DELI: A DElivery context Llbrary for CC/PP and
UAProf

Mark H. Butler
mar but @pl b. hpl . hp. com

External Technical Report HPL-2001-260
25/09/2001

Abstract

Different web-enabled devices have different input, output, hardware, software,
network and browser cegpabilities. In order for a web server or webrbased application
to provide optimized content to different dlients it requires a description of the
capabilities of the dient known as the ddivery context. Recently two new compatible
sandards have been created for describing deivery context: Compodte Capabilities /
Preferences Profile (CC/PP) created by the W3C and User Agent Profile (UAProf)
created by the WAP Forum. DELI is an opensource library developed a HP Labs
tha dlows Jawa savies to resolve HTTP requests containing ddivery context
information from CC/PP or UAProf cgpable devices and query the resolved profile. It
dso provides support for legacy devices so that the proprigtary ddivery context
descriptions currently used by gpplications can be replaced by standardised CC/PP
descriptions.

Keywords
Device Independence, Composte Capabilities / Preferences Profile (CC/PP),

Resource Description Framework (RDF), Wirdess Access Protocol (WAP), User
Agent Profile (UAProf)

1 Introduction

Different web-endbled devices have different input, output, hardware, software,
network and browser cgpabilities. In order for a web server or web-based application
to provide optimized content to different dients it requires a destription of the dient
cgpabilities. Recently two new compatible standards have been created for describing
delivery context based on the Resource Description Framework (RDF): Composite
Capabilities / Preferences Profile (CC/PP) 2 created by the W3C and User Agent
Profile (UAProf) created by the WAP Forum®,

One of the desgn ams of thee dandards was the efficient ddivery of ddivery
context to the server even via low bandwidth wirdess networks. This is achieved by
the use of profile references and profile differences that work as follows ingtead of
sending an entire profile with every request a dlient only sends a reference to a profile,
dored on a third device known as a profile repository, dong with a lis of overrides
specific to this paticular client. The process of interpreing the profile references and
differencesis known as profile resolution.

DELI is an opensource library developed a HP Labs that dlows Java serviets to
recolve HTTP requests containing CC/PP or UAProf information and query the
resolved profile. This report describes how programmers can creste delivery context-
awae savles usng DELIL. It dso deals some observations made during
implemention and discusses their implications for CC/PP. The DELI library and
accompanying test-harnesses discussed here are available opensource. To obtan a
copy of the DELI source code, please refer to the DELI website”.

2 RDF, CC/PP and UAProf

2.1 RDF

The Resource Destription Framework (RDF) is the W3C foundation for processng
metadata i.e information aoout informetion. It ams to provide interoperability
between applications that exchange machine-undergandable information on the Web.
RDF is currently described in two documents the RDF Modd and Syntax
Specificatior? and RDF Schema Specification 1.0

Essentialy RDF models consg of a collection of statements about resources. A

resource is anything named by a URI plusan optiond anchor 1D eg. in
htt p: / / waww. wapf orum or g/ prof i | es/ UAPROF/ ccppschena- 20010430#Har dwar ePl at f or m

the URI is everying before the hash and the achor ID is everying &fter the hash. An
RDF daement comprises of a specific resource together with a named property plus
the vaue of that property for that resource. These three individua parts of a statement
ae cdled, respectively, the subject, the predicate, and the object. The object of a
datement can be another resource or it can be a literal i.e a Smple dring or other
primitive datatype defined by XML. An RDF statement is shown in Figure 1.

predicate

Figurel - A Statement in RDF

RDF can be seridlized usng XML; CC/PP and UAProf profiles are normaly written
in this form. However viewing profiles in saridized form is deceptive as the
underlying RDF modd has a tree dructure. In order to better understand this, it is
suggested that the reader investigates the W3C RDF Vdidation Srvice. For example
try taking the profile in the UAProf specification (DELI _ROOM profiles\test01.rdf In
the DELI digribution) and process it usng the W3C Vdidation sarvice.

It is important to note there are many possible seridisations of a single RDF modd.
This means that pasng RDF modds written in the XML seridisation requires
additional processing beyond that provided by an XML paser. Fortunady there are a
number of RDF frameworks now available tha automaticaly teke XML seridisaions
of RDF and construct an RDF mode. DELI currently uses Jena8, an RDF Framework
developed a HP Labs. For more details of using Jena to process RDF see Brian
McBride' s paper on Jena® and the HP Labs Semantic Web activity homepage™.

2.2 CC/PP

A CC/PP profile is a desription of device capabilities and user preferences that can
be used to guide the adgptation of content presented to that devicee CC/PP is
described in three documents CC/PP Structure and Vocabularies™, CC/PP
Requirements and Architecture® and CC/PP Terminology and Abbrevigtions®. A
proposed (and largely deprecated) protocol for CC/PP is described in two documents:
CC/PP exchange protocol using HTTP extenson framework® and Content
Negotiation Heeder in HTTP Scenarios™. The protocol work has been deprecated
because the CC/PP Working Group was not chartered by the W3C to do protocol
work. However these documents formed the basis for the UAProf protocol work to be
discussed in the next section.

A CC/PP profile is broadly congructed as a two level hierachy: a profile hes a
number of components and each component has a number of attributes The attributes
of a component may be induded directly in a profile document, or may be Specified
by reference to a default profile tha may be stored separatdly and accessed via a
URL. CC/PP digtinguishes between default and non-default vaues dtributes such that
non-default values aways takes precedence.

Although a CC/PP prdfile is a two level hierarchy, it is commonly represented usng
an XML seidisation of an RDF modd. Crucidly the underlying RDF modd
describing a profile is more complicated than a two level hierarcchy. This can be
demondrated by processng a profile usng the W3C RDF vdidaion service
referenced in the previous section. Some examples of these complexities are as
follows. Firdly smply giving a component a sandard name (eg. HardwarePlatform)
is not sufficient to didinguish it as a partticular component. In addition it must have an
rdf: type property that indicates it is an ingance of a particular component type in a
particular namespace as shown in Figure 2.

. prf:
onI.| ne . #Hardw arePlatform
#MyDeviceProfile 6rf:component
online /mI:type
#Hardware

Figure 2 - Using rdf:typeto identify components

Secondly default vaues ae represented by a component containing a second
component referenced via a ccpp: Defaul ts property as shown in Figure 3. Note this
Figure shows a profile with multiple vadues for the same attribute. Usng the
resolutionrules, Soundaut put Capabl e Will beresolved to No.

online
#MyDeviceProfile

uaprof:componen

uaprof\SoundOutputCapable

No

%prcf:SoundOutputCaodale

Yes

Figure3 - usng defaultsand components

Thirdy ocomplex (multiple-value) ettributes are represented by an RDF congiruct
known as an anonymous node. The anonymous node has an associated rdf: type
property that indicates whether it is an unordered (Bag) list or an ordered Geq) ligt. It
adso possesses severd numbered properties that point to the multiple attribute vaues
asshown in Figure 4.

online
#MyDeviceProfile

uaprof:compo‘n?/
online
#Software
rdf:yze/
uaprof
#SoftwarePlatform

EN /R ES

uaprof:CcppA ccept-Languege

Figure 4 -Using anonymous nodesin containers

As an gpproved protocol does not yet exis for CC/PP, it has not been posshle to
implement a CC/PP protocol in DELI. However the DELI architecture has been
designed o that it will be easy to add such a protocol in the future. In addition DELI
was desgned specificdly so it can process many different CC/PP vocabularies. This
is essentidd as CC/PP does not propose any vocabularies for describing device
cgpabilities ingead only providing an underlying structure for such vocabularies

2.3 UAProf

The UAProf specification™® is based on the CC/PP specification. Like CC/PP, a
UAProf profile is a two level hierarchy composed of components and attributes.
Unlike CC/PP, the UAProf specification aso proposes a vocabulary — a specific set of
components and attributes — to describe the next generation of WAP phones.

The specification dso describes two protocols for transmitting the profile from the
client to the server. Currently DELI only supports one of the UAProf protocols. This
is because the other UAProf protocol, based on HTTPex and WSP, is intended to be
used for client to gaeway communication rether than client to server communication.
DELI datempts to provide server rather than gateway support so this protocol is
beyond the scope of the current implementation. In addition UAProf can adso be used
when documents are “pushed” from the server to the dient without the dient issuing a
request. DELI does not support the push environment & present. Findly the UAProf
gpecification describes a binay encoding of UAProf profiles Binary encoding and
decoding of profiles is typicdly peformed by the gateway 0 this is dso beyond the
scope of DELI.

2.3.1 UAProf Profiles
Currently profiles usng the UAProf vocabulary condst of Sx components

Har dwar ePl at f orm, Sof t war ePl at f or m, Net wor kChar acteri stics, Br owser UA,
WapChar acteristics and PushCharacteristics. These components contain atributes.
In DELI each atribute has a diginct name and has an associated collection type,
attribute type and resolution rule. In UAProf there are three collection types:

Si npl e containsasingle vaue eg. Col or Capabl e iN Har dwar ePl at f or m. Note

the UAProf specification does not give aname to single val ue attributes so the

term Simple has been adopted from the CC/PP specification.

Bag contains multiple unordered values eg. Bl uet oot hProf i | e iNnthe

Har dwar ePl at f or m component.

Seq contains multiple ordered values eg. Ccpp- Accept Language inthe

Sof t war eP! at f or m cOmMponent.

In addition attributes can have one of four attribute types:
String €.Q.Browser Name iNBrowser UA
Bool ean e.g. Col or Capabl e in Har dwar ePl at f or m,
Nurber iSapogtive integer eg. Bi t sPer Pi xel N Har dwar ePl at f or m.
Di nensi on isapar of pogtive integers eg. Scr eenSi ze iNHar dwar ePl at f or m

Findly attributes are associated with aresolution rule:

Locked indicates the fina vdue of an atribute is the first occurrence of the
atribute outside the default description block.

overri de indicatesthe find value of an attribute is the last occurrence of the
atribute outside the default description block.

Append indicates the find value of the atributeis the list of dl occurrences of
the attribute outsde the default description block.

In DELI the UAProf vocabulary is described using the file uaprof spec. xni found in
the config directory. This describes the attribute name, component, collectionType,
atributeType and resolution rule of each component. The vocabulary description file
has the following formet:

<?xm version="1.0"?>
<vocabspec>
<attribute>
<name>CcppAccept </ hanme>
<conponent >Sof t war ePl at f or nx/ conponent >
<col | ecti onType>Bag</ col | ecti onType>
<attributeType>Literal </attributeType>
<resol uti on>Append</resol uti on>
</attribute>

</ vocabspec>

2.3.2 UAProf W-HTTP Protocol

As mentioned previoudy DELI only implements one of the UAProf protocols
trangport via WLHTTP (Wireless profiled HTTP). An example W-HTTP request using
this protocol is shown below:

GET /ccpp/htm/ HTTP/ 1.1
Host: | ocal host
x-wap-profile:"http://127.0.0.1: 8080/ ccpp/ profil es/test09defaul ts.rdf",
" 1- Ro0sqg/ nuUFQU75VA] Kyi Hw=="
x-wap-profile-diff:1;<?xm version="1.0"?>
<RDF xm ns="http://wwmwv W3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: rdf ="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: prf="http://ww. wapforum org/ profil es/ UAPROF/ ccppschema- 20010430#" >
<rdf: Description | D="M/DeviceProfile">
<prf: conponent >
<rdf: Description | D="HardwarePl at f or ni'>
<rdf:type
resource="http://ww. wapforum or g/ profil es/ UAPROF/ ccppschena-
20010426#Har dwar ePl at f or m'/ >
<prf: BitsPerPi xel >16</ prf: Bi t sPer Pi xel >
</rdf: Description>
</ prf: conponent >
</ rdf: Descri ption>
</ RDF>

The firgt two lines of this request are standard HTTP and describe the resource that is
being requested by the dlient, nttp://10ocal host/ccpp/htni, and the method being
used to make the request, ceT, and the protocol being used HITP/ 1. 1. The remaining
lines of the request describe the device ddivery context. This is specified usng a
profile reference and a profile-diff. The profile is referenced via the x-wap-profile
line and hasthe URI

http://127.0.0.1: 8080/ ccpp/ profil es/test09defaul ts.rdf.

After the profile reference, there is a value 1-Ro0sqg/ nuUFQU75VA] Kyi Hw==known as a
profile-diff digest The fira pat of the profile-diff-digest, 1-, is the profile-diff

sequence number. This is usad to indicate the order of the profile-diffs and to indicate
which profile-diff the profile-diff digest refers to. The remainder of the profile-diff
diget is generated by applying the MD5 message digest dgoritm’ and Base64
dgoitm®™ to the corresponding profile-diff. The MD5 dgorithm tekes as input a
messsge of abitary length and produces as output a 128-bit “fingerprint” or
“message-diges” of the input. The Base64 dgorithm takes as input arbitary binary
data.and produces as output printable encoding data

After the profile-diff digest, the next line contans the x-wap-profile-diff. This
request header fidd dso has a profile-diff sequence number which indicates the
processng order and that this profile-diff corresponds to the previous profile-diff-
diges. The profile-diff itsdf condss of the XML fragment which spans the
remainder of the request. Multi-line request header fidds ae permitted by the
HTTP/L1 specification™ as long as each subsequent line starts with dther a tab
character or a whitespace. Note not dl sarviet engines, for example early versons of
Tomcat, fully support the HTTP/L.1 specification so may not dlow multi-line request
header fields.

In addition tO x-wap- profile and x-wap-profile-diff W-HTTP protocol adds a third
extenson header primarily used in responses. This heeder, x- wap-profile-war ning
indicates whether the server has used the UAProf information when generating the
response. This can take five possble vaues not applied, content selection
appl i ed, content generation applied,transformati on applied and not support ed.

2.3.3 Profile Resolution

When the server receives a HTTP request with UAProf request headers, it has to
perform profile resolution i.e retrieve the referenced profile(s) and any further

profiles referenced via default blocks. It then has to merge these profiles and the
profile-diffs while gpplying the UAProf resolution rules.

DELI peforms profile resolution by processng dl profiles and profile-diffs in the
following order: firgly it processes al referenced profiles in the order they are present
in the x-wap-profile request header. If a referenced profile references an externd
default profile then that is included where it is referenced. It then processes dl the
profile-diffs. This profile processng operaion involves building an RDF modd for
each profile or profile-diff and then extracting a list of attributes from the modd. Each
dtribute is associated with an atribute name, an atribute type, a collection type a
reslution rule and ether one or more default vaues or one or more nondefault
vaues. These dtributes are then gppended together in the order indicated.

After DELI has produced the vector of profile atributes, profile merging is performed
which involves teking each dtribute in order from the lig and placing it & a specific
postion in an aray determined by the atribute name. If a collison occurs i.e an
atribute is dready present in the aray then the two attribute vaues are merged using
the fallowing rules

If the cdlliding atribute contains one or more default vaues it is ignored, as
non-defaults dways override defaults and a default takes the vaue of the first
default value (or set of default values) encountered.

If the codlliding etribute contains one or more non-default vadues and the
origind dtribute only contans one or more default vadues then the colliding
atribute overrides the origind attribute.

If the cdliding dtribute and the origind aitribute both contain non-defaullt
vaues, then the resolution rules are used. If the atribute resolution rule is
Locked then non-default vaues cannot be subsequently overridden. If the
atribute reolution rule is override then non-default vaues can be
subsequently overridden. If the attribute resolution rule is Append then dl the
non-default vaues are gpopended together.

Note that this dgorithm does not peform merging in the RDF domain, rather it
performs merging after the attributes have been retrieved from the RDF domain. A
discusson of why this gpproach was adopted can be found in the section entitled
“Obsarvations’.

2.4 Content Selection, Generation and Transformation

Nether the UAProf nor the CC/PP specifications condgder how the profile should
sect, generate or transform content based on the resolved profile An extensve
discusson of this topic is beyond the scope of this report so the reeder is indead
referred to previous technicd reports by the author discussng content transformetion
by XML / XSLT publishing frameworks®, content generation using constrant
optimisation and content negotiation®,

DELI dso currently provides no support for content sdection, generation or
transformation. Indtead it is proposed that DELI should be integrated with exigting
goplications that trandform content for clients based on the user agent dring. For
example DELI could be incorporated in the Apache Cocoon Framework? in a number
of ways ether the Stemap could be extended to meke use of conditionds that
reference profile atributes or the XSLT processor could make atributes available via
parameters to XSLT dylesheets. DELI dso provides support for legacy devices as it
provides a database that can trandate user-agent drings to profile references. This
could be used to replace the proprietary device cgpability database used in Cocoon
with a database based on UAProf or CC/PP. Other frameworks such as Apache
Jetspeed® or Apache Struts* could be adapted in a similar way. Future work will
investigate how DEL can be used to support device independence.

3 Installing DELI

In order to ingdl DELI and run the test sarviets, you will need a Java inddlation
aong with a Java Servlet engine that can accept WAR files such as Apache Tomcat
4% or Mortbay Jetty®. In addition if you wish to do any development or customising
of DELI you will need Apache ANT?. By default DELI supports the Nokia WAP
Toolkit 2.1 (and higher) and Microsoft Internet Explorer as legacy devices s0 it may
be helpful to have access to one of these.

Ingdlation of the DELI test serviet is easy. Once you have confirmed your Java
Savig engine is working correctly, unzip the DELI digribution file to the directory
DELI _Rroot. Copy the file DELI _RoOM\ warfiles\ccpp. war into the webapps directory of
the Sarviet engine. For example if you ingaled Tomcat in c:\apps32\ tontat then you
need to COpy ccpp.war tO c:\apps32\toncat \webapps\ ccpp. war. Start the servlet

engine and use Internet Explorer to check the DELI inddlation is working. If you
type the following address into MSIE

http:/ /1 ocal host: 8080/ ccpp/ htm /

then the browser should display the contents of the profile profiles\msie.rdf in the
DELI digribution. In addition by default DELI will output debugging information to
the Savlet engine console. Alternatively if you dat the Nokia WAP toolkit, sdect
the Nokia concept phone, and then try to retrieve the following address

http://1ocal host: 8080/ ccpp/ w /

then the browser should display the contents of the profile profiles\testol.rdf in the
DELI digribution (note this may not be a profile for a Nokia phane). Alternatively
you can try sending some rea UAProf requests to the server. To do this, you need to
add vaious files to your dasgppah. Edit the file setpath.bat in the DELI_RooT
directory and make sure the DeELI and TOvCAT environment variables are st correctly.
Then run setpath. bat a the command line (note set pat h. bat IS Microsoft specific —
for UNIX machines you may have to adapt this file). Then type

java TestCCPPd ient http://127.0.0.1: 8080/ ccpp/ profil es/test09defaul ts.rdf
profiles/test09.rdf output.htm

which sends a HTTP request to the server with a profile reference
http://127.0.0.1: 8080/ ccpp/ profil es/test09defaul ts.rdf and uses the file
profiles/test09.rdf & a profile-diff. When it receives a response from the server it
dores it in output. htm. TO view the server response open output.htn in a web
browser. For more details of running and testing DEL I, see the Section 9.

3.1 Configuring Legacy Devices

It is essy to configure DELI to recognise legecy devices via usar-agent strings. User-
agent strings are used by web dients to identify themsdves when they send requests
to web savers. This is done primarily for datitical purposes and the tracing of
protocol violaions but does support the automated recognition of user agents For
example early Netscape products generate user-agent srings thet ook like this

User-agent: Nbzilla/4.04 (X11; 1; SunOS 5.4 sun4m

Where the user agent string has the following syntax:

Browser / version(platform; security-level; CS-or-CPU description)

The legacy device configuration file maps user-agent <trings on to profile references
on a profile repodtory. In the tet goplicaions this is done by the
DELI _ROOM confi g\ | egacyDevi ce. xni file, dthough it is possble to sdect a different
file via the DELI configurdtion. The legacy device configurdtion file has the
following format:

10

<?xm version="1.0"?>
<devi ces>
<l egacyDevi ce>
<user agent stri ng>VBl E 5. 01</ user agent stri ng>

<profileref>http://|ocal host: 8080/ ccpp/profiles/nsie.rdf </profileref>
</ | egacyDevi ce>
</ devi ces>

Where useragentstring iS a device unique gring found in the user-agent gtring of the
device and profileref is a URL for the agppropriate profile on a profile repostory.
Note typicdly pat of the user-agent dtring is used rather than the ettire dring. This is
done to avoid problems due to doaking and browser customisation.

Cloaking is when a device or browser (e.g. Microsoft Internet Explorer) clams to be
another browser (eg. Mozillg) in order to ensure web servers will send it the carect
content. Browser customisation is when the device manufacturer or the owner can
change the user-agent dring to add the company name. This means identical browsers
may not have the same user agent dring. In order to avoid confuson caused by
dosking and cusomisation it is necessary to think carefully about how much of the
user-agent dring to use and the order of legacy devices in the legacy device file. For
example when creating a legecy device file it is a good idea to have an Internet
Explorer bgacy device before a Netscgpe legacy device as they both contain the user
agent dring Mozlla, but Internet Explorer will dso contain the user agent gring
MSIE s0 it ispossible to identify IE fird.

3.2 Rebuilding DELI

If you change any of the files eg. configuration files or need to dter any of the source
files it is necessary to rebuild the DELI web archive (WAR) file. In order to do this,
just change to the DELI_RoOT directory. Edit the file build. xm and ensure that the
parameter servietjar points to the file serviet.jar in your savlet engine
ingdlation. Then to build the web archive, type ant a the command line. This takes
the file build.xmi which builds the WAR file. Then to redeploy DELI you need to
dop your Saviet engine, ddete the ccpp drectory in the webapps directory then copy
the new ccpp. war fileto thewebapps directory. Now restart the Serviet engine.

4 Workspaces

DELI uses the concept of workspaces that are configured to interpret profiles that use
a certan vocabulary, a cetain set of resolution rules and requests that use a certan
vaiant of HTTP. In addition the workspace contains a cache of referenced profiles,
information about the vocabulary in use and the legecy device database. A workspace
is crested usng a configuration file such as DELI _ROOM confi g\ del i Config. xm OF
DELI _ROOM confi g\ deliServletConfig.xni. The file is written in XML in the
following format:

<?xm version="1.0"7?>

<del i >
<l egacyDevi ceFi | e>webapps/ ccpp/ confi g/ | egacyDevi ce. xm </ | egacyDevi ceFi | e>
<vocabul ar yFi | e>webapps/ ccpp/ confi g/ uapr of spec. xm </ vocabul ar yFi | e>

</ deli>

This file can contan caching, debugging, legacy device, protocol and vocabulary
configuration directives as detailed in the subseguent sections.

11

4.1 Caching options

The caching options contrd the way the workspace caches referenced profiles. DELI
caches referenced profiles but not profile-diffs. This is because referenced profiles are
asociated with a unique identifier (the referenced profile URL) but profile-diffs are
not. DELI can ether cache profiles indefinitdy or update dde profiles after a st
interva. It isds0 possible to configure the maximum size of the praofile cache.

Element Name Default Value Description

maxCachedProf i I eLi fetime 24 hours The maximum lifeime of a
cached profilein hours

maxCacheSi ze 100 The maximum number of
profilesin the profile cache.

refreshStal eProfiles false Do we refresh cached profiles
after the maximum lifetime has
expired?

4.2 Debugging options

The debugging options are used to control the information that DELI prints to the
Sarvlet engine console.

Element Name Default Value Description
debug true Is the automatic debug log
information turned on?
printDefaults true Print both default and override
vdues of atributes for
. . debugging purposes?
print Profil eBef or eMer ge fal se Print the profile before
merging for debugging
purposes?

4.3 Legacy device options

As dready mentioned DELI can support legacy devices by recognisng the user-agent
gring supplied by a dient and mgpping it on to a profile In order to use this fadlity it
is necessxy to supply an XML file that contains information about legacy device
user-agent strings and the corresponding profile URLS.

Element Name Default Value Description
suppor t LegacyDevi ces true Is the Iegacy device database
turned on?
| egacyDevi ceFil e confi g/l egacyDevi ce. xni The file conta'ning the
legacy device database.

4.4 Protocol options

DELI has a number of protocol options. Firdly it is possble to switch on whitespace
normdisation in profile-diffs prior to caculding the profile-diff-digest in order to
accommodate a modification to the UAProf protocol that has been proposed by IBM.
When a sarver receives the request, it recdculaes the profile-diff-digest. If additiond
whitespaces have been added to the request header by a proxy then there is a danger

12

the two profile-diff digests will differ so the profile-diff will be rgected. Therefore
IBM have proposed the following normdisation procedure prior to profile-diff digest
cdculdion: dl leading and traling white spaces are diminated (white space as
defined in RFC 2616 section 22). Then dl non-traling or nonleading linear white
goace contained in the profile desoription, including line folding of multiple HTTP
header lines, is replaced with one sngle space (SP) character. This implies that
property vaues, represented as XML attributes or XML eement character data,
MUST be adhering to white space compression as mandated in RFC 2616 section 2.2.

Secondly there are two options that determine the type of objects returned by three
Workspace factory methods. ccppReader Type iS used to sdect the object returned by
the processProfileFactory() method and protocol is used to sdect the object
returned by the processHttpFactory() method and the profileAttributeFactory()
method. These options are provided so it will be easy to integrate other RDF
processors and other protocols in the future. At present the default vaues are the only
avallable options.

Element Name Default Value Description

Pf);g&” seWi t espacel nPr of true Is Whn:esp.a:e .normw.%“on of
the profile-diff prior to
cdeuding the prdfile-diff-
digest turned on?

ccppReader Type jena The CC/PP reader to use for
processing profiles.

protocol UAPT of The protocol used for profile
trangmisson.

4.5 Vocabulary options

DELI has a number of vocabulary options. Firdly it is possble to configure the
vocabulay usng an XML file This contains information about a specific CC/PP
vocabulay eg. the atribute names, the components they belong to, the collecion
type, the atribute type and the resolution rule used. Secondly it is possble to specify
the URI to be used for the RDF namespace and the CC/PP or UAProf namespace.
This is important because as the gpecifications are revised they adopt new
namespaces. Thirdly it is possble to st the dring used to represent components and
defaults in the vocabulary. This is important because the two Sandards currently use
different cases for the first letter of default elements (CC/PP uses “default” whereas
UAProf uses“Default”).

Element Name Default Value Description

vocabul aryFile confi g/ uapr of spec The file containing the
- x vocabulary specification.

cepplr i http:/5Www]-(_N;'apf;J[J The namespace used for
umorg/ profiles
APRCF/ ccppschens- CC/PP congtructs such as
20010430# component.

raf Ui http://wamn w3. org | The namespace used for RDF
11999/ 02/ 22-r df - Sruct
synt ax- ns# constructs.

conponent Property conponent The name for‘ Componmts

def aul t Property Def aul t The name for defaults

13

5 Creating a DELI servlet

In order to get undertand how to construct servliets with DELI, the reader is
encouraged to examine the example servletsin the DELI digtribution:

DELI _ROOMN src\ servl et s\ Test CCPPSer vl et . j ava
DELI _ROOMN src\ servl et s\ Test CCPPSer vl et WWL. j ava

In order to creaste a Java servlet that uses the DELI library it is necessary to include
the DEL | package, eg.

i nport com hp. hpl . deli.*;
and to include a workspace as a class data member eg.

Wor kspace wor kspace;

Then create the workspace when the serviet isinitidized eg.

public void init(ServletConfig config) throws ServletException
{

super.init(config);
wor kspace = new Wr kspace(" webapps/ ccpp/ confi g/ del i Servl et Confi g. xm");

}

Note the path of the configuration file used when the workspace is created will
depend on your savie. Once the workspace is initidized, profile resolution is
achieved by creeting a new profile usng the wr kspace and a H t pSer vl et Request €.9.

public void doGet (HttpServl et Request req, HtpServl et Response res) throws
Servl et Exception, | CException

Profile nyprofile = new Profil e(workspace, req);

Then the addwarni ngHeader () iS used to add an x-wep-profile-warning to the
response header eg.

res = UAProf Cr eat eHt t pResponse. addWar ni ngHeader (r es,
UAPr of Or eat eHt t pResponse. CONTENT_GENERATI ON_APPLI ED) ;

The profile can be manipulated by udng the dandard Vector methods which will
retrieve profile atributes e.g.

for (int i =0; i <nyProfile.size(); i++)

{
ProfileAttribute p = (ProfileAttribute)nyProfile.get(i);
out.println("<TD>"+p.get()+"</ TD></ TR>");

}
Or by directly retrieving a profile atribute eg.
Systemout. println(nyprofile.getAttribute("BrowserNane").toString());

In addition it is possble to query profile atributes usng the get (), getAttribute(),
get Col | ecti onType() , get Conponent () , get Def aul t Val ue(), get Resol ution(),
get Type() and get val ue() methods. Full detalls of the DELI APl are contained in the

14

Javadoc in the DELI _ROOM javadoc\user directory which describes the classes and
methods exported by the DELI package.

6 Expanding DELI

As wdl as providing an implementation of UAProf, DELI has been desgned for
extenshility so tha it can be usd to expeaiment with different possble
implementations of UAProf and CC/PP. This is achieved by the use of three abstract
classes that dlow DELI to be extended so it can cope with new vocabularies or
protocols. This section will describe these abdtract classes but developers are dso
referred to the Javadoc at DELI_RoOT\j avadoc\ devel oper directory that detals dl the
interna classes and methods used by DELL.

I:“: Fret AT aels | v D rhaiwts |

azerige e - I cache Haz I

Aok der i lug vecke mig e

Figure5- UML Diagram of DEL | architecture

15

6.1 ProcessProfile

The ProcessProfile abdract class defines a class with three methods that convert a
profile from the XML seridised form of RDF to a vector of profile atributes This
dass has been provided to support experimentation with different RDF processors.
Currently the Jena framework is used to process the profile, but it may be useful to
implement profile processng usng other RDF parsars to test efficiency. Alterndively
this cdlass could be usad to test the reative efficiency of profiles seridized directly in
XML rather than profiles seriaized in XML via RDF.

An outline for an implementaiton of this abstract dass is shown beow. The methods
accept a String for a profile URL, a file containing a profile URL, or a Vector
contaning profiles or profile-diffs as Strings. All the methods return a vector of

profile attributes prior to resolution. For an example implementation, see
DELI _ROON src\ com hp\ hpl \del i\ JenaProcessProfil e.java

If you create a new implementation of ProcessProfile you will dso need to add some
code to the ProcessProfileFactory mehod in wrkspace. This method uses the

ccppReader Type SEiting to determine which type of ProcessProf i | e isreturned.

package com hp. hpl. deli;

cl ass Processor TypeProcessProfil e extends ProcessProfile

{

protected Vector process(String url)

{
}

protected Vector process(FileReader file)

{
}

protected Vector process(Vector profileVector)

{
}

6.2 ProfileAttribute
The Profileattribute class has a sngle abdract method set (ProfileAttribute) that
performs resolution when an dtribute has two vaues. Resolution rules are vocabulary

dependent s0 this mechanism has been used s0 that it is easy to add vocabulary
goedific resolution. An outline for an implementation of this abdract dass is shown

below. For an example implementation, see
DELI _ROON src\ com hp\ hpl \del i\ UAProf Profil eAttribute.java

If you creste a new implementation of ProfileAttribute you will dso need to add
some code to the ProfileAttributeFactory mehod in wrkspace. This method uses
the pr ot ocol Setting to determinewhich type of profil eAttri but e iSreturned.

package com hp. hpl . deli;

16

cl ass Vocabul aryProfileAttribute extends ProfileAttribute

{
Vocabul aryProfil eAttri but e(Wrkspace w)
{
super (w);
protected void set(ProfileAttribute a)
{
}
}

6.3 ProcessRequest

The ProcessRequest class has a sngle abstract method: the congtructor. This takes the
Vorkspace and a HtpServl et Request and converts them to three data Structures:
referenceVector IS a vector of referenced profile URLS as Sirings, profil eDi ff Map IS
a mgp of profile-diffs as drings indexed by profile-diff sequence numbers and
profileDiffDigestvap IS @ map of profile-diff digests as drings indexed by profile-
diff sequence numbers. Once these daa-dructures have been condructed, the
congructor cals the validateProfileD ffs() mehod in the super class. This re-
cdculates the profile-diff-digests for the profile-diffs and compares them with the
profile-diff digests received in the request. If there is any discrepancy between the two
profile-diff digests then the profile-diff is discarded. An outline for an implementaiton

of this abdract cdass is shown bdow. For an example implementation, see
DELI _ROON sr c\ com hp\ hpl \ del i\ UAPr of ProcessRequest . j ava

If you create a new implementation of ProcessRequest you will aso need to add some
code to the ProcessRequest Factory method in wrkspace. This method uses the
prot ocol SEtting to determine which type of ProcessRequest iS returned.

package com hp. hpl . deli;

cl ass Protocol ProcessHt t pRequest ext ends ProcessHtt pRequest

{

Pr ot ocol ProcessHt t pRequest (Wr kspace w, HttpServl et Request request)
throws Servl et Exception, | OException
{

val i dateProfileD ffs();

}

7 Conclusions

So in concduson this report has dexribed DELI, an opensource server
implementation of profile resolution for CC/PP. DELI is currently dpha grade
software provided to demonstraie how CC/PP may be implemented. It is designed to
be essly extensble and configurable so it may be used as a test-bed for prototyping
future developments with these specifications. DELI will be further developed to
ensure compeatibility with these standards.

17

Appendix A : DELI Test Plan

A.1 Test creating profiles viafile reader interface

TEST 1: Test that it is possible to load a profile and convert it to a profile data
structure.

Cregte a test profile based on the sample profile in the UAProf specification. Ensure
the attributes are in the correct components as sample profiles in some versons of the
specification have the Cccp-Accept attributes in the wrong component. Load in this
sample profile usng the Profile() condructor. Display the contents of the profile
usng thet ost ri ng() method. To run thistest at the command line type:

java TestHarness 1
Check the printed profile isidenticd to the origind prafile,

TEST 2: Test that it ispossibleto retrieve a specific attribute from a profile.
Load the sample profile crested in Test 1 using the profile() condructor. Use the
getAttribute() method to retrieve some <specific profile atributes. Display the
contents of these atributes using the tostring() method. To run this tet a the
command line type:

java Test Harness 2
Check the printed atributes are identica to those in the origind profile,

TEST 3: Test that profileswith defaults are correctly processed.

Take the profile crested in Tex 1 and place some of the atributes indde a
<prf:defaul t> section. For more details of this see the CC/PP specification. Then
process this profile as described in Test 1. To run thistest at the command line type:

java TestHarness 3

Check that the default attributes are processed correctly.

TEST 4: Test that standard simple attributes override defaults.

Create a profile with two smple attributes that use the locked and override resolution
rules respectivdy and three complex dtributes that use the locked, overide and
aopend resolution rules respectively. Suggested attributes @€ SoundQut put Capabl e
(Locked Smple), BitspPerPixel (Override Smple), Bl uetoothProfile (Locked Bag),
PushAccept (Override Bag) and 1nputcharset (Append Bag). For esch attribute,
describe it usng both defaults and standard attributes. Use “default” as the default
smple dtribute values and “defaultA”, “defaultB” etc as the default complex atribute
vadues. Use “dandard’ and “sandardA”, “dandardB” etc as the non-default smple
and complex atribute vadues respectivdly. Load in this sample profile usng the
Profile() condructor. Display the contents of the profile usng the toString()
method. To run thistest a the command line type:

java TestHarness 4

Check that dl the atributes should have the vdue “dsandard” or “sandardA”,
“gandardB” etc as non-default values dways override default vaues.

18

TEST 5: Test the resolution rules in the presence of defaults for simple
attributes.

Repeat Tet 04 but indude multiple vaues for the non-default atributes. Cal the firgt
indance of the non-default atributes “sandardl” or “standard1A”, “sandard1B” etc.
Cdl the second ingtance of the nonrdefault atributes “standard2” etc. Check that the
resolution rules are correctly obeyed. To run thistest at the command line type:

java TestHarness 5

Check that the find vdues of the attributes are:

SoundCut put Capabl e St andar d1

Bi t sPer Pi xel St andar d2

Bl uet oot hProfil e St andar d1A, StandardlB etc

PushAccept St andar d2A, St andard2B etc

| nput Char Set St andar d1A, StandardlB etc Standard2A etc

For more details of resolution rules see section 7.3 in the UAProf specification.

TEST 6: Test theresolution ruleswithout defaultsfor simple attributes.
Repest Test 5 but omit the default values. To run thistest a the command line type:

java TestHarness 6

Check that the resolution rules are correctly obeyed and that the results are identicd to
Test 5.

A.2 Test creating profiles via URL interface

TEST 7: Test that profileswith default references are correctly processed.
Repeat Test 4 but reference the defaults via a URL. Make the default profile available
from the corresponding web address. To run this test dart the Servlet engine, then a

the command line type:
java TestHarness 7

Check that the defaults are correctly processed and that the results agree with Test 4.

TEST 8: Test tha standard attributes override default references.

Repeat Test 5 but reference the defaults via a URL. Make the default profile available
from the corresponding web address. To run this test dart the Serviet engine, then at
the command line type:

java Test Harness 8

Check the profile is processed correctly and that the results agree with Test 5.

A.3 Test creating profiles via HTTP requests

TEST 9: Test that non-defaultsoverridedefaultswhen using profilesand profile -
diffs.

Repeat Test 4 but place the defaults in the profile reference and the non-defaults in a
profile-diff. Send a HTTP request using this profile reference and profile-diff to the
server. To run thistest start the Servlet engine, then at the command line type:

19

java TestHarness 9

Examine testcoutput\testogoutput.htmi and check the nondefaults overide the
defaltsasin Test 4.

TEST 10: Test that resolution rulesare correctly applied when using profile and
profile-diffs.

Repest Test 5 but place the defaults in the profile reference, the first set of non-
defallts in the firg profile-diff and the second st of non-defaults in the second
profile-diff. Send a HTTP request usng this profile reference and the two profile-diffs
in order to the server. To run this tes dart the Servlet engine, then a the command

line type:
java Test Harness 10

Examinet est ut put\ t est 10out put . ht i and check the results correspond with Test
5.

TEST 11: Send profilereferencewith incorrect URL
Repeat Test 9 but use a profile reference that does not exist. To run this test dart the
Sarvlet engine, then a the command line type:

java Test Harness 11
Examine test Qutput \test11output. htni and verify that a blank profile is returned by

the sarver.

TEST 12: Server repliesto legacy device not in database
Retrieve the URL http://127.0.0.1: 8080/ ccpp/ htmi/ using a HTML browser apart
from Microsoft Internet Explorer.

Verify that ablank profileis returned by the server.

TEST 13: Send profilereferencewith blank profile -diff
Repeat Test 9 but use a blank file for the profile-diff. To run this test sart the Servlet

engine, then at the command line type:
java TestHarness 13

Examine test cut put \t est 13out put . ht mi and check it only contains defaults.

TEST 14: Send profile reference with profile -diff where profile -diff digests do
not match
Repeat Test 10 but some random grings to the profile-diffs before cdculaing the

profile-diff-digests. To run this tet dat the Sarviet engine, then a the command line
type:

java Test Harness 14

20

Examine the log generated by the web server and check it has error messages that
indicate it has detected an integrity eror in the profile-diff-digest. Examine
test Qut put \t est 14out put . ht i and check it only contains defaults.

TEST 15: Send profilereference with misordered profilesequence numbers
Repeast Test 10 but ensure that the profile-sequence numbers used by the profile-diff

and the profile-diff-digest are unordered and do not match. To run this test dat the
Sarvlet engine, then a the commeand line type:

java Test Harness 15

Examinet est Qut put\ t est 150ut put . ht i and check it only contains defaults.

TEST 16: Test whitespace removal
Load in the profile used in Tet 1, and goply whitepace removd to it usng
ProfileDiff.removeWhitespaces() and print out the results.

Torunthistes at the command line type:
java Test Harness 16

Veify the profile is intact but tha extraneous whitespaces have been removed
according to the rules specified in Section 4.4.

TEST 17: Caching
Run test 10 severd times. Verify that the logging window reports thet the server is
retrieving the reference profile from the cache rather than from the URL.

TEST 18: Configuration file
Sart the sarver. Verify that the logging window reports thet the configuration fileis
Setting the workspace variables | egacyDevi ceFi | e andvo

! Resource Description Framework, http://www.w3.org/RDF/

2 Composite Capabilities/ Preferences Profile, http://www.w3.or o/Mobile/CCPP/

% Wireless Application Forum, http://www.wapforum.org/

* DELI web-site, http://www-uk.hpl.hp.com/people/marbut/deli/

® RDF Model and Syntax Specification, http://www.w3.0rg/TR/1999/REC-rdf-syntax-19990222/
% RDF Schema Specification 1.0, http://www.w3.org/TR/2000/CR-rdf-schema-20000327/

"\W3C RDF Vadlidation sarvice, http://www.w3.org/RDF/Validator/

8 Jena RDF Framework, http:/Avww.hpl.hp.comy/semweb/jena-top.html

® Jena Implementing the RDF Model and syntax specification, http://www-

uk.hpl.hp.com/peopl e/bwm/papers/20001221 - paper/

O HP Labs Semantic Web Activity, http://www.hpl.hp.com/semweb/

1 cc/PP: Structure and Vocabul aries, http://www.w3.0rg/ TR/CCPP-struct-voca/

2ceipp: Requirements and Architecture, http://www.w3.org/TR/2000/WD -CCPP-ra- 20000721/
13 CC/PP: Terminology and Abbreviations, http://www.w3.0rg/ TR/2000/WD-CCPP-ta- 20000721/
14 cCIPP exchange protocol using HTTP Extension Framework, http://www.w3.org/TRINOTE
CCPPex

15 Content Negotiation Header in HTTP Scenarios, http://search.ietf.org/internet-drafts/draftshjdm-
http-cnhttp-scenarios 00.txt

®*WAG UAProf proposed version 30 May 2001, WA P-248-UA PROF-20010530-p,
http://www1.wapforum.org/tech/terms.asp?doc=WA R 248-UA Prof -20010530+. pdf

Y RFC1321: The M D5 Message-Digest Algorithm, http:/mww fags org/rfes/rfc1321. html

'8 Section 13,6 and section 14.4 in RFC2045; Multipurpose Internet Mail Extensions,
http://www.fags.org/rfcs/rfc2045.html

¥ RFC 2616: Hypertext Transfer Protocol 1.1 http://www.w3.org/Protocol /rfc2616/rfc2616.html

21

20 HPL-2001-83: Current Techniques for Device Independence,
http://www.hpl.hp.com/techreports’2001/HPL-2001-83.html

2 HPL-2001-190: | mplementing Content Negotiation with CC/PP and UAProf,
http://www.hpl.hp.com/techreports’2001/HPL-2001-190.html

%2 Apache Cocoon, http://xml.apache.org/cocoon

% A pache Jetspeed, hitp://jakarta e.0rg/j stelindex.html

2 Apache Struts, http://jakarta apache org/struts/index.htm

% Apache Tomcat, http:/jakarta.apache org/tomeat/index.htm

% Mortbay Jetty, http:/jetty. mortbay.com

%’ Apache ANT, http://jakarta.apache.org/ant/index.htm

