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Abstract

Protocol design is a very challenging and knowledge-intensive task. Designing
a protocol 1s as hard as synthesizing a program. In this paper, we will first
discuss the issues in our automatic security protocol generator, and then
propose an approach to constructing security protocols intelligently, based on
a security property specification and an extensible general-purpose library of
schemas. Each schema is defined by specifying intended behaviors and is
described as a sequence of primitive messages. Finally, some conclusions are
drawn.
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1. Introduction

Security protocols are supposed to use cryptography to set up private communication
channels on an insecure network. However, many protocols contain flaws, and
because security goals are seldom explicitly specified in detail, we cannot be certain
what constitutes a flaw. Actually, a widely accepted standard threat model for
cryptographic protocols has been proposed [Dolev and Yao 81]. It has the following
assumptions about the capabilities of an attacker:

He can obtain any messages passing through the network;

® He is a legitimate user of the network, and thus in particular can initiate a
conversation with any other user;

e He will have the opportunity to be a receiver to any principal;

e He can send messages to any principal by impersonating any other principal.

Thanks to a number of researchers’ significant contributions, security protocols can
now be analyzed formally [Paulson 99]. After many security protocols have been
found flawed, it is realized that it is exceptionally very hard to get security protocols
right in the first place. A well-known public-key based authentication protocol, which
was first published by Needham and Schroeder [Needham and Schroeder 78], turned
out to be flawed 17 years later [Lowe 95].

Much research has been done on protocol verification. Some researchers have
proposed a direct and fully automated translation from standard security protocol
properties descriptions to rewrite rules [Jacquemard et al 2000], in which the
existence of flaws in the protocol can be revealed by the derivation of an
inconsistency. Recently, strand spaces based approach seems very promising by its
simplicity of the model and the ease of producing intelligible and reliable proofs of



protocol correctness even without automated support [Fabrega 98]. The extensions to
the strand space model have also been suggested by researchers [Song 2001], who use
a new efficient representation and utilize techniques from both model checking and
theorem proving approaches. Following their work on efficient automatic checking
algorithm for security protocol analysis [Song 99], we try to investigate some new
method of generating security protocols practically and intelligently, based on a
protocol’s specification and a set of seed protocols.

In this paper, we attempt to draw some general lessons on the generation of security
protocols by using an approach based on protocol-specific knowledge base and
specification, and suggest a schema-based method by using planning techniques.

2. Protocol Representation

In the following, the representation and the types for the keys, nonces, and messages
of a cryptographic protocol will be figured out and well refined. It is believed that any
well-typed protocol is robustly safe. For convenience, most concepts involved will be
defined as structures in PROLOG.

2.1  Principal

A principal can be an entity, an agent, or a user, which can be a computer, a device, a
resource, or a service provider. It is represented by a structure identity(Name), where
Name is its symbolic name. When discussing about a security protocol, we usually
need to assume a set of principals involved. Typical principal names are ‘A’, ‘B’, and
‘S’ that normally denotes a trusted server.

2.2 Nonce

A nonce is either a randomly generated number or an expression. For convenience, it
is represented by a structure nonce(Identity, Value, Name, Number, Known), where

Identity reflects whom the nonce belongs to.

Value is the real value of the random number.

Name is the nonce’s symbolic name.

Number is the serial number of the nonce generated by the principal Identity.
Known is a list of identities” symbolic names to which the nonce is known.

Thus, the first nonce generated by principal A can be expressed as follows:
nonce(*A’, V, ‘Na’, 1, ['A’]), where V denotes the value of its corresponding random
number.

23 Data

Data is required in some protocols. It is expressed as data(Generator, Value, Name,
Number, Known), where Generator is the symbolic name of its generating principal,
Value is its real value, Name is the symbolic name of the data item, Number and
Known are the date’s serial number and those principals to whom the data is known
initially, respectively.



24 Keys

There are three types of keys involved in a security protocol, which are public keys,
private keys, and symmetric keys. Public and private keys occur in a public key based
cryptographic system whereas symmetric keys are used in a secret key based
cryptographic system. Public keys can be made available to every one, but private
keys must be only accessible to their owners. A symmetric key is supposed to be
shared between two parties. In the following descriptions, Owner is the key owner
whereas Name and Number are the symbolic name and serial number of a key,
respectively.

e publicKey(Owner, Name, Number, Known), where Known is a list of identity
to whom the public key is assumed to be accessible at the beginning.

o privateKey(Owner, Name, Number, Known), where Known is a list of identity
to whom the private key is available at the beginning. In most situations,
Known contains only Owner-.

o symmetricKey([First, Second], Name, Number, Known), where First and
Second are the names of the principals sharing the symmetric key, and Known
is a list of identity to which the symmetric key is available initially.

Alternatively, all these types of keys can be expressed as a uniformed structure:
key(Iype, Owners, Name, Number, Known), where Type is public, private, and
symmetric and Owners is a list of principal symbolic names.

2.5 Simple Message

A simple message is defined as one of the following structures:

o data(Generator, Value, Name, Number, Known)
e fkey(Type, Owners, Name, Number, Known)
nonce(ldentity, Value, Name, Number, Known)
identity(Name)

others such as message digest and time-stamps

2.6 Message
A message can now be defined as one of the followings:

e A simple message
e An encrypted message encrypt(M, K), where M is a message and K is a key.
® A concatenated message [M,, ... , M,], where M, (i = 1, ..., n) is a message.

2.7 Event

An event is a message exchange between two participating principals or entities,
which is normally the sending of a message from one entity to another. It can be
expressed by a structure event(From, Message, To), where From and To are the



sending and receiving principal’s symbolic names, respectively. Message contains the
information to be exchanged between two entities specified by From and To.

2.8 Protocol

Finally, by a protocol we mean a list of events, which can be defined as protocol([e.,
... ,&,]) where e, is an event in a system. Particularly, as an illustration, we take as an
example of a protocol-specific constraint on the relationship between two neighboring
events g; e;(j =1+ 1) such that one of the following holds:

e They have the same message senders.

e They have the same message recipients.

e The message recipient of ¢; is the message sender of e;.
e The message sender of ¢; is the message recipient of ;.

Another protocol representation is based on Strand spaces [Fabrega et al 98] and can
be described as below. An event can be represented by event(Operator, M, S). When
Operator is ‘+’°, it means an event sending a message M to strand S. Otherwise,
Operator is *-* and it is an event receiving a message M from strand S. A strand is a
sequence of events and represents either the execution of an action by a legitimate
party in a security protocol or else a sequence of actions by a penetrator. It can be
expressed by a structure strand(Name, Events), where Name is its name and Events is
a sequence of events, represented by <e, ... ,e.> where e, is an event as defined in
section 2.7. Finally, a strand space is a collection of strands, equipped with a graph
structure generated by causal interaction. It can be represented by the structure
bundle(Strands) where Strands is a list of strands [s,, ... , s.]. In this framework,
protocol correctness claims may be expressed in terms of the connections between
strands of different kinds.

From the protocol generation perspective, these two protocol representation methods
are equivalent, which has already been demonstrated in our prototype. Therefore, in
the following discussion, we will not distinguish them.

29 A Protocol Representation Example

Needham-Schroeder shared key authentication protocol (shown in Fig. 1) is described
below using our representation syntax. ‘A’ and ‘B’ are two participating principals;
‘S’ is the trusted third party. For clarity purpose in the following representation, we
introduce several simple notations first.

A = identity(‘A’),

B =identity(‘B’),

S = identity(‘S’),

Kas = key(symmetric, [A, B], ‘Kag’, 1, ['A’, ‘B’]),
Kas = key(symmetric, [A, S], ‘Kas’, 1, [‘A’, ‘S’]),
Kgs = key(symmetric, [B, S], ‘Kgs’, 1, [‘B’, ‘S’]),
Na =nonce(*A’, Na, ‘Na’, 1, [‘A’]),

Np = nonce(‘B’, Nb, ‘Ny’, 1, [‘B’]),

Ng - 1 becomes nonce("B’, Nb - 1, ‘Np’, 1, [‘B’]).



El =event("A’ [A, B, N4], ‘S%),

E2 = event(°S’, encrypt([Na, Kag, B, encrypt([Kas, A], Kps)], Kas), ‘A’),
E3 =event(*A’, [S, encrypt([Kas, Al, Kgs)], ‘B’),

E4 = event(‘B’, encrypt(Ng, Kag), ‘A”),

ES = event(‘A’, encrypt(Np — 1, Kap), ‘B’),

Finally, the Needham-Schroeder protocol is represented by protocol([E1, E2, E3, E4,
ES]).

A S B
A, B, N,
< { Na, Kup, B, {Kyn, A} kst s
S, {Kup, A} ks >
< {NB} ks
{Np - 1}k "

Figure 1. Needham-Schroeder Shared Key Protocol

3. Issues in the Generation of Messages Automatically

From our experiments on automated protocol generation, it is discovered that naive
message generation is inappropriate for an efficient generation of a security protocol.
This is due to the fact that most generated messages using the syntax described in
section 2.6 will not make sense when they appear in a protocol. Therefore, we adopt a
constraints-based message generation.

The approach to systematically generating messages in a protocol is guided by the
following constraints:

e The cost associated with a message M, which will be defined in section 3.1.

e The context of message generation provides some knowledge about what kind
of messages will make sense. It includes all information available to the
sending principal so far. Part of the context comes from the messages received
from other principals earlier.

e The general knowledge about security protocol design that can be integrated in
the protocol generator.

e A requirements description specific to the current security protocol generation.



3.1  The Cost of Generating a Message

The cost function f{M) for message A is defined as follows:

¢ C, when M is a simple message. It is defined by cos#(T, C) as an
input to the protocol generator, where T is the message type.

f(S) + C, if M is encrypt(S, K) and C is the cost of encrypting a
message using a key. C is defined by encrypting cost(T, C),
where T is the type of K.

I
A

M)

\ sum(fiM)),if Mis [M,, ... , M,), where M, is a message.

3.2 The Depth and Width of a Message

Given a message M, its depth and width expressed by d(M) and w(M) respectively can
be computed as follows.:

1, 1f M is a simple message

d(S), if M is encrypt(S, K)

d(M) =
1 +max{dM), ... ,dM)},if Mis [M, ..., M,).
1, if M is a simple message
w(S), if M is encrypi(S, K)

w(M) =

max{n, wM,), ..., wM)},if Mis [M, ..., M]

3.3 The Requirements for a Specific Security Protocol

The requirements for a security protocol can be specified by a set of predicates. They
will be used as an input to the generic security protocol generator. The specification
describes the following details about the protocol to be generated:

* How many parties are involved and who are those participants

e How many nonces will be involved and what they are

® A description of keys available and which keys can be used to encrypt
messages

e Whether a key can be exchanged between participants

¢ An indication of which cryptographic system is adopted and which keys can
be used to encrypt messages

e Whether all messages in the generated protocol must be encrypted

e Whether embedded encryptions are needed

e With respect to nonces and keys, what each message in the generated protocol
must include, both or either of them, or nothing.



3.4  How to Generate Messages

According to the message definition given in section 2.5, even with a very limited
number of simple messages, a very large number of messages can still be generated.
However, if the cost, depth, and width of a message to be generated and other
protocol-specific constraints are enforced during the generation of a security protocol,
the message space to explore can be dramatically reduced by trimming some branches
as early as possible.

The generation of messages can be done by a systematic search method. Heuristic
methods are normally much more efficient than brute-force methods by using
domain-specific knowledge. However, if completeness is required in the protocol
generator, they cannot be adopted; otherwise, some useful messages may not be
generated.

With respect to the exploration of a message space, any of the following methods can
be utilized:

Depth-first

Width-first

Cost function-guided

Hybrid method by mixing the cost-guided approach and limited depth-first

Because our generation of a message M is controlled by limiting the values of M),
d(M), and w(M) under the guidance of a protocol requirements specification, we adopt
a hybrid approach to message space exploration.

It is realized that messages had better not to be generated at run-time. There are two
reasons. One is that the run-time generation of messages is always inefficient, and the
other is due to the fact that generating messages systematically will make the
randomized protocol much difficult. On the contrary, if we can generate messages
beforehand, it will be easier to randomly select a set of generated messages.

4. Generating Security Protocols

For the simplicity of discussing about protocol generation and analysis, we have the
following assumptions:

® An attacker cannot guess a random number that is freshly chosen from a
sufficiently large space;

e Without the correct secret or private key, an attacker can neither retrieve
plaintext from given ciphertext, nor can they create valid ciphertext from
given plaintext by using a perfect encryption algorithm;

° An attacker cannot find the private component, ie., the private key
corresponding to a given public key.

As discussed in section 2, a protocol can be simply defined as a list of events. From
the perspective of a protocol’s generation process, it is both helpful and



understandable to decompose it into several steps. The first gives the protocol’s initial
state, describing who the participants are, which keys are available to each principal,
and so on. It could also include its structure properties such as the number of
participating principals, the number of message exchanges, the senders and recipients
of each message exchange, and the order of message exchanges. The second one
constructs a set of messages, which are generated under the control of a set of
constraints and guided by the knowledge about a particular protocol design, both
general and specific to it. Finally, the generated protocol is checked for correctness
and attack-freeness.

The structure property of a security protocol can be either described explicitly in a
knowledge base or constructed automatically, depending on how much automation we
want to achieve during a protocol generation. Because many different sequences of
messages can be constructed from a protocol’s given initial state, for an efficient
semi-automated protocol design, it is reasonable to specify the protocol’s structure
properties in a knowledge base and focus on the contents of messages exchanged in
the protocol. The knowledge base will also contain all other information specific to a
particular security protocol. However, if an automated protocol design is needed, a
protocol’s structure property can be produced as well using non-deterministic
backtracking.

Alternatively, we can design a new security protocol by modifying an existing
security protocol, which will be used as a seed protocol and modified in such a way
that the resulted protocol is still rational and makes sense. To produce a protocol more
randomly, there need several steps. First, we build a set of well-established protocols
of different categories and functionalities in advance. Then, given the requirements
for a specific security protocol, we decide which category of seed protocols is used.
After randomly selecting one seed protocol in the chosen category, we perform a set
of operations on it.

The permitted operations on a seed security protocol include but are not limited to the
following:

e Inserting a list of randomized messages into the given protocol;

¢ Modifying one or more messages in a given protocol by either adding nonce,
digital signatures or encrypting messages or replacing one of these sub-
messages by another;

* Both adding randomized messages and modifying original messages.

However, there are several constraints over these protocol-manipulating operations
when they are performed. Some of them are detailed below:

e The structure properties specific to a particular security protocol must meet the
protocol’s specification and still be valid and maintained. As stated in section
2.8, a protocol is assumed to consist of a continuous message exchanges.
However, inserting randomized messages into a security protocol arbitrarily
may destroy some of its structure properties. It turns out that planning
techniques can be used to derive a sequence of messages intelligently.

o All information contained in any message must be accessible to or generated
by the message sender, or have been received earlier from other participating



entities. Otherwise, it will result in an invalid security protocol. For example,
we assume there is an element of encrypted sub-message in a compound
message. It is not always possible for the message recipient to access the
components of the encrypted sub-message due to the cryptographic
restrictions. Actually, some sub-messages are designed to be used as a whole
in its following messages for a particular purpose. Thus, the manipulation of a
security protocol must get some support from reasoning technologies, which
has been witnessed in our work.

e In order to avoid the message reply attack and unauthorized alternation of any
protected protocol messages, messages may be required to provide a
cryptographic binding between the intended users and the fresh session key
established, which is associated with a newly created random number.

e It will result in some inconsistency with the specified protocol specification or
violate some general protocol design rules. For example, any message must be
able to contribute to the protocol by providing more information such as its
liveliness during a protocol run.

Furthermore, message manipulations are also constrained by the following
assumptions about a perfect encryption {...}x[Mao 2001]:

e Without knowing about the encrypting key K, {...}x does not provide any
cryptanalytic means for finding the plaintext message “...”;

e The ciphertext {...}x and maybe some known information about the plaintext
“...” do not provide any cryptanalytic means for finding the encrypting key K;

e Without the encrypting key K, even with the knowledge of the plaintext “...”,
it is still impossible to alter {...}x without being detected during the time of
decryption.

S. Some Thoughts on Automatic Security Protocol Generation

Confidentiality, authentication, and integrity are very important security protocol
properties. Formal methods are the most commonly used approach to the verification
of security protocols. From an artificial intelligence perspective [Massacci 97], the
verification of security properties is also a deductive or model-based logical reasoning
problem, and protocol design can be seen as a plan that exploits the structure of a
security protocol and the message exchanges between its participating entities to
achieve a set of given goals. The planning problem can be formalized as a variant of
dynamic logic where actions are explicit computations and communication steps
between agents. An application of planning techniques to automatically generating a
sequence of actions to correct the faults in a system is demonstrated [Lin 98].

A schema consists of one or more primitive messages as discussed in section 2.5 and
is accompanied by a set of explicit assertions made in the specification of its fine-
grained security properties, which include the freshness of a nonce, the association
with an identity, the provision of the integrity of a piece of data, and so on. Schemas
are obtained by analyzing all sorts of well-known security protocols, designed by
security experts. Schemas are protocol independent and for general-purposes. The
proposed intelligent protocol generator is a knowledge-based planner, which makes
extensive use of existing protocol design expertise. Its architecture is shown in Fig. 2.
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Figure 2. Architecture for an Intelligent Security Protocol Synthesizer

Using our protocol generation techniques, we can check whether a given security
protocol’s run can be attacked, based on a library of attacking models. If none of the
attacking models can be applied to the generated security protocol, it is attack-free.
Writing sound attacking models is the key to this knowledge-based approach. Even
though protocol design experts have got a lot of experience on this, because we do not
have a complete set of attacking models, it is still very hard to get a secure protocol
attack-free. This is very similar to what anti-virus software faces.

6. Conclusions

In this paper, we first discuss the issues in generating security protocols, and then
propose an intelligent approach to constructing security protocols automatically,
based on a security property specification, an extensible general-purpose library of
schemas, and a library of attacking models. Each schema is defined by specifying
intended behaviors using patterns over a sequence of primitive messages and fine-
grained security properties.

According to our experiments on generating security protocols automatically, we
draw our conclusions as follows:

o It is useful to have several protocol representations for different purposes. It is
realized that events-based protocol representation is suitable for quickly
excluding inappropriate protocols, and the strands space-based representation
may be more suitable for checking if a protocol run is secure and attack-free.

e It is necessary for generating the structure properties of a security protocol
efficiently and sensibly based on its specification and previous knowledge
about the protocol design of its kind.

® Modeling the behaviors of schemas is the key to automatically generating
security protocols. Furthermore, it is expected that the correctness property of



a generated protocol based on schemas can be proved. Contrary to this,
modifying a seed security protocol cannot guarantee the correctness of the
produced protocol.

e A language for specifying primitive security protocol properties and schema
behaviors should be well defined and needs further research.

Acknowledgement

We would like to thank the following people for their technical discussions and
support during our protocol generation work: Brian Monahan, Keith Harrison, Pete
Bramhall, Martin Sadler, Wenbo Mao, Liqun Chen, Yolanta Beres, and Mike Child.

References

[Dolev and Yao 81] D. Dolev and A. C. Yao, On the security of public key protocols,
Proc. of the IEEE 22" Annual Symposium on Foundations of Computer Science,
pages 350-357, 1981.

[Fabrega et al 98] F. J. T. Fabrega, J. C. Herzog, and J. D. Guttman, Strand spaces:
proving security protocols correct, Proc. of the 11" IEEE Computer Security
Foundations Workshop, pages 191-230, June 1998.

[Fabrega et al 98] F. J. T. Fabrega, J. C. Herzog, and J. D. Guttman, Strand spaces:
why is a security protocol correct? Proc. of IEEE Symposium on Security and
Privacy, pages 160-171, May 1998.

[Jacquemard et al 2000] F. Jacquemard, M. Rusinowitch, and L. Vigneron, Compiling
and verifying security protocols, Proc. of the 7" International Conference on Logic
Jor Programming and Automated Reasoning (LPAR’2000), pages 131-160, Nov.
2000.

[Lin 98] Lin A. A Logic-Based Approach to Automated System Management, 6" Int.
Contf. on the Practical Application of PROLOG (PAP’98), (1998) 417-425.

[Lowe 95] G. Lowe, An attack on the Needham-Schroeder public-key authentication
protocol, Information Processing Letters, vol. 56, no. 3, pages 131-133, 1995.
[Massacci 97] F. Massacci, Breaking security protocols as an AI planning problem,
Proc. of 4" European Conference on Planning (ECP’97), pages 286-298, 1997.
[Needham and Schroeder 78] R. Needham and M. Schroeder, Using encryption for
authentication in large networks of computers, Communications of the ACM, vol. 21,
no. 12, pages 993-999, December 1978.

[Mao 2001] W. Mao, Cryptographic Protocols, unpublished manuscript, 2001.

[Perrig and Song 2000], A. Perrig and D. Song, Looking for diamonds in the desert —
extending automatic protocol generation to three-party authentication and key
agreement protocols, Proc. of 13" IEEE Computer Security Foundations Workshop,
pages 64-76, July 2000.

[Song 99] D. X. Song, Athena: a new efficient automatic checker for security protocol
analysis, Proc. of the 12" IEEE Computer Security Foundations Workshop, pages
192-202, June 1999.

[Song et al 2001] D. X. Song, S. Berezin, A. Perrig, Athena: a novel approach to
efficient automatic security protocol analysis, Journal of Computer Security, vol. 9,
no. 1-2, pages 47-74, 2001.



