimes with more detailed
knowledge discovered by querying the device [46, 33].
However, aggregated storage devices, such as disk ar-
rays, are far more complex, so it is difficult or impossible
to develop accurate low-level models of all the parts [43].
One approach has been to treat the prediction of request
services times and device throughput as a machine learn-
ing prediction problem [17, 23, 42, 40, 44]. In general,
the models can accurately predictaverageresponse time
and throughput as a function of device load (number of
pending or concurrent requests) and workload (random
versus sequential).

3 Device Characterization

In order to provide real-time guarantees, we must first
characterize the device. There are a number of param-
eters that may impact the device performance, such as
concurrency, request size, and request sequentiality. Ac-
curately characterizing the device is complicated by the
fact that there are potentially several devices interacting
in interesting ways, such as the disk scheduler within the
operating system, the disk scheduler and write cache in
the RAID controller, and the disk scheduler in the disk
itself.

Once a real-time request has been sent to the device,
the application may not cancel or interrupt the request.
The only way to ensure that outstanding real-time re-
quests complete in time is to either: (1) submit real-time
requests far enough in advance so that they always com-
plete in time, or (2) not send any more requests to the de-

vice when a real-time request is in danger of missing its
deadline. Option (2) starves the intra-device schedulers
of alternative requests to service and forces it to service
the threatened request. As we shall see, it is vital that
the concurrency be maximized at all times or else perfor-
mance suffers. This means that we must submit real-time
requests to the device at least the worst-case service time
in advance of their deadlines so that they will complete
in time.

50 100 150 200

Outstanding I/Os

1

10

100

T
hr

ou
gh

pu
t

(M
B

/s
)

4kB
1MB

Figure 2: Throughput vs. Outstanding I/Os

Figure 2 shows throughput as a function of request
concurrency at the device for two representative request
sizes, 4kB and 1MB. The benchmark was done using a
closed-loop system with four thousand (4,000) requests
using a uniform random distribution of disk addresses,
and passed through a CSCAN queue. Clearly there is
significant performance benefit to using concurrent re-
quests, but the benefits seems to reach the knee of the
curve by about sixty (60) concurrent requests. Since this
is also about the maximal concurrency available in the
SCSI protocol, we use this as the default concurrency for
our device in the rest of the experiments.

Figure 3 shows throughput as a function of the request
size when there is a single request at a time at the device
and when there are sixty concurrent requests at a time.
This curve demonstrates that the benefits of utilizing the
available concurrency are consistently significant across
the whole range of request sizes, and not just a few sizes.

Figure 4 demonstrates how performance changes as
a function of the size of the CSCAN queue size. The
larger the CSCAN queue is, the better job the CSCAN
queue can do of clustering requests in space and time.
The more tightly clustered requests are when they are
sent to the disk, the better job the rotational positional
aware scheduler may do to service multiple requests in a
single rotation [9]. In fact, if you look at the two curves
with sixty outstanding requests in Figure 4, you can see
that as the CSCAN queue size increases, so does disk

4

1k 4k 16k 64k 256k 1M 4M 16M

Request size (MB)

1

10

100

T
hr

ou
gh

pu
t

(M
B

/s
)

1 outstanding
60 outstanding

Figure 3: Throughput vs. Request size

1 10 100 1000

Queue size

1

10

100

T
hr

ou
gh

pu
t

(M
B

/s
)

outstanding 1, request size 4kB
outstanding 1, request size 1MB
outstanding 60, request size 4kB
outstanding 60, request size 1MB

Figure 4: Throughput vs. CSCAN queue size

throughput.
Clearly, it is important toboth maintain concurrency

and maximize CSCAN queue size to maximize through-
put. For this device, and likely for most disk arrays,
throughput increases as a function of concurrency and
CSCAN queue size. Concurrency, up to about sixty re-
quests, is more important than CSCAN queue size, so
maximizing concurrency should be prioritized over max-
imizing CSCAN queue size.

It is important that performance not degrade as load
increases, because otherwise the system can get into a
negative feedback cycle where increased load causes de-
graded performance which causes further load increases.
So long as the algorithm is able to maximize concur-
rency, or at least maintain maximal concurrency under
load, and so long as increased load yields increasing, or
non-decreasing, CSCAN queue sizes, performance will
not decrease under increased load.

Assuming we are given a device which we will con-
trol using CSched, how do we characterize that device?

We must measure the device’s worst-case latency and
throughput rate time for random and sequential request
streams and store them in a configuration file. Calculat-
ing or determining worst-case service latency becomes
much more interesting as soon as there are multiple out-
standing requests at the disk, as there are a variety of
new aspects that must be taken into account. For ex-
ample, there is the queuing algorithm in the disk itself,
which may be an algorithm such as SATF, which is not
“fair” and may starve requests [16]. Similarly, if there
are N concurrent requests outstanding at the disk, how
does one compute the worst-case service time for those
requests, especially if the requests were sent to the disk
over time and so they do not have identical start times?
To make matters even more difficult, workloads may
have a mixture of request sizes, so how is that taken into
account? The short answer is that we avoid all those is-
sues by measuring the worst-case latency with full con-
currency, across the spectrum of request sizes, and across
the range of CSCAN queue sizes, and choose the maxi-
mal value.

1k 4k 16k 64k 256k 1M 4M 16M

request size (MB)

0

500

1000

1500

la
te

nc
y

(m
s)

queue size 1
queue size 4000

Figure 5: Worst-case service time vs. request size

Figure 5 shows the worst-case latency as a function
of request size, with a purely random request stream for
sixty outstanding requests, with both a large 4,000 re-
quest CSCAN queue before the disk, and without any
queue before the disk. One interesting observation is
that the worst-case time is shorter when the requests are
given in random order (CSCAN queue length 1). This
suggests that perhaps the lower-level schedulers are us-
ing an unfair scheduler such as SATF or ASATF [16, 45]
and since the CSCAN does such a good job of clustering
requests spatially, once the head moves away from a re-
quest, that request can starve. A second observation that
the worst-case service time for 60 outstanding requests
and a CSCAN queue of 4,000 requests is relatively sta-
ble at about 1,100ms across nearly the whole range of re-
quest sizes, suggesting that the lower-level scheduler has

5

some sort of anti-starvation parameter with a threshold or
aging parameter set to about that value. Since worst-case
performance is generally much worse for larger CSCAN
queue sizes, and since it is relatively stable across request
sizes, approximating the worst-case latency by the max-
imal value, about 1.6 seconds, generally doesn’t over-
estimate the worst-case by much.

The worst-case throughput rate timeτ(r) is measured
using an experiment similar to that in Figure 2, except
with an empty CSCAN queue so that the device is pre-
sented with a uniform random request stream. The con-
figuration file simply stores the worst-case latency with
full concurrency and the worst-case throughput as a func-
tion of request size.

1k 4k 16k 64k 256k 1M 4M 16M

request size (MB)

0.01

0.1

1

10

th
ro

ug
hp

ut
 r

at
e

ti
m

e
(m

s)

random
random, queue size 4000
sequential

Figure 6: Throughput rate time vs. request size, for ran-
dom requests

Figure 6 shows the throughput rate time as a func-
tion of request size for various request streams with sixty
(60) concurrent requests at the device. The worst-case
throughput rate time is the random request stream, be-
cause the request stream, as submitted to the device,
is maximally randomized. For comparison, we also
show the throughput rate time when the request stream
is passed through a CSCAN queue that holds 4,000 re-
quests, and the improved reference locality does improve
performance, especially for smaller requests where the
seek and rotational delay overheads dominate the to-
tal transfer costs. Performance for sequential request
streams is by far the best.

We computeτ(r) using a set of lookup tables derived
from the data in Figure 6. There is one table each for
random and sequential requests, holdingτ(r) for various
request sizes. When necessary, we linearly interpolate
between measured values.

One note is that RAID0 does not incur any additional
penalty or overhead for write operations compared to
read operations, so the models here do not include sep-
arate values for read and write operations, just sequen-

tial and random operations. If the storage system is us-
ing RAID5 or some other configuration where there is an
asymmetry between read and write operation costs, then
the characterization should measure the throughput rate
time for the cross product of read vs. write, and random
vs. sequential configurations.

Additionally, some larger and more modern storage
systems automatically manage the placement of storage,
so it is difficult or impossible to ensure that the actual
physical disks holding the data for the logical disk, usu-
ally called a LUN, that is being used for the real-time
data transactions, does not have other conflicting traf-
fic from other LUNs that happen to be held on the same
physical disks. In this case, probably the best option, if it
is available, is to use some algorithm or solution such as
pClock [12] to manage or control the data rates available
to each LUN and configure CSched for those guaranteed
worst-case rates. If that is not possible, then probably
the best option is to characterize the LUN when other
LUNs are under load, and then add a fudge factor to the
measured values worst-case service time and through-
put rate times to provide additional protection against
resource contention caused performance reductions. It
may also be possible or desireable to dynamically track
the observed throughput rate times to dynamically con-
trol the system in response to the current activity and per-
formance of the storage device.

4 Architecture

Figure 7: CSched architecture

The architecture of CSched is shown in Figure 7. Just
before the device, with its internal black-box queueing,
there is an L-CSCAN queue, which provides worst-case
queueing delay guarantees, and which may contain real-
time, best-effort, and background requests that are sorted
in CSCAN order to maximize performance. To help limit
the worst-case queue delay, the L-CSCAN queue size is

6

bounded, so new requests may have to wait to enter the
L-CSCAN queue. To the left of the L-CSCAN queue,
there is a SCAN-EDF queue for the real-time requests
which are also waiting to be admitted to the L-CSCAN
queue, and CSCAN queues for the best effort and back-
ground requests that cannot yet be admitted to the L-
CSCAN queue.

The CSCAN, L-CSCAN, and SCAN-EDF algorithms
are discussed in more detail in Sections 5, 6, and 7.1 re-
spectively.

Figure 7 also suggests how one must calculate and
control the worst-case behavior of the various elements
to ensure that the real-time deadlines are met. Since the
system is configured as a pipeline, each element of the
pipeline may be considered independently: SCAN-EDF,
L-CSCAN, and OS & device.

Most of the configuration parameters are shown in
Figure 7. λ is the smallest initial slack time for real-
time requests, and is a workload characteristic given to
CSched.σ is the burstiness of the workload as computed
using aleaky bucketmodel as in [26, 32, 12], except that
instead of being specified in terms of requests it is spec-
ified in terms of time. Similar to [12] we define thear-
rival functionof a request stream to beR(s, t) and it is
the sum of the worst-case throughput rate timesτ(r) for
all requests made in the time interval[s, t], or R(s, t) =∑

ri∈(s,t) τ(ri). We defineσ = maxs,t{R(s, t)−(t−s)}

for all time intervals[s, t]. δ is the worst-case device la-
tency, and is measured experimentally offline, along with
τ(r). N is the maximum number of concurrent requests
allowed at the device.ζ is a derived configuration pa-
rameter that governs the maximal delay allowed in the
L-CSCAN queue.

Please note that this is a general architecture which
may be modified to fit other requirements. For exam-
ple, it is possible to replace the single best-effort CSCAN
queue with a Fahhrad-like queueing system [27] to en-
sure fairness of best-effort request streams across multi-
ple clients.

The central element of the architecture is the L-
CSCAN queue, which is a fair variant of the mostly-fair
CSCAN with bounded worst-case queue delays. Since
we need to ensure that all real-time requests enter the L-
CSCAN queue in time to meet their deadlines, then we
need to allow extra time in the budget for requests cur-
rent in the L-CSCAN queue to drain to make room for
real-time requests. The worst-case time in the L-CSCAN
queue is a function of the number of requests in the queue
and therateat which those requests are served.

We based L-CSCAN on CSCAN because of its fair-
ness properties [20, 28] and because it interacts well
with lower-level schedulers [9] yielding nearly optimal
overall system performance. However, we could not use
CSCAN because it occassionally has fairness problems

and potentially unlimited worst-case performance, par-
ticularly when the request stream contains a significant
fraction of sequential requests. The behavior that results
is that once the CSCAN scheduler reaches the first se-
quential request, the scheduler keeps servicing the se-
quential requests. Since each dispatch of a sequential
request will often result in the submission of another se-
quential request, the CSCAN scheduler can be “stuck”
servicing the sequential requests for arbitrary and un-
bounded periods of time. This means that the tradi-
tional CSCAN architecture may offer noguaranteesas
to worst-case queueing delay. The solution is to limit
the time duration of a single scan, and once that limit
is reached, new requests are scheduled for the next scan
regardless of their location on the device.

The burstiness or variability of the real-time load im-
pacts the worst-case time budget allocation. One option
is to measure the burstiness, and another option is to have
the application declare its burstiness. Similar to the L-
CSCAN queue, the time a real-time request spends in
the SCAN-EDF queue is a function of the length of the
SCAN-EDF queue and the worst-case throughput rate.
The purpose of the SCAN-EDF queue is to absorb bursts,
and hold the real-time requests until they may be submit-
ted to the L-CSCAN queue. Using a SCAN-EDF queue
ensures that real-time requests are submitted to the L-
CSCAN queue according to deadline and reduces the
probability that real-time requests that are submitted to
CSched out of order will miss their deadlines. In addi-
tion, when the request stream is very bursty, so many re-
quests share a common deadline, requests with the same
deadline are sorted in SCAN order, which makes it easier
for the L-CSCAN queue to process the real-time requests
in a single pass, or at least in as few passes as possible.

5 CSCAN

CSCAN is a well known, popular, and efficient disk
scheduling algorithm. For random request streams, it has
excellent fairness characteristics, and optimal or near op-
timal performance, especially when used in a layered ar-
chitecture with a positional-aware scheduling algorithm
at the device[9].

CSCAN consists of two algorithms:AddandPop, as
shown in Figures 8 and 9, which add a new request to the
queue and schedule the next request respectively.

CSCAN is often implemented using a pair of ordered
sets, one current and one next. The current set contains
those requests whose addresses are greater than the cur-
rent disk location, while the next set contains those re-
quests whose disk locations are less than the current disk
location. There is also the notion of the current disk head
location,offset, which sweeps from one end of the
disk to the other, before jumping back to the beginning.

7

1: Algorithm Add(Request r)
2: if r.offset< offsetthen
3: next.insert(r)
4: else
5: curr.insert(r)
6: end if

Figure 8: Adding a request to CSCAN

Algorithm Add in Figure 8 shows the algorithm for
adding a new request to a CSCAN queue. Essentially, if
the request’s address is smaller than theoffset, then
the request will need to be serviced in the next scan so it
is added to thenext set. Otherwise the request’s address
is greater or equal to the current head location and the
request can still be processed in this scan, so it is added
to the current setcurr.

In our implementation, the current and next sets are
implemented using C++ STL set classes which are imn-
plemented as binary trees, so theinsert,delete, and
smallest operations each takeO(log n) time. In this
case, Algorithm Add in Figure 8 takesO(log n) time.

1: Algorithm Pop()
2: if curr.empty()then
3: Swap(curr, next)
4: end if
5: result← curr.smallest()
6: curr.delete(result)
7: offset← result.offset
8: return result

Figure 9: Popping a request from CSCAN

Algorithm Pop in Figure 9 shows the algorithm for
choosing the next request to be submitted to the device.
First, it checks to see if the current scan is done; and
if it is, then it swaps the current and next sets to begin
the next scan. It then chooses the smallest request in
the current scan and does some basic bookkeeping op-
erations: removing the chosen request from the current
set and updating the current head location. Algorithm
Pop also takesO(log n) time. Note that it is possible to
create an implementation of the set data structure that
merges the two operationscurr.smallest() and
curr.delete() into a single operation, or at least
that does not require a second traversal of the tree struc-
ture, yielding a factor of two performance improvement.

With a uniform random access stream, the worst-case
delay in a CSCAN queue is proportional to roughly2N ,
or twice the queue size. With mostly sequential ac-
cess streams, the worst-case delay may be effectively un-
bounded.

6 Limited CSCAN

We introduce a new variant of CSCAN, the Limited
CSCAN, or L-CSCAN, algorithm which provides hard
guarantees on the worst-case queue delay. The behavior
that causes starvation is the potentially unlimited dura-
tion of a single scan. Assuming that the size the queue is
limited, then we can control the length of a single scan
with additional tests before adding new requests to the
current scan.

Compared to CSCAN, L-CSCAN needs has one new
configuration parameter,ζ, and four new state parame-
ters:start, Tcurr, Tnext, andclosed, and it relies on
accurate worst-case throughput rate time estimatesτ(r)
for each request.ζ defines the maximum time a request
may wait in the queue,start is the time at which the
current scan started,Tcurr =

∑
r∈curr τ(r) is the sum

of the expected throughput rate times for the requests in
the current scan,Tnext =

∑
r∈next τ(r) is the sum of

the expected throughput rate times for the requests in the
next scan, andclosed is a boolean specifying whether
new requests may still be added to the current scan.

The worst-case throughput rate time estimateτ(r) is
derived from the experimental assessment of the stor-
age device from Section 3. It would take into account
three characteristics of the request:size, read | write,
andsequential, wheresize is the request size in bytes,
read | write specifies whether the request is aread or
a write request, andsequential is a boolean that spec-
ifies whether the request is sequential or not. In gen-
eral,sequential may be determined using a simple filter,
but in the general casesequential merely states whether
there is a pending request in the queue with the same
read | write state as the current request that addresses
the bytes immediately preceding the start address of the
current request.

1: Algorithm Add(Request r)
2: if offset≤ r.offset AND ζ

2 < (now() - start) +Tcurr

+ τ(r) then
3: closed← true
4: end if
5: if r.offset< offset OR closedthen
6: next.insert(r)
7: Tnext ← Tnext + τ(r)
8: else
9: curr.insert(r)

10: Tcurr ← Tcurr + τ(r)
11: end if

Figure 10: Adding a request to L-CSCAN

Algorithm Add in Figure 10 shows the Limited
CSCAN algorithm. The primary differences betwen Al-
gorithm Add in Figure 8 and Algorithm Add in Figure 10

8

is the test at Line 2 that checks whether adding this re-
quest to the current scan would cause the scan to exceed
the allowed time. Since all requests will be serviced by
the end of the second scan, the maximum time allowed
for a single scan isζ2 . Because the primary differences
between Algorithm Add in Figure 8 and Algorithm Add
in Figure 10 are theO(1) tests and sums in Lines 2, 3, 7,
and 10, the running time is stillO(log n).

1: Algorithm Pop()
2: if curr.empty()then
3: Swap(curr, next)
4: start← now()
5: Tcurr ← Tnext

6: Tnext ← 0
7: closed← false
8: end if
9: result← curr.smallest()

10: curr.delete(result)
11: offset← result.offset
12: Tcurr ← Tcurr - τ(r)
13: return result

Figure 11: Popping a request from L-CSCAN

The primary differences between Algorithm Pop in
Figure 9 and Algorithm Pop in Figure 11 are the
bookeeping changes in Lines 3 – 7 to reset the various
state variables at the beginning of each scan and in Line
12 to updateTcurr, so the running time is stillO(log n).

The reason we developed L-SCAN rather than us-
ing an existing algorithm such as N-Step SCAN [7] is
that disk performance is optimized with longer scans.
CSCAN yields scans that are as long as possible, and
longer in some cases, and as a result its performance
is excellent. N-Step SCAN arbitrarily limits the num-
ber of requests that can be bundled into a single scan to
N , which can provide tighter guarantees on worst-case
queue delay time, but the scans would generally be much
smaller than necessary, which may result in much worse
performance than necessary.

7 CSched

CSched is designed to provide optimal, or near optimal,
performance, with minimal performance penalty for of-
fering real-time deadline guarantees. In addition to an
accurate device characterization{δ, τ(r), N} from Sec-
tion 3, it requires two workload-related configuration pa-
rameters:{σ, λ}, with σ defined as the maximal burst
size in seconds andλ defined as the minimal initial slack
time for real-time requests.

The primary internal configuration parameter is the
allocation of the available time budget,λ, between the

SCAN-EDF, L-CSCAN, and device modules. Since the
device time budget is defined solely by the device worst-
case service time, this isδ. The next step is to determine
the time budget which must be allocated to the SCAN-
EDF queue to absorb bursts, and this is simply the time
required to process the largest burst, orσ. Finally, the
remaining budget is assigned to the L-CSCAN queue,
leavingζ = λ− σ − δ.

1: class CSched
2: LCSCAN* lcscan
3: Sched** pending
4: int nqueues
5: time t ζ

6: CSched(time t σ, time t λ, time t δ)
7: ζ ← (λ− σ − δ)
8: lcscan← new LCSCAN(ζ)
9: pending← new Sched*[nqueues + 1]

10: pending[0]← new SCANEDF
11: for i in 1:nqueuesdo
12: pending[i]← new CSCAN
13: end for

Figure 12: CSched data structure and initialization

Figure 12 describes the CSched data structures and
shows how the various elements are initialized.

1: Algorithm Add(Request r)
2: if TLCSCAN + τ(r) < ζ

4 then
3: {L-CSCAN is not full}
4: lcscan.Add(r)
5: else if 0 < r.deadlinethen
6: {real-time request}
7: pending[0].Add(r)
8: else
9: {best-effort or background request}

10: pending[r.priority].Add(r)
11: end if

Figure 13: Adding a request to CSched

Algorithm Add in Figure 13 shows how requests
are added to the CSched queue. Please note that
TLCSCAN = Tcurr +Tnext, and is the sum of the worst-
case throughput rate times for all requests currently held
in the lcscan queue. First, if adding the request to the L-
CSCAN queue would not cause it to exceed the allowed
size (as specified in terms of time according to Algo-
rithms Add in Figure 10 and Algorithm Pop in Figure11),
then the request is simply added to the L-CSCAN queue.
Otherwise the request is added to the appropriate pending
queue, which is SCAN-EDF for real-time requests and
CSCAN for best-effort and background requests. Note

9

that this code is general and may use any other schedul-
ing system for these non-real-time requests.

1: Algorithm Pop()
2: result← lcscan.Pop()
3: for i = 0 to nqueuesdo
4: if pending[i]¬emptythen
5: r← pending[i].Head()
6: if TLCSCAN + τ(r) ≥ ζ

4 then
7: {L-CSCAN is now full}
8: return result
9: end if

10: r← pending[i].Pop()
11: lcscan.Add(r)
12: end if
13: end for
14: return result

Figure 14: Popping a request from CSched

Algorithm Pop in Figure 14 shows what happens when
one removes a request from the queue to submit it to the
storage device. First the algorithm removes the next re-
quest from the L-CSCAN queue in line 2. Since remov-
ing a request from the L-CSCAN queue likely means
that there is now room to add a request from the pend-
ing queues, the system iteratively checks each pending
queue, starting with the real-time SCAN-EDF queue,
looking for requests. So long as there is room to add re-
quests to the L-CSCAN queue, it will do so. As soon
as the L-CSCAN queue is full or the pending queues
are empty, it stops. Note that the test on line 6 is the
same as that on line 2 in Algorithm Pop in Figure 13
above. Also, line 5 merely returns the next request that
will be popped from the queue without actually remov-
ing the request. It is roughly equivalent to the liner ←
curr.smallest() at line 9 in Algorithm Pop in Fig-
ure 11 above.

Since peak performance is obtained using concurrency
of roughly sixty (60) (see Figure 2), and since increasing
concurrency beyond this number only increases the de-
vice worst-case latency without improving performance,
the system must maintain this maximal concurrency so
long as there are any queued requests. Secondly, since
performance is improved by having larger CSCAN (or L-
CSCAN) queues in front of the device (see Figure 4), we
need to maximize the L-CSCAN queue size. However,
we must limit this queue size to ensure that the worst-
case queue delay does not exceed the budget.

The Limited CSCAN, L-CSCAN, scheduler’s role is
to: (1) submit requests to the device in an optimal fash-
ion, so that the lower-level location-aware scheduler’s
can better utilize its request reordering capabilities to
maximize throughput, and (2) ensure that worst-case

scheduling delay is limited so that real-time guarantees
may be provided by the solution as a whole.

7.1 SCAN-EDF

The SCAN-EDF queue absorbs bursts, so we can limit
the size of the L-SCAN queue to provide the real-time
guarantees. The primary reason for using a SCAN-EDF
rather than a FIFO or EDF queue is for potentially im-
proved performance, particularly with bursty workloads,
and as some small protection against clients who do not
necessarily submit real-time requests in order with re-
spect to deadlines.

For example, our workload tends to be very bursty,
with new “batches” of data needed every 130ms, where
a batch may contain as many as thousands of small re-
quests which are submitted to the storage device in ran-
dom order with respect to the disk address. In this case,
using SCAN within each batch means that the requests
are sent to the L-CSCAN queue in a partially optimized
fashion, so the overall throughput may be maximized.

7.2 CSCAN schedulers

The CSCAN schedulers hold non-real-time requests un-
til there is space available in the L-CSCAN queue. Re-
quests are passed from these queues in priority order, so
for example background requests would only be passed
from the background CSCAN queue to the L-CSCAN
queue if and only if both the real-time SCAN-EDF and
best effort CSCAN queues were empty.

One should note that it is entirely possible, and poten-
tially even desireable to utilize alternative architectures,
such as that ofpClock [12] to control the submission
of requests from various non-real-time streams to the L-
CSCAN queue. Basically, if you look at the architecture
figure in thepClock paper, you can replace the device
block in the paper with our L-CSCAN and device blocks.

8 Results

We demonstrate that CSched’s performance is essentially
indistinguishable from that of CSCAN, a high perfor-
mancenon real-time disk scheduling algorithm [9], ex-
cept that CSched provides real-time guarantees and has
no missed deadlines while CSCAN providesnoreal-time
guarantees. We analyze the system performance under
two extremum workload conditions: uniform random
real-time request streams with various workloads with
either uniform random or sequential best-effort request
streams. Overall system performance is minimized when
both the real-time and best-effort requests streams are
uniform random, while a sequential best-effort request
stream provides the most adversarial request stream from

10

a fairness standpoint. In reality, many best-effort work-
loads will be some mixture of uniform random and se-
quential requests, so real performance will likely be
somewhere between these two extremes.

Our application’s workload can be characterized by
the case with uniform random real-time and best-effort
request streams. However, we will have a mixture of re-
quest sizes, rather than a uniform 4kB size.

0 5 10 15 20

Real-time rate (MB/s)

0

50

100

T
hr

ou
gh

pu
t

(M
B

/s
)

sequential b.e., CSCAN
sequential b.e., L-CSCAN
random b.e., L-CSCAN

Figure 15: Throughput vs. Real-time rate

Figure 15 shows the throughput for two workloads as a
function of real-time data-rate requirements when using
a standard CSCAN queue. The first workload is a uni-
form random request pattern for both the real-time and
best-effort requests, and the second workload is a uni-
form random request pattern for the real-time requests
and a sequential pattern for the best-effort requests. The
real-time request stream is “smooth”, meaning that if the
real-time data rate isXMB/s, then the real-time 4KB re-
quests are submitted every4096·1000

X
seconds. Real-time

requests have an initial slack time of thiry (30) seconds,
and CSched is configured with zero (0) seconds allocated
to SCAN-EDF and 1.4 seconds allocated to the device
worst case, leaving 28.6 seconds maximal latency for L-
SCAN.

The first thing to notice is that the performance for the
uniform random workload is invariant to the real-time re-
quest load. The fact that this curve is flat with respect to
real-time data rates, and that its value matches the op-
timal value observed for this workflow (the right-most
point of the dotted curve in Figure 4), demonstrates that
CSched obtains optimal achievable performance for this
workload on this device.

As expected, as the real-time request rate increases,
the total system throughput with the sequential best-
effort request stream decreases, as the real-time requests
absorb an increasing proportion of the available resource.
However, the two curves, the dotted and the dashed

curves, which represent the optimal performance with
and without real-time guarantees respectively, demon-
strate that CSched also obtains nearly optimal throughput
for this other extreme workload.

As an aside, in the experiments above, L-CSCAN was
configured to allow a maximal latency of 28.6 seconds,
so at any given time L-CSCAN could hold at most28.6

4
seconds worth of requests. On our device with 4KB
random requests, the throughput rate time is 0.39ms,
which implies that our L-CSCAN queue holds roughly

28.6
4·0.00039 ≈ 18, 333 requests.

For comparison to any or all real-time disk schedul-
ing algorithms that do not permit concurrent requests at
the device, please see Figures 3 and 4. The solid line in
Figure 3 shows the maximal performance for real-time
scheduling algorithms on this device which do not allow
concurrent requests at the device across the range of re-
quest sizes. The solid line in Figure 4 shows the range of
performance for real-time scheduling algorithms which
do not allow concurrent requests at the device for 4kB
requests, from 0.77MB/s for fully random requests at the
left-most point (EDF-like behavior), to 1.37MB/s for ef-
ficiently scheduled requests at the right-most point. Con-
versely, the dotted line in Figure 3 shows the achievable
performance range for algorithms that do allow concur-
rent requests at the device. The dotted line in Figure 4
shows that the range of performance for algorithms that
do allow concurrent requests at the device for 4kB re-
quests, is roughly from 9.38MB/s to 19.5MB/s. Note that
CSched more than achieves this maximal performance
value because of its larger queue size, and the fastest
real-time disk scheduling algorithm that does not allow
concurrent requests would likely reach 1.4MB/s for the
same workload on the same hardware.

Similar observations may be made regarding 1MB re-
quest streams from the dashed and dot-dashed curves in
Figure 4. EDF would provide about 100MB/s (the left-
most point on dashed curve), while the most efficient
real-time disk scheduler that did not permit concurrent
requests could likely reach about 140MB/s (the right-
most point on dashed curve). In comparison, CSched
should typically reach about 420MB/s (the right-most
point on the dot-dash curve) on the same hardware with
the same request stream.

As described above in Section 6, the standard CSCAN
scheduler’s fairness is impaired as the request stream
becomes more sequential and less random. Figure 16
shows the fraction of real-time requests that miss their
deadlines when the best-effort request stream is sequen-
tial. Clearly, when the fraction of random real-time re-
quests is low compared to the sequential best-effort re-
quests, the random real-time requests get starved. As
described earlier, this happens because the best-effort re-
quests may keep entering the CSCAN queue fast enough

11

0 5 10 15 20

Real-time rate (MB/s)

0.0

0.2

0.4

0.6

0.8

1.0

M
is

se
d

de
ad

lin
e

ra
ti

o

Figure 16: Missed deadlines vs. Real-time rate, Default
CSCAN

to cause each scan to spend an inordinate amount of time
on the best-effort sequential requests, before it may pro-
ceed to service the real-time requests, thereby starving
at other addresses. In comparison, L-CSCAN hasno
missed deadlines.

0 5 10 15 20

Real-time rate (MB/s)

0

50

100

T
hr

ou
gh

pu
t

(M
B

/s
)

sequential b.e., CSCAN
sequential b.e., L-CSCAN
random b.e., L-CSCAN

Figure 17: Throughput vs. Real-time rate, bursty real-
time request stream

Figure 17 is similar to Figure 15, except that instead
of having a “smooth” real-time request stream, it has
a bursty request stream, with burst size of five seconds
worth of real-time requests at a time. If the worst-case
expected throughput rate time for 4KB random real-time
requests on our test hardware is 0.39ms (expected =
0.00039), and the desired real-time data rate isXMB/s,
then number of requests in a given burst isσ ≈ 5

0.00039 ≈
12, 820 requests or 53MB of cache, and the burst inter-
arrival rate for 4KB requests is 4096·σ

1,000,000·X . If X =
1MB/s, then the burst inter-arrival rate is 52.5 seconds.
Clearly, the performance is essentially identical to Fig-

ure 15. So, performance is relatively invariant to bursti-
ness in the real-time request stream, so long as the system
is properly configured to handle bursts.

One note is in order here. The above calculations
are done using theworst-casethroughput rate time data,
which may be substantially different than theexpected
throughput rate time (please see Figure 6). The through-
put of the system with the worst-case throughput rate
time is about 10.5MB/s, while the expected through-
put of the system with thousands of queued requests is
roughly 22MB/s.

0 10 20 30

Initial slack time (s)

0

20

40

60

T
hr

ou
gh

pu
t

(M
B

/s
)

sequential b.e., CSCAN
sequential b.e., L-CSCAN
random b.e., L-CSCAN

Figure 18: Throughput vs. Initial slack timeλ, smooth
9.5MB/s real-time request stream

Figure 18 shows how system throughput varies withλ,
with a constant real-time data rate of 9.5MB/s,σ = 0s,
andδ = 1.4s. Sinceλ ∈ {1.5, . . . , 30}s, this means that
ζ ∈ {0.1, . . . , 28.6}s. Clearly, performance improves as
ζ and consequently the L-CSCAN queue size increases,
which agrees with the results shown in Figure 4 above,
namely that increasing the size of the scheduling queue
improves the disk performance.

Figure 19 is similar to Figure 15, except that it also
shows how the best prior scheduler, CDS-SCAN [37],
behaves. Note how CSched and CDS-SCAN’s perfor-
mance is the same when there are no real-time requests,
but then how CDS-SCAN’s performance on the random
best-effort request stream drops while CSChed’s perfor-
mance remains constant. Also note how CDS-SCAN’s
performance for the sequential best-effort stream drops
more precipitously than CSched’s as the real-time rate
increases.

9 Future Work

As λ decreases, a greater fraction of the initial slack time
will have to be allocated to the worst-case device ser-
vice time, leaving less latency allocated to the L-CSCAN

12

0 2 4 6 8

Real-time rate (MB/s)

0

50

100

T
hr

ou
gh

pu
t

(M
B

/s
)

sequential b.e., CDS-CSCAN
random b.e., CDS-CSCAN
sequential b.e., L-CSCAN
random b.e., L-CSCAN

Figure 19: Throughput vs. Real-time rate

queue. This, in turn, implies that the size of the L-
CSCAN queue will be reduced, negatively impacting
performance. If the real-time workloads are very bursty,
i.e. σ is large, then still further time will be “stolen”
from the L-CSCAN queue. One avenue for future re-
search is to explore ways to reduce the impact ofσ and
the average size of the SCAN-EDF queue by allowing
real-time requests to pre-emptively remove the most re-
cently added non-real-time requests from the L-CSCAN
queue and push them onto a holding stack. Later, as
space opens up on the L-CSCAN queue, requests on the
holding stack would be re-added to the L-CSCAN queue,
thereby mostly preserving fairness among the non-real-
time requests.

10 Conclusion

In conclusion, we have presented a new, efficient,
O(log n), real-time disk scheduler that imposes al-
most no performance penalty over non-real-time optimal
schedulers when given sufficient slack time. We demon-
strated how the performance may improve as more re-
sources (slack time and buffer space for pending re-
quests) are allocated. We showed how to characterize
a device’s performance. Given the workload and de-
vice characterizations, we have shown how to configure
CSched, and demonstrated its performance over a range
of workloads. We have also presented L-CSCAN, a mod-
ification to CSCAN that preserves fairness with defined
maximal queue delay even in the presence of sequential
I/O streams, with minimal performance cost.

Acknowledgment

We should like to thank Ron Banner and Mani Fischer
for the time and effort they spent reviewing various drafts

of this paper, and for their many suggestions which im-
proved the paper. We should also like to thank David
Lehavi, Arif Merchant, and Kimberly Keeton for their
interesting and stimulating discussions and feedback on
this work.

References

[1] SCSI architecture model - 3 (SAM3). Tech. Rep. T10 Project
1561-D, revision 14, International Commitee for Information
Technology Standards (INCITS), T10 Technical Committee,
Sept. 2004.

[2] CHANG, H., CHANG, R., CHANG, R.,AND SHIH , W. Enlarged-
Maximum-Scannable-Groups for Real-Time disk scheduling in
a multimedia system. In24th International Computer Software
and Applications Conference(Taipei, Taiwan, Oct. 2000), IEEE
Computer Society.

[3] CHANG, H., CHANG, R., SHIH , W., AND CHANG, R.
Reschedulable-Group-SCAN scheme for mixed real-time/non-
real-time disk scheduling in a multimedia system.J. Syst. Softw.
59, 2 (2001), 143–152.

[4] CHANG, R., SHIH , W., AND CHANG, R. Real-time
disk scheduling for multimedia applications with deadline-
modification-scan scheme.International Journal of Time-Critical
Computing Systems 19(2000), 149–168.

[5] DEES, B. Native command queuing - advanced performance in
desktop storage.Potentials, IEEE 24, 4 (2005), 4–7.

[6] DENNING, P. J. Effects of scheduling on file memory operations.
In Proceedings of the April 18-20, 1967, spring joint computer
conference(Atlantic City, New Jersey, 1967), ACM, pp. 9–21.

[7] FRANK , H. Analysis and optimization of disk storage devices for
Time-Sharing systems.J. ACM 16, 4 (1969), 602–620.

[8] GANG, P.,AND CKER CHIUEH, T. Availability and fairness sup-
port for storage QoS guarantee. InDistributed Computing Sys-
tems, 2008. ICDCS ’08. The 28th International Conference on
(2008), pp. 589–596.

[9] GILL , B. S., AND MODHA, D. S. WOW: wise ordering for
writes — combining spatial and temporal locality in non-volatile
caches. InProceedings of the 4th USENIX Conference on File
and Storage Technologies(San Francisco, California, Dec. 2005),
USENIX.

[10] GOPALAN, K. Real-time disk scheduling using deadline sensi-
tive SCAN. Technical Report TR-92, Experimental Computer
Systems Labs, Department of Computer Science, State Univer-
sity of New York, Stony Brook, NY, Jan. 2001.

[11] GULATI , A., MERCHANT, A., UYSAL , M., PADALA , P., AND

VARMAN , P. Efficient and adaptive proportional share I/O
scheduling.SIGMETRICS Perform. Eval. Rev. 37, 2 (2009), 79–
80.

[12] GULATI , A., MERCHANT, A., AND VARMAN , P. J. pClock: an
arrival curve based approach for QoS guarantees in shared storage
systems. InProceedings of the 2007 ACM SIGMETRICS inter-
national conference on Measurement and modeling of computer
systems(San Diego, California, USA, 2007), ACM, pp. 13–24.

[13] HUANG, Y., AND HUANG, J. Disk scheduling on multimedia
storage servers.Computers, IEEE Transactions on 53, 1 (2004),
77–82.

[14] HWANG, K., AND CHOI, C. Y. Overlapped disk access for
real-time disk I/O. InReal-Time Computing Systems and Ap-
plications, 1999. RTCSA ’99. Sixth International Conference on
(1999), pp. 263–269.

13

[15] INTEL, AND SEAGATE. Serial ATA native command queuing,
July 2003.

[16] JACOBSON, D. M., AND WILKES, J. Disk scheduling algo-
rithms based on rotational position. Technical Report HPL-CSP-
91-7, Computer Systems Project, Hewlett-Packard Laboratories,
Palo Alto, CA, Mar. 1991.

[17] KELLY, T., COHEN, I., GOLDSZMIDT, M., AND KEETON, K.
Inducing models of black-box storage arrays. Technical Report
HPL-2004-108, Hewlett-Packard Laboratories, Palo Alto, CA,
June 2004.

[18] KESAVAN, M., GAVRILOVSKA , A., AND SCHWAN, K. Differ-
ential virtual time (DVT): rethinking I/O service differentiation
for virtual machines. InProceedings of the 1st ACM symposium
on Cloud computing(Indianapolis, Indiana, USA, 2010), ACM,
pp. 27–38.

[19] K IM , T., SONG, E., KOH, Y., WON, Y., AND KOH, K. G-
SCAN: a novel real-time disk scheduling using grouping and
branch-and-bound strategy. InComputational Science and Its
Applications - ICCSA 2006, vol. Volume 3980/2006 ofLecture
Notes in Computer Science. Springer Berlin / Heidelberg, May
2006, pp. 1062–1071.

[20] KUMAR , R. Fairness in disk scheduling. Masters thesis, Indian
Institute of Science, Bangalore, India, Jan. 1993.

[21] L IU , C. L., AND LAYLAND , J. W. Scheduling algorithms for
multiprogramming in a Hard-Real-Time environment.J. ACM
20, 1 (1973), 46–61.

[22] MERTEN, A. G. Some quantitative techniques for file organiza-
tion. Ph.D. thesis, University of Wisconsin – Madison, 1970.

[23] MESNIER, M. P., WACHS, M., SAMBASIVAN , R. R., ZHENG,
A. X., AND GANGER, G. R. Modeling the relative fitness of
storage.SIGMETRICS Perform. Eval. Rev. 35, 1 (2007), 37–48.

[24] MOLANO, A., JUVVA , K., AND RAJKUMAR , R. Real-time
filesystems. guaranteeing timing constraints for disk accesses in
RT-Mach. InReal-Time Systems Symposium, 1997. Proceedings.,
The 18th IEEE(1997), pp. 155–165.

[25] OZGUR, E., KALLAHALLA , M., AND VARMAN , P. J. Real-time
parallel disk scheduling for VBR video servers. InProceedings
of Fifth International Conference on Computer Science and In-
formatics(Feb. 2000).

[26] PAREKH, A., AND GALLAGER , R. A generalized processor
sharing approach to flow control in integrated services networks:
the single-node case.Networking, IEEE/ACM Transactions on 1,
3 (1993), 344–357.

[27] POVZNER, A., KALDEWEY, T., BRANDT, S., GOLDING, R.,
WONG, T. M., AND MALTZAHN , C. Efficient guaranteed disk
request scheduling with fahrrad. InProceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems
2008(Glasgow, Scotland UK, 2008), ACM, pp. 13–25.

[28] PRADHAN , T., AND HARITSA, J. R. Efficient fair disk sched-
ulers. InCurrent Trends in Advanced Computing(Bangalore, In-
dia, Dec. 1995), Tata-McGraw-Hill, pp. 236–243.

[29] REDDY, A. L. N., AND WYLLIE , J. Disk scheduling in a multi-
media I/O system. ACM, pp. 225–233.

[30] REDDY, A. L. N., WYLLIE , J., AND WIJAYARATNE , K. B. R.
Disk scheduling in a multimedia I/O system.ACM Trans. Multi-
media Comput. Commun. Appl. 1, 1 (2005), 37–59.

[31] RUEMMLER, C., AND WILKES, J. An introduction to disk drive
modeling.Computer 27, 3 (1994), 17–28.

[32] SARIOWAN , H., CRUZ, R., AND POLYZOS, G. Scheduling for
quality of service guarantees via service curves. InComputer
Communications and Networks, 1995. Proceedings., Fourth In-
ternational Conference on(1995), pp. 512–520.

[33] SCHINDLER, J., AND GANGER, G. R. Automated disk drive
characterization (poster session). InProceedings of the 2000
ACM SIGMETRICS international conference on Measurement
and modeling of computer systems(Santa Clara, California,
United States, 2000), ACM, pp. 112–113.

[34] SEAMAN , P. H., LIND , R. A., AND WILSON, T. L. An analysis
of auxiliary-storage activity. IBM System Journal 5, 3 (1966),
158—170.

[35] SEELAM , S.,AND TELLER, P. Fairness and performance isola-
tion: an analysis of disk scheduling algorithms. InCluster Com-
puting, 2006 IEEE International Conference on(2006), pp. 1–10.

[36] SELTZER, M., CHEN, P.,AND OUSTERHOUT, J. Disk schedul-
ing revisited, Jan. 1990.

[37] STAELIN , C., AMIR , G., BEN-OVADIA , D., DAGAN , R.,
MELAMED , M., AND STAAS, D. Real-time disk scheduling al-
gorithm allowing concurrent I/O requests. Tech. Rep. HPL-2009-
244, Hewlett-Packard Laboratories, Oct. 2009.

[38] TSAI, C., CHU, E. T., AND HUANG, T. WRR-SCAN: a rate-
based real-time disk-scheduling algorithm. InProceedings of the
4th ACM international conference on Embedded software(Pisa,
Italy, 2004), ACM, pp. 86–94.

[39] TSAI, C., HUANG, T., CHU, E., WEI, C., AND TSAI, Y.
An efficient Real-Time Disk-Scheduling framework with adap-
tive quality guarantee.Computers, IEEE Transactions on 57, 5
(2008), 634–657.

[40] UYSAL , M., ALVAREZ , G., AND MERCHANT, A. A modular,
analytical throughput model for modern disk arrays. InModel-
ing, Analysis and Simulation of Computer and Telecommunica-
tion Systems, 2001. Proceedings. Ninth International Symposium
on (2001), pp. 183–192.

[41] VALENTE, P., AND CHECCONI, F. High throughput disk
scheduling with fair bandwidth distribution.IEEE Transactions
on Computers 59(May 2010), 1172–1186.

[42] VARKI , E., MERCHANT, A., XU, J., AND QIU , X. An inte-
grated performance model of disk arrays. InModeling, Analysis
and Simulation of Computer Telecommunications Systems, 2003.
MASCOTS 2003. 11th IEEE/ACM International Symposium on
(2003), pp. 296–305.

[43] VARKI , E., MERCHANT, A., XU, J., AND QIU , X. Issues and
challenges in the performance analysis of real disk arrays.Paral-
lel and Distributed Systems, IEEE Transactions on 15, 6 (2004),
559–574.

[44] WANG, M., AU, K., A ILAMAKI , A., BROCKWELL, A.,
FALOUTSOS, C., AND GANGER, G. R. Storage device perfor-
mance prediction with CART models. InProceedings of the joint
international conference on Measurement and modeling of com-
puter systems(New York, NY, USA, 2004), ACM, pp. 412–413.

[45] WORTHINGTON, B. L., GANGER, G. R., AND PATT, Y. N.
Scheduling algorithms for modern disk drives. InProceedings
of the 1994 ACM SIGMETRICS conference on Measurement
and modeling of computer systems(Nashville, Tennessee, United
States, 1994), ACM, pp. 241–251.

[46] WORTHINGTON, B. L., GANGER, G. R., PATT, Y. N., AND

WILKES, J. On-line extraction of SCSI disk drive parameters. In
Proceedings of the 1995 ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems
(Ottawa, Ontario, Canada, 1995), ACM, pp. 146–156.

[47] YU, Y. J., SHIN , D. I., EOM, H., AND YEOM, H. Y. NCQ
vs. I/O scheduler: Preventing unexpected misbehaviors.Trans.
Storage 6, 1 (2010), 1–37.

[48] ZHU, Y. Evaluation of scheduling algorithms for real-time disk
I/O. Tech. rep., Department of Computer Science and Engineer-
ing, University of Nebraska – Lincoln, May 2002.

14

