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ABSTRACT

Global positioning system (GPS) receivers are widely de-
ployed in navigation and tracking devices installed in taxis,
buses, utility vehicles, and smart phones. These GPS re-
ceivers can provide probe data that illuminates automotive
traffic conditions for applications including traffic analysis,
travel time estimation, map building, and congestion and ac-
cident detection. The characteristics of real GPS probe data
are not well understood, however, and these characteristics
may pose difficulties for existing algorithms. For example,
map matching is often a prerequisite for GPS trace-related
applications. Existing solutions often rely on assumptions,
e.g., Gaussian GPS noise, that are not necessarily true of
data collected on metropolitan streets. In this paper, we
study probe data from tens of thousands of taxis in the three
largest cities in China. We comprehensively characterize the
data, quantify noise present in it, gauge the applicability
of existing map matching algorithms to the data, identify
challenges in processing large-scale GPS data, and suggest
research opportunities.

1. INTRODUCTION

GPS probes are ubiquitous. For example, smart phones
integrate GPS navigation systems and can transmit loca-
tion data through applications [1, 10]. Fleet management
systems using GPS tracking devices are widely deployed in
taxis, buses, utility and commercial vehicles [4, 13]. As
such, there is considerable interest in the application of the
GPS data, e.g., traffic analysis [4, 20], traffic forecasting [11],
hotspot analysis [14], real-time trip planning [12], travel time
estimation [5], and map building [7, 8].

However, the characteristics of large-scale GPS data are
not well understood, which may limit the applicability of
existing solutions if the latter rely on assumptions that do
not hold in practice. For example, map matching GPS co-
ordinates to a passable route is often the first step in traffic-
related applications. Most existing algorithms are designed
for GPS navigation devices with relatively frequent sampling
rates and high precision [18]. GPS probes, on the other
hand, may sample infrequently (e.g., once per minute) to
reduce communication costs [15]. Similarly, noise (position
error/uncertainty) varies with the device. Recently, Hid-
den Markov Model (HMM) approaches to map matching
noisy, low-sample-rate GPS data have proven effective [16,
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17]. HMM approaches require knowledge of the probability
distribution of GPS measurement errors, which are typically
assumed to follow Gaussian distributions. But the real noise
statistics in large-scale probe data remain unknown. Even if
the installed GPS tracking unit has been properly studied,
with thousands of them deployed, inconsistent behaviors are
likely to occur. These unknown factors could significantly
affect the accuracy of map matching algorithms, which in
turn affect other GPS trace-based applications.

Existing empirical studies of GPS probes often focus on
feasibility for traffic sensing and do not thoroughly char-
acterize the probe data employed. Furthermore they are
often limited in scale. For example, GPS-equipped mobile
phones have been proven effective for traffic sensing, based
on 100 devices from a 10-mile stretch of a freeway for eight
hours [10]. A similar study examined bus GPS data from
a 2.5-mile corridor for two days [3]. A study on taxi GPS
data emphasized communication reliability [13].

In this paper, we analyze taxi GPS data from the three
largest cities in China: Beijing, Shanghai, and Guangzhou.
We collected the data from all 28 thousand taxis in the Bei-
jing database for one week in 2008, and sampled nearly
5 thousand taxis each from the Shanghai and Guangzhou
databases, for one week in 2006 and 2011, respectively. The
taxi fleets in these cities are some of the largest in the world,
and these data sets likely cover most common issues with
taxi GPS probes.

In China, taxi companies install GPS devices initially for
the purpose of phone call dispatching and theft protection.
These devices communicate the location, speed, direction,
occupancy, and other status information to the central server
through cellular phone networks. The data is typically stored
in relational databases. Lately, local governments collect
and aggregate the data from these companies for vehicle
and traffic regulation, e.g., speed violation detection. While
there is considerable interest in using the data for applica-
tions such as traffic estimation and travel time prediction,
we are not aware of any mature system that produces reli-
able and credible results in the metropolitan scale.

Although large in scale, these taxi GPS devices often pro-
vide low quality data compared to probes used in research
experiments. Taxi dispatching does not require high preci-
sion, and cost efficiency is often the primary concern. For
example, the GPS tracking unit is sometimes integrated into
LED advertisement boards at no additional cost. The qual-



City | ID(key) taxi ID GPS time svr time latitude longitude  speed direction status effective

Beijing cell phone Unix time integer integer integer integer bytes binary

Shanghai integer  integer text double double byte byte binary

Guangzhou | integer license plate text text XX XXXXX ~ XXX.XXXXX XXX XXX bytes binary

Table 1: GPS record table fields from different cities

ity of both the device and the installation can affect the taxi sampling interval granularity

lity of measured position data. Heterogeneous devices group count | vacant occupicd lat/lon - speed direction
quad t})’ i ¢ posit . .t led tgd'ff t 4 (sec) (sec) (degree) (km/h) (degree)
used by different companies or ins a. ed at different times BJ-A | 10597 | 300-301 300-301 | 1/100,000 2 3
pose another challenge. Our analysis of the data reveals BJ-B | 7,885 | 301-302 301-302 | 1/100,000 1 10
issues that are usually ignored by existing solutions. BI-C 32569 180-181 180-181 1/100:000 2 3

To the best of our knowledge, we are the first to systemati- BJ-D | 2,670 60-61  60-61 1/100,000 2 3

cally characterize large-scale GPS probe data. The fleet size, SH-A | 1,838 | 63-64 63-64 1/60,000 1 2
geographical range, and time span are unprecedented. We %Ié'i :137;(7)“; ég g(l) 11//11680(?000 122 415
thoroughly study measurements available in our three data GZ-B | 1,244 30-31  30-31 1/100,000 3-4 10

sets and analyze location noise in detail. We describe lim-
itations in existing algorithms for map matching and other
analyses, and suggest promising directions for the develop-
ment of scalable GPS data processing systems and practical
algorithms for valuable applications.

The rest of this paper is organized as follows. Section 2
presents the statistics and features of various measurements
in our GPS records. Section 3 analyzes GPS noise distri-
bution and the root cause of various outliers. Section 4 dis-
cusses the challenges of map matching using real GPS probe
data and proposes research directions. Section 5 concludes.

2. DATA CHARACTERISTICS

The type of data reported by the GPS probes is largely
consistent, even though there are different data formats and
sampling characteristics. This section introduces the for-
mats and studies the statistics of all measurements. We
abbreviate the three city names as BJ, SH, and GZ from
now on for the sake of succinct presentation.

2.1 Data Sources and Formats

We obtained our taxi GPS data from local transporta-
tion bureaus. The data from BJ is a complete database
dump for the time period from midnight 12/1/2008 to mid-
night 12/8/2008, which contains 80,991,481 GPS records
from 28,002 taxis. Previous work using BJ data includes [19]
(a different time period). In SH, our data set is a partial
dump from the database, including 4,403 taxis during the
period of 10/6 — 10/13/2006, a total of 40,360,033 records.
The total number of taxis in the database is unknown. Pre-
vious work using the data includes [14, 20]. The database
in GZ contains 17,226 taxis as of 04/01/2011. We picked
the first 5k taxis based on the alphabetic order of licence
plates, and retrieved samples for the time period of 5/16 —
5/23/2011. Only 4,941 taxis transmitted data during the
period, with a total of 55,578,763 records. In the raw text
format, the file sizes of the data sets are roughly 9.0GB,
2.5GB, and 5.5GB, respectively.

Currently there is no nationwide industrial standard in
China for the GPS record format. The province of Guang-
dong has established and enforced a provincial standard in
early 2009, which results in much better data quality as our
analysis proves. However, as the data sets from BJ and SH
are obtained in 2008 and 2006, respectively, the current data
formats and quality can be different. All cities show clear
signs of heterogeneous devices and configurations, as a result
of data aggregation from different taxi companies.

Table 2: Summary of groups with more than 1,000 taxis

Table 1 shows all fields of GPS records. Overall, BJ mostly
uses integer numbers, SH uses various primitive data types,
and GZ favors text strings. The record id is the incremen-
tal key of the table. The record table in BJ does not use a
key. Different databases use different taxi IDs. BJ uses cell
phone numbers, indicating the communication through cel-
lular phone networks. SH uses an integer id. These integers
are probably assigned to each taxi company as taxis with
adjacent ids exhibit similar data characteristics. GZ uses li-
cence plates directly. All databases contain a timestamp for
each record. BJ uses an integer that represents Unix time
in seconds, and the other two cities use text strings. GZ
includes the server timestamp upon message receival, which
helps us analyze transmission issues. Latitude and longitude
are stored as integers in BJ database, where the last five dig-
its actually represent a fraction of a degree. SH uses doubles
to represent decimal degrees for latitude and longitude. GZ
stores decimal degrees as text strings. The speed data is
also different. BJ uses an integer that represents centimeter
per second. SH stores the km/h speed as an unsigned byte,
i.e., 255 km/h maximum. GZ uses a string with three char-
acters, i.e., 999 km/h maximum. For the vehicle heading
direction, BJ again stores an integer ranging from 0 to 360
degrees. SH uses an unsigned byte ranging from 0 to 180,
and the degree is the value multiplied by two. GZ uses a
string of length three for the degree value. Status field in-
cludes various flags from the vehicle. The most relevant one
is the occupancy of the taxi. SH database contains only this
flag. The effectiveness field reflects the belief of the GPS
device whether the location is accurate, typically judged by
the number and strength of satellite signals.

2.2 Sampling Interval Analysis

GPS devices in taxis take samples by time (temporally)
or distance (spatially) traveled, and the sampling rate can
be different depending on if the status is vacant or occu-
pied [13]. Even with spatial sampling, there is often a time-
out which causes an update in case of slow movement or
waiting. In addition, taxis often take samples during status
changes, e.g., occupancy change, and location reestablish-
ment after a signal loss. Nevertheless, we found the sam-
pling methods and sampling rates easy to identify. Tem-
poral sampling usually exhibits one or two intervals with
at least an order of magnitude more samples than the rest.
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Figure 1: Histogram of sample counts and sampling intervals

Spatial sampling has intervals relatively evenly distributed,
with slightly more samples at the timeout interval. Most
taxis in our data sets use temporal sampling.

The left column of Fig. 1 shows the linear-scale taxi his-
tograms by total sample counts, and the right column shows
log-scale sample histograms by sampling intervals. In BJ,
most taxis have only 1-4k samples, which contribute to the
spike at 5 min sampling interval. There are also many sam-
ples at the intervals of one and three minutes. The corre-
sponding taxis are significantly less in number as lower sam-
pling intervals produce more samples. For example, 70 taxis
alone contribute to the spike of 3.75 million samples at the
10 sec sampling interval. In SH, the dominating sampling
intervals are 16 sec and 61-64 sec. Manual inspection re-
vealed two groups of taxis, one samples at 63-64 sec interval
with 6-8k samples, the other samples at 16 sec when vacant
and 61 sec when occupied, with 11-14k samples. There are
also two dominating groups in GZ, one samples at 20 sec
when vacant and 60 sec when occupied, and the other sam-
ples at 30-31 sec. In the sample histograms of both SH and
GZ, there are spikes at multiples of these main sampling
intervals. Missing samples likely resulted in these spikes,
analyzed in the next subsection.

We use a 10% threshold to discover sampling intervals for
each taxi, i.e., any interval with more than 10% of the to-
tal samples. As a result, each taxi almost always returns
no more than two intervals and the total sample percent-
age of these significant intervals is more than 50% in most
cases, indicating good accuracy. Table 2 summaries taxi
groups we discovered using this threshold. The different
measurement granularity of different groups also confirms
our classification. The latitudes and longitudes in BJ and
GZ include five digits for the fractional part. While SH-A

| Beijing Shanghai Guangzhou
duplicate samples | 4.00%(24,385) 2.50%(4,228) 0.19%(4,905)
missing samples | 0.60% 7.36% 11.7%

reverse order - 0.30%(4,184) 0.82%(4,888)
GPS time error |- - 0.028%(1,341)

Table 3: Transmission error (percentage and taxis affected)

record id server time GPS time longitude latitude
31728500429,5/20/11 21:26:32,5/20/11 21:18:08,113.23598,23.14391
31728512858,5/20/11 21:27:04,5/20/11 21:18:39,113.23618,23.14401
31709065161,5/20/11 5:27:22 ,5/20/11 21:19:00,113.26282,23.15134
31728524473,5/20/11 21:27:32,5/20/11 21:19:10,113.23941,23.14638
31728548684,5/20/11 21:28:35,5/20/11 21:20:11,113.24556,23.14984

Figure 2: GPS timestamp error?

includes six digits, the last two digits have only six values,
representing multiples of 1/60,000 (it is not converted from
minute/second representation as numbers differ by exactly
1/60,000 degree exist from one taxi). The granularity of
speed and direction is discussed in Sections 2.4 and 2.5.

2.3 Transmission Time and Error

Table 3 summaries our analysis of transmission issues.
First we discover a significant percentage of duplicate records
in the table, with BJ being the worst and GZ the cleanest.
As these duplicates cover almost all taxis, network retrans-
mission is likely the root cause.

Our calculation of missing samples is approximate as there
is no device or network log. We use only taxis in Table 2 for
the calculation, as their sampling intervals are more promi-
nent than the rest of taxis. Let n; be the number of samples
at interval ¢. Assuming ¢ is the sampling interval, the miss-
ing rate is defined as

nzt/(nt +2x ngt) (1)

Samples at higher multiples of ¢ are not considered as the
count is typically an order of magnitude less. For taxi groups
with two intervals for vacant and occupied status, only the
smaller one is counted. As the missing rates of different
taxi groups are close within the same city, we calculate the
average rate in Table 3. The result reverses the rank of
duplicate samples. We suspect that the network in BJ re-
transmits more aggressively while the network in GZ drops
more packages.

Reverse order in the third row means that the package ar-
rival order is different from the GPS timestamp order. Only
GZ database includes the server time for this calculation.
However, as the record id key monotonically increases over
time, we use it to determine reverse-ordered samples in SH.
Only records from the same taxi are compared and counted.
Reverse-ordered samples also affect almost all taxis in both
cities, indicating network transmission delays.

Finally, we analyze the exact transmission delay using the
server timestamp available in GZ database. The time dif-
ference between the server and the GPS timestamps clearly
follows heavy-tail distribution, and is very consistent among
all taxis. There are 4,120 taxis that start the distribution
at 493 seconds, and another 596 taxis start between 483-503
seconds. This suggests that these GPS devices synchronize
their time by satellites, and the server time is 493 seconds
faster. The median time of delivery is around 8 seconds,
and the 90 percentile is at 15 seconds. The upper bound of
the delivery time is around 500 seconds. However, there are
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Figure 3: Vehicle measured speed

very strange outliers that are orders of magnitude distant
from the center of distribution. Fig. 2 shows one example.
The large time difference in the third record is due to device
malfunctioning rather than the server error, because both
the sampling interval and coordinates are inconsistent with
adjacent samples. Based on the features of the data, we ap-
ply an outlier detection algorithm that finds gaps at both
ends of the center distribution region. The gap must be at
least one order of magnitude larger than the length of the
center region, and samples beyond these gaps are outliers.
Table 3 shows that 1,341 taxis have outliers that account for
0.027% of all samples from all taxis.

2.4 Measured Speed

Speed information can be obtained from either the odome-
ter or the GPS calculation. We suspect that most taxis use
GPS calculation for the convenience of installation. Our
analysis supports this observation as excessive speed num-
bers exist, and in many cases accompanied by abnormal yet
consistent GPS coordinates.

Fig. 3 shows the characteristics of vehicle measured speed.
The histograms on the left count the number of taxis by
their maximally reported speed numbers. The histograms
on the right count all samples at each speed value. Taxis
in BJ behave relatively similarly. Most taxis report speed
within 130 km/h. Although the maximum speed reported is
1,741 km/h, there is a gap at 185 km/h and only 301 samples
are beyond it. Among these sample, 181 has the effective
flag set, which is slightly above the average effective sample
rate. Therefore there is no correlation between GPS location
effectiveness and abnormal speed measurement. There are
another 49 samples of negative speed not shown on the his-
togram. The histogram exhibits two curves at the boundary.
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Figure 4: Vehicle measured direction

Taxi groups BJ-A, BJ-C, and BJ-D in Table 2 contribute
to the outer curve as their speed measurement is accurate
to 2 km/h only, i.e., reporting only even numbers. Group
BJ-B contributes to the inner curve with the accuracy at
1 km/h. In SH, the overall sample histogram has a simi-
lar shape with BJ’s, but there are significantly more sam-
ples beyond 150 km/h, which do not fall off as the speed
increases. The maximum speed reported is 254 km/h, en-
forced by the unsigned byte type. However, the frequency
at 254 is on par with frequencies between 200-254. The his-
togram also contains two layers in SH. The out layer is from
SH-B that reports only even numbers, and the inner layer
is from SH-A that reports all numbers. Interestingly, most
samples with excessive speed are from SH-B. In GZ, there
is again a significant number of taxis with maximum speed
beyond 180 km/h. The maximum number is 999 km/h,
as allowed by the data format. The histogram drops two
orders of magnitude at 120-130 km/h, then it remains rel-
atively flat. If we consider only effective samples, there is
another drop at 260 km/h. Only 98 out of 8,257 samples
beyond 260 km/h are effective. Correspondingly, if we drew
the taxi histogram on the left with effective samples only,
the count at 300+ would reduce from 384 to only 18 taxis.
The bars of other bins change very little. Finally, the sample
histogram is also bimodal. GZ-A group skips a number af-
ter one or two consecutive numbers, and GZ-B group skips
two to three numbers for every number that has samples.
Together, speed numbers skipped by both have zero sample
and the overlapped numbers exhibit spikes in the histogram.

2.5 Measured Heading Direction

The distribution of the direction measurement is also dif-



| Beijing Shanghai Guangzhou
occupied samples | 13.0% 19.2% 28.7%
effective samples | 60.4% — 82.5%
speed 0 samples |65.8% 33.1% 49.3%
speed 0 (effective) | 26.7% — 34.2%
repeated location |45.5% 45.3% 27.8%
fixed location taxi| 351 534 107

Table 4: Miscellaneous statistics

ferent among different taxi groups, displayed in Fig. 4. In
this set of figures, the taxi histograms on the left also use
log-scale to reveal details of low-count bins. BJ-B group re-
ports only 36 unique degrees, and BJ-A, BJ-C, BJ-D groups
have 120 unique values. So the granularity is at 10 and 3
degrees, respectively. These groups contribute to the outer
layer in the sample histogram. The inner layer is from a
small group of taxis that reports only even numbers, e.g.,
180 unique counts. There are 13,905 samples below 0 or
above 360. Most of these samples are from a few taxis that
use a different scale, 0-36,000. Format standardization could
have cleaned the data. SH-A reports only even numbers, as
enforced by the data format, and SH-B reports mostly eight
directions. There are 850 illegal samples beyond 360 degrees.
Samples from GZ contain no illegal direction. GZ-A reports
every degree number and GZ-B reports 36 unique degrees.
The histograms of different taxi groups in different cities are
relatively evenly distributed, with four peaks aligned with
the directions of horizontal and vertical roads in each city.
More specifically, as roads in BJ are well aligned with longi-
tudinal and latitudinal lines, the peaks are very sharp at the
four orientations. In SH, the roads are often aligned with
Huangpu River, and therefore the peaks are not located at
any major orientation. GZ is somewhat in between.

2.6 Other Statistics

Table 4 summarizes a few more statistics relevant to the
data. The occupied sample percentage shows the utiliza-
tion of taxis. As we count samples rather than time, the
actual time percentage can be higher due to lower sam-
pling rate when occupied. Effective samples count those
whose effective flags are set to true. Speed zero means sam-
ples reporting zero speed. BJ has more samples with speed
zero than the other two cities but more than half of them
are ineffective. In fact, 65.8-26.7=39.1% of all samples are
both ineffective and zero speed, which is almost the same
as the total number of ineffective samples, 100-60.4=39.6%.
The number is also close in GZ, i.e., 49.3-34.2=15.1% vs.
100-82.5=17.5%. Therefore, taxis almost always report zero
speed whenever the location is not confirmed. The mea-
sured direction in ineffective samples is mostly zero as well,
as there are significantly more samples at zero degree in the
histograms of BJ and GZ in Fig. 4. If we count the percent-
age of zero speed samples among effective samples only, BJ
and GZ are close, 26.7/60.4=44.2% and 34.2/82.5=41.5%,
respectively, indicating similar average waiting time. On
the other hand, the speed and direction measurements are
not zeroed out in SH even if the GPS device cannot con-
firm its location. There are significantly less samples at zero
speed and zero degree. Furthermore, considering samples
that repeat the previous location, BJ and SH have signifi-
cantly more samples than GZ. The percentage in SH even
exceeds the percentage of zero speed samples. We found
that samples repeating the same location can report non-
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Figure 5: Straight-line (great-circle distance) speed

zero speed, indicating errors in the measurement. Finally,
there are hundreds of taxis in each database that do not up-
date their locations, with the percentage in SH significantly
larger than the other two, 534/4403=12.1%.

3. GPS LOCATION NOISE ANALYSIS

Analyzing GPS measurement noise in raw samples with-
out map matched traces is challenging. We develop the re-
sult through a series of studies.

3.1 Straight-Line Speed

The reported speed mostly measures the instantaneous
speed at the sampling time, as zero occurs even when the
coordinates have changed significantly. Here we calculate
the straight-line (great-circle distance) speed for compari-
son. Fig. 5 shows the straight-line speed on the left and the
difference with the measured speed on the right. Both use
log scale. For BJ and GZ where the effective flag is available,
we add the curves that count only effective samples.

There are more excessive numbers in the calculated speed
than the measured one. In BJ, while there are only 281 (167
effective) samples with measured speed above 200 km/h, the
count with calculated speed is 504,605 (192,146 effective).
In SH, the number is 4,064 vs. 882,836. In GZ, it is 10,003
(1,331) vs. 98,320 (27,001). The effectiveness flag filters out
outliers significantly, but not all of them. Comparing with
the measured speed, excessive calculated speed affects al-
most all taxis. Considering effective samples only, the num-
bers of taxis exceeding 200 km/h in straight-line speed are
14,353, 3,751, and 3,750 in BJ, SH, and GZ, respectively.

3.2 Root Causes for Abnormal Coordinates

We have shown that both measured and straight-line speed
can be excessively large, and the latter affects almost all
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(b) Random wrong coordinates while stopped in city canyon

time lon lat spd dir

1 06:33:08,121.5071,31.2275,66 ,112

2 06:34:10,121.5066,31.2273,0 ,112 // distance=52m

3 06:35:10,121.5066,31.2273,0 ,112

4 06:36:11,121.5066,31.2273,0 ,112

5 06:36:59,121.477 ,31.2233,54 ,157 // distance=2.85km

(c) Repeating last-known location in and after river tunnel

Figure 6: Root causes for error coordinates (Shanghai)

taxis. Next we analyze some of these samples to identify
the root causes. Fig. 6 shows a few examples from SH. In
Fig. 6a, there are 6 samples spanning 7 minutes that lead
from the downtown area to the sea and back. The maximum
measured speed is 254 km/h, while the straight-line speed
exceeds 600 km/h. Based on samples before and after, as
well as the speed and distance constraints, there are only a
handful of choices for the real drive path. These paths do
not have many high-rise buildings nearby, and the taxi was
moving at 20km/h on average. It is unclear whether multi-
path signals resulted in the error. On the other hand, Fig. 6b
is most certainly a multipath error inside a city canyon. The
taxi was either waiting or slowly moving for 20 minutes in
the center area under high-rise buildings, generating a total
of 25 samples. These samples are located rather randomly,

(b) Wrong location of the bridge in Guangzhou

Figure 7: Aerial map misalignment (white dots are samples)

and the measured speed ranges from 0 to 88 km/h (un-
realistic in downtown SH). The straight-line speed exceeds
180 km/h in one interval. Fig. 6¢ shows that tunnels can
result in excessive speed too. While inside the river tun-
nel, the taxi kept reporting its last known location, i.e., the
entrance of the tunnel, until it relocated itself after leaving
the tunnel. The straight-line speed between samples 4 and
5 is beyond 200 km/h. The sample effectiveness flag, deter-
mined by signal strength, can filter out tunnels where there
is no satellite signal at all. But multipath errors can pass the
check as the signals bounced by obstacles are still received.

Multipath error is difficult to identify and filter out. While
excessive measured speed is reported by a small percentage
of taxis, as shown in Fig. 3, excessive straight-line speed is
common among all taxis. The error is not highly correlated
with location either. We divided the map as a grid and
checked the percentage of samples with excessive straight-
line speed. The result distribution is rather random. Areas
of high-rise buildings or tunnels do not exhibit higher er-
ror percentage then their adjacent blocks. Finally, straight-
line speed alone is not effective in identifying error samples.
While extreme cases like those in Fig. 6 can be filtered out
by a reasonable threshold, it is unclear how many mild er-
rors exist in the “normal” data. Furthermore, different road
types can be close to each other with completely different
max speed thresholds. These location errors can confuse
map matching algorithms, which in turn affect applications
such as traffic estimation and event detection.

3.3 Map Accuracy

We use Open StreetMap (OSM) [2] for our map-related
analysis. In China, there are two major data sources for the
map. Truck roads are mostly donated by Automotive Nav-
igation Data Inc. Street maps in major cities are often cre-
ated manually from Bing vertical aerial imagery. In BJ and
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Figure 8: One hour of effective samples in Beijing, red and black dots represent occupied and empty samples, respectively

SH, street maps in downtown areas and tourist locations are
mostly complete, while suburb areas contain mainly truck
roads. The map of GZ lacks detail even in the downtown
area. We use a proprietary map in ShapeFile format for the
noise measurement in GZ. However, missing roads are still
common in all three maps. In addition, as the GPS data
from SH is five years old, there are roads in the current map
without any sample coverage. In all three maps, a named
road is divided into road segments by intersections, and each
road segment is represented by a polyline. A polyline here
is a sequence of vertices connected by straight lines. There
are totally 13,466, 14,473, and 15,495 road segments in the
maps of BJ, SH, and GZ, respectively. Some of the roads
in OSM data have the number of lanes specified. Both di-
rections of major roads are often marked separately as well.
In the ShapeFile map for GZ, however, every road segment
is marked by exactly one polyline. All these map features
affect the accuracy of the noise measurement.

We discover that all three vector maps as well as the Bing
aerial image backdrop of OSM do not always agree with
GPS samples. Fig. 7 shows two examples from SH and GZ,
respectively. White dots represent GPS samples, and there
is a line between two consecutive dots if the sampling interval
is within 31 seconds and the straight-line speed is less than
50 m/s. Fig. Ta uses three hours of data in SH, and Fig. 7b
uses one hour of data from GZ. The Bing aerial image in
SH is shifted northeast, while the bridge in GZ is located
to the east of the traces. In SH, the OSM vector map is
aligned with the aerial image, therefore disagreeing with the
GPS traces. In GZ, both the OSM and the proprietary
vector maps agree with the GPS traces instead of the aerial
image. Furthermore, different locations in both cities show
varying degrees of misalignment for both vector maps and

areal images. We have not found any map misalignment in
BJ. Fig. 8 shows one hour of effective samples.

The above observation suggests that more accurate maps
can be derived from GPS traces than aerial imagery. The
latter may suffer from alignment errors and distortions due
to either camera or map projection. While geological sur-
veys can produce highly accurate maps, it is more costly
and less up to date. Finally, we notice that GPS trajecto-
ries in GZ are more concentrated than those in SH, as Fig. 7
illustrates (albeit a slightly different scale). This is partly
because of the measurement granularity. The trajectories in
SH are mostly from group SH-B because of its low sampling
interval. Its location accuracy is limited to 1/1,000 of a de-
gree, which is 8.5 meters along the longitude and 11.1 meters
along the latitude in SH. Therefore, adjacent trajectories are
more distant than those in GZ.

3.4 Gaussian Noise Measure

Statistically speaking, the various outliers in the measure-
ments account for a small fraction of the data. Most sam-
ples are located near roads, as can be seen from Fig. 6-8
visually. Assuming Gaussian noise distribution of the GPS
coordinates in these “normal” samples, we estimate the dis-
tribution parameters in this subsection.

Fig. 9 shows the statistics of the distance between sam-
ples and roads. Samples that repeat their previous locations
are not counted. Fig. 9a is the log-scale histogram of the
distance between each sample and its nearest road. Samples
more than 100 meters away from any road account for 8.7%,
5.6%, and 6.8% of total samples in BJ, SH, and GZ, respec-
tively. These isolated samples are mostly due to roads and
parking areas not included in the maps. Among all samples
within 100 meters to some mapped road, the 95 percentile
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Figure 10: A sample and its nearest point on the road

is reached at 46 m, 38 m, and 52 m, respectively. Fig. 9b
shows the ratio between the distance to the nearest and the
second nearest roads within 100 meters. The ratio of most
samples is more than 1:10 or there is only one road within a
100 meter radius. The latter is displayed as the “N/A” bar
in the figure. There are also many samples where the ratio
between the two nearest roads is close, likely contributed by
taxis waiting for traffic signals near intersections.

Since a large number of samples reach exactly one road
within 100 m radius, assuming the road is the true location
of the sample, we use these samples to estimate the noise
distribution. Fig. 10 illustrates this strategy. A road seg-
ment is a polyilne. If there is exactly one polyline within
100 m radius of a sample, we assign the sample to the road.
Considering one day of samples from each city, only those
segments with more than 100 samples assigned are included
for the analysis. We use this threshold because outliers are
quite common in the data. Multipath errors illustrated in
Fig. 6 can produce samples at arbitrary locations. As a re-
sult, the number of road segments we consider are 1,398 out
of 13,466, 892 out of 14,473, and 867 out of 15,495 in BJ,
SH, and GZ, respectively. BJ has more road segments of ex-
act match because it has twice more samples than the other
two cities. Considering only road segments with more than
200 samples assigned, the number drops down to 981, very
close to the other two. For each matched sample (x5, y;), we
calculate the nearest point on the uniquely matched road
segment, (z5,v,). Assuming (z},y,) was the true location of
the taxi that generated (x;,y:), we analyze the mean and
the standard deviation of the noise distribution.

Fig. 11 analyzes the misalignment of maps using the me-
dian of horizontal and vertical differences, i.e.,
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Figure 11: The median of horizontal and vertical map shift

mediani (’y; — yq/j)great circle (3)

These coordinates are converted using the azimuthal equidis-
tant projection centered around each city. Therefore these
horizontal and vertical differences closely approximate the
great circle distance along latitudinal and longitudinal lines,
respectively. The left column in Fig. 11 contains the his-
tograms of (2) for all considered road segments and the right
column includes the histograms of (3). The result is con-
sistent with our visual inspection of map accuracy in Sec-
tion 3.3. In BJ, the map is perfectly aligned with the median
of the samples. The outliers where the median shifts more
than 10 meters are mostly caused by missing map features,
i.e., samples generated from a road or a parking area not
included in the map get assigned to the nearest road. Not
every missing map feature causes large shifts in both direc-
tions. For example, most roads in BJ are well aligned with
latitudinal and longitudinal lines. A missing road along the
latitudinal line causes zero shift along the longitudinal line.
This is another reason of the large concentration of roads
with zero median shift. In SH, there are significant num-
bers of roads with negative medians of samples in both the
horizontal and vertical directions, corresponding to a north-
east shift of the map. The relatively even distribution of
the histogram is likely due to three facts. First, roads in SH
are better aligned with Huangpu river than latitudinal and
longitudinal lines, also observed in Section 2.5. Therefore a
misaligned road more often causes non-zero median in both
horizontal and vertical directions. Second, different roads in
SH exhibit varying degrees of misalignment with the vector
map as well as the aerial image, likely due to image dis-
tortion. Last, the measurement is accurate to only 0.0001
degree, or roughly 10 meters. Therefore, in the worst case,
the samples are always at least 5 meters away from the road
center. The histograms of GZ are somewhat in between.
Most roads are well aligned with the samples but there are
also significantly more outliers.
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Figure 12: Noise estimation using median absolute deviation

Fig. 12 shows the log-scale histogram of the median value
of the great-circle distance, i.e.,

median; ([|(zs, yi) — (x5, ¥i) llgreat circte (4)

Assuming Gaussian distribution of noise, this median value
can be used for the estimation of standard deviation using
median absolute deviation (MAD), i.e.,

o = 1.4826 median; (|| (s, yi) — (miv ?Jz/')ngeat circle (5)

MAD is a robust estimator for noisy data. It has been used
for the estimation of Gaussian GPS noise before [16].

The result exhibits surprising accuracy and consistency in
all three cities, despite the heterogeneous GPS devices used
across the five-year time span. In BJ and GZ, the median
distance for most roads are around 4-10 meters. Beyond
20 meters, the number of roads is an order of magnitude
less, likely due to missing map features rather than GPS
noise. For example in BJ, 32 out of the 57 roads with the
median distance beyond 80 meters have a variance below
100. The combination of large median and small variance
indicate that the samples of a road are located in a narrow
band far away from it, implying most likely a missing road
there. In SH, the center of the histogram is between 6-18
meters. Discounting the map misalignment, the true me-
dian distance should be closer to BJ and GZ. The relatively
flatter and longer span of the histogram center is consistent
with the relatively even distribution of the median horizon-
tal and vertical shift in Fig. 7. There are very few outliers
beyond 50 meters, indicating good map accuracy. Overall,
we believe the GPS locations are reasonably accurate under
normal operating conditions in all cities. Considering vary-
ing lanes of different roads as well as inaccurate maps, we
take 5 m as the lower bound for the median distance under
ideal situation, i.e., a single-lane road mapped accurately.
This results in a standard deviation of 5 x 1.4826 = 7.41
meters, on par with 4.07 meters reported in [16].

Figure 13: Elevated expressways and their intersections

4. DISCUSSION

Having analyzed the data in great detail, we discuss chal-
lenges and opportunities in its relevant applications.

4.1 Map Matching Challenges

Map matching taxi GPS data faces numerous challenges.
The sampling rate is low and dynamic. Missing samples
and erroneous timestamps are possible. The driving behav-
ior can be different when vacant or occupied. The accuracy
of the map may be limited, especially in developing coun-
tries. In the metropolitan area, city canyons and tunnels
can produce noisy outliers. While these errors are statisti-
cally insignificant, their effective identification and removal
are very challenging and important for certain applications
of the data.

Existing map matching algorithms can be largely divided
into local/incremental methods that match samples one by
one [16, 17], and global/geometrical methods that map an
entire trajectory at once [6, 15]. Neither solution handles
the type of noise in Fig. 6 well. Local methods will map
all samples including the outliers. Threshold-based outlier
removal is not effective, as discussed in Section 3.2. Global
methods have the potential to detect these outliers using
geometrical algorithms, but picking the right trajectory to
begin with is non-trivial. For example in Fig. 6b, the out-
lier at the top is located right on the street, much closer
than many other “normal” samples. Picking it as a start or
end point of a trajectory significantly affects the subsequent
map matching procedure. On the other hand, statistical al-
gorithms applied in local methods are more robust against
random noise, e.g., HMM [16]. Some combination of both
methods may win favor. For example, applying HMM to
the cases in Fig. 6 would result in very low or zero probabil-
ity for the outliers. Then global methods can help confirm
the outliers based on normal samples before and after them,
therefore restore the correct match.

Finally, complicated road networks pose another challenge.
In China, elevated expressways are often laid over existing
signal-controlled roads in the metropolitan area. The map
becomes quite messy when these double-layer roads inter-
sect; see Fig. 13 for two examples. Without the elevation in-
formation of both taxis and roads, GPS measurements alone
are insufficient to locate a taxi on either layer. Speed may
not help either as a congested expressway can be slower than
the local road underneath. Unfortunately as these elevated
expressways are arteries of the city, their traffic information
is crucial for applications such as travel time estimation.



4.2 Research Opportunities

Section 3 showed that the reported GPS location is often
more accurate than map. Therefore, taxi GPS traces can
calibrate maps, fill in missing roads, and even build maps
from scratch. With a reasonably accurate map matching
algorithm, calibrating existing maps is straightforward, as
Section 3.4 proves. Map building is more challenging. Pre-
vious work in this direction used low-noise GPS devices at
the sampling rate of 1 Hz [7]. The result can be extended to
handle sampling intervals of 30 seconds or less for straight-
line road segments, as Fig. 7 demonstrates. With curved
roads or greater sampling intervals, however, the trajecto-
ries bear little similarity with the true roads. We plan to
address this problem in our future work.

In addition to the accurate location measurements, the
heading directions reported are very reliable as well, espe-
cially when the taxi is moving. We considered road seg-
ments in Section 3.4 where the median of the distance among
matched samples is less than 20 meters. The difference be-
tween the orientation of the road and the reported direction
is often less than 10 degrees when the speed is more than
20 km/h, except for SH-B taxi group that report only 8
directions. Some existing map matching algorithms have
considered vehicle orientation information for a better local
match of a given sample [9]. We are interested in using the
measurement to evaluate map matching accuracy of exist-
ing algorithms. Because the ground truth of the actual drive
paths is hard to obtain in the large scale, reported direction
can be a good alternative. Once the effectiveness of various
map matching algorithms is well understood, we can incor-
porate the direction measurement for even more accurate
results. In addition, directions can help with map building,
e.g., grouping samples with similar directions and filtering
out outliers. Finally, combining map calibration with map
matching is interesting. For example, we have shown outliers
in Fig. 12 that most likely represent missing map features.
Instead of matching the corresponding samples to an exist-
ing road, we can fill in the missing features and produce a
better match.

Our analysis of GPS data across a five-year time-span
shows progress in both data quality and measurement accu-

racy. Improved devices and standardization certainly helped.

Looking into the future, we expect to see more accurate de-
vices at possibly lower cost. National or even global stan-
dards are possible. However, various noise and outliers pre-
sented in this paper will exist for a long time. This is be-
cause of the inherent limitations of GPS measurements, as
well as the nature of large-scale systems. Therefore, appli-
cations that exploit the data must be resilient to various
errors. Statistics can help with reliable results.

S. CONCLUSION

We have shown that large-scale GPS probe data present
new challenges and opportunities for the relevant applica-
tions. All measurements from the GPS device, including
timestamp, can be wrong. The map can be inaccurate too.
While these issues are mostly statistically insignificant, in-
appropriate handling can propagate and magnify the error.
On the other hand, the GPS location measurement is accu-
rate under normal conditions and even more reliable than
the aerial imagery. With the large quantity of data, the law
of large numbers can lead to highly accurate results. Robust

statistical algorithms may be the key to success.
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