[

invent
Progressive Open Source
Jamie Dinkelacker, Pankaj K. Garg, Rob Miller, Dean Nelson
HP Laboratories Palo Alto
HPL-2001-233
September 28t , 2001*
E-mail: garg@hpl.hp.com
software The success of several Open Source software systems, e.g.,
engineering, Apache, Bind, Emacs, and Linux, has recently sparked
collaborative interest in studying and emulating the software
work, engineering principles underlying this innovative
Corporate development and use model. Certain aspects of the Open
Source, Source development method, e.g., community building,
Collaborative open discussions for requirements and features, and
Development evolvable and modular designs are having fundamental
Program and far reaching consequences on general software
(CDP), engineering practices.
knowledge
management, To leverage such Open Source methods and tools, we have
programming defined an innovative software engineering paradigm for
environments large corporations: Progressive Open Source (POS). POS

leverages the power of Open Source methods and tools for
large corporations in a progressive manner: starting from
completely within the corporation, to include partner
businesses, and eventually complete Open Source. In this
paper we present the design goals and principles for POS.
We illustrate POS with two programs in HP: Corporate
Source and the Collaborative Development Program
(CDP). We present early results from both these programs
suggesting the power and necessity of POS for all modern
large corporations.

* Internal Accession Date Only Approved for External Publication
O Copyright Hewlett-Packard Company 2001

1 Introduction

Software engineering continues to be challenging for large corporations, often due to the
realities of corporate structure, and its constraints and processes. Within the corporate shell
such pressures as “time to market” can lead to specific architecture or coding approaches that
put speed at the forefront and can compromise features or quality. In a large corporation
(upwards of 50,000 employees) with several large divisions (upwards of 1000 employees),
coding standards may differ if they exist at all, and the divisions may be developing similar
modules (e.g., encryption, decryption libraries) unaware that others in the company are
working on the same task, or may have already finished them.

Large corporations are also prone to “re-orgs” where suddenly a set of developers are moved
from one project team to another, or a product that the team was working on is either
hastened to market or put on the back-burner. Either case leads to a disruption in the
software development process for the developers. Similarly, corporate priorities can change
due to market conditions, often leading to the reallocation of personnel to different positions
and projects. As such, developers face steep learning curves resulting from the misalignment
of experience, skills, and new tasks.

Importantly, such challenges, while related to software development, are not limited to cor-
porations that sell software. They are endemic to all organizations that build software-to
support their hardware products, to manage their I'T infrastructure system, to provide spe-
cific services, or to sell software. Whether a company’s software efforts are externally or
internally focused, whether they are products themselves or embedded parts of a broader
solution, the above challenges of software development are faced by all such organizations.
Our working hypothesis is that certain software engineering principles from the Open Source
paradigm can mitigate such large organization challenges.

Open Source has become a familiar concept for software development. Sparked by such
notable successes as the World Wide Web (HTML and HTTP), the Linux operating system,
the Apache web server, and the Emacs text editor, the value of the Open Source concepts,
perspectives, methodologies, and approach have received widespread support from many
developers worldwide. Open Source has created a “sea change” regarding how software
is distributed, as well as how it is crafted. As the name implies, Open source reflects a
fundamental shift from software being distributed in binary form to a source-code form.
With source-code, developers and users can review it, comment on it, and where necessary,
correct it. Usually such source-code is maintained in open repositories on the Internet where
new developers can familiarize themselves and learn new techniques. As a result, “source”
distributions have led to the creation of diffuse communities of practice surrounding the
code. Similarly, within an Open Source process, discussions about features, requirements,
and architecture are held in open public forums (usually news groups and mailing lists),
thereby creating an ideal negotiation grounds for developers, users, and maintainers.

The Open Source software development process has proven itself by delivering several indus-
trial strength software products. In each of these cases, Open Source resulted in substantial
benefits for easier software maintenance, code reusability, and higher quality [14]. Often,
these Open Source products are preferred by the market than their “Closed Source” coun-
terparts. While the Open Source development method has various reasons for its success,
one main ingredient was best summed up by Eric Raymond as “Linus’ Law”: given enough
eyeballs, all bugs are shallow.

From a software engineering perspective, this can be viewed as a natural progression of the
code inspections process [6]. Unlike code inspection, however, the Open Source process is
much broader and pervasive in that even the software user community is routinely involved
in critiquing and reviewing source code, as well as having strong input on features and
approaches to implementation. In short, Open Source software has a tendency to match to
the needs of the users as seen by developers from a broad range of perspectives, not just a
few from one small development group of product and marketing managers.

Much like the evolution of scientific concepts and theories [11], Open Source encourages the
development of engineering techniques for software in an open, peer-review process. Similar
to the scientific process, the primary motivation for people involved in the process is a quest
for knowledge and peer recognition [12].

1.1 Applying Open Source concepts to corporations

While attractive from a purely quality perspective as well as from the standpoint of including
innovation, the Open Source mechanism creates a fundamental conflict for software corpora-
tions: business practices dictate that software corporations retain Intellectual Property (IP)
rights in their software, hide such IP from their competitors, and make profit on their invest-
ment in creating such IP. Realizing this business conflict, several Open Source derivatives
have developed over the past few years. Such corporate derivatives are usually more restric-
tive than the typical Open Source licenses. Another approach is for corporations to expose
some part of their products as Open Source while keeping the critical ones as proprietary
source. An extreme form of this, which is the norm in the software industry, is to reveal
only the user interface or application programming interface (API’s) for software. When
software corporations adopt such proprietary source-code development processes, they lose
potential benefits of a possible Open Source counterpart. These benefits have the potential
to be broad-ranging and cover the gamut not only of finding shallow bugs, but speeding up
time-to-market, improved software reuse, and rapid re-deployment of skilled developers.

1.2 Progressive Open Source

Working in a large corporation (upwards of 80,000 employees, worldwide presence), with a
significant range and diversity of software development (including embedded systems, oper-

ating systems, networking, applications, mobile code, and systems management), we have
been investigating the use and benefits of the Open Source development methods for large
corporations. Keeping in mind that all such large corporations are sensitive about protecting
commercial interests in the software they develop, we have designed a three-tiered model,
called: Progressive Open Source (POS), for introducing Open Source concepts in HP’s
development practices. The three tiers of POS are: (1) Inner Source, (2) Controlled Source,
and (3) Open Source. Figure 1 shows the relative positioning of the three layers of this
model.

Inner Source refers to the application of the Open Source approach and benefits to devel-
opers within the corporate environment — i.e., “open” to all developers behind the firewall.
The overarching purpose of the Inner Source approach is to bring the benefits of develop-
ment according an Open Source model inside a company to its community of developers,
and then foster the development of internal projects accordingly. Although the community
size is smaller than that of the Internet, a worldwide company does have many developers
who can be served by this approach.

Controlled Source which is outside of the corporate firewall, but restricts access limited
to specific corporate partners. Such partnerships include development partners, technology
partners, testing partners, localization partners, and so forth.

Open Source refers to the “open” use of the Internet for development, and release of
the software source code in a license approved by the Open Source Initiative (OSI) (http:
//www .opensource.org). The OSI has currently approved about two dozen such licenses.

Shifting Firewall

Internet Controlled Source

Partners
Inner Source

Corporate Intranet

Figure 1: Progressive Open Source

POS requires a novel approach for large corporate software development: Instead of rely-
ing on a single-product, project-focused development method, POS requires a corporation-
focused development method. With this method, each employee of the corporation can
potentially contribute to the development of any given software product. Figure 2 depicts

this organizational transformation. By restricting the openness of the software development
to within the corporation, or with selected partners, the corporation does not incur the
aforementioned business costs of Open Source. If the corporation is large enough (with a
few hundred employees), it can realize the main benefit of Open Source, i.e., “given enough
eyeballs, all bugs are shallow.”

Project 1 Project 2 Project n
Project 1

Project 2

Project n

Un-Shared, independently developed
Software Shared. POS source code

Figure 2: Transforming corporate Software Engineering

1.3 Benefits for Rapid Team
Re-deployment

Corporate work is typically done by teams. In every organization, product shifts and reor-
ganizations are commonplace. This subsequently creates a challenge as to how to effectively
re-deploy skilled software developers, and once they’re deployed, how to get them up the
learning curve as quickly as possible. The start-up time of any team is significant. In an
environment where time to market is always crucial, and having code that can be sustained
to meet the needs of the marketplace and key customers is critical, the POS approach affords
a new opportunity for having much quicker startup times for projects. Assuming an imple-
mentation of POS, familiar developers within the POS environment would already know the
source tree, be familiar with the workings of the relevant development, bug-reporting, and
source management tools, corporate-specific coding and commenting standards, and the cor-
porate code review process. In short, POS creates an opportunity for rapid re-deployment
of developers not just from one project to another but from one product to another. From
the standpoint of managing software development in a commercial environment, this is a
huge potential benefit.

1.4 Potentials for Partner Involvement

As the world becomes more and more characterized by evolving alliances and joint ventures,
developers continually face the challenge of working together with those outside of of their
corporation. Through appropriate access control and network security, either parts of the
source tree can be placed outside the firewall, or within limits, partners can be allowed to

tunnel into parts of it. Those aspects that a company chooses to share can be available to
partners under non-disclosure agreements (NDAs) and work on joint projects can progress.
While it is not uncommon for “Closed Source” vendors to establish specific working relation-
ships with partners under strict NDAs, the code that is reviewed by the partners tends to
be very focused on a specific product release or update. Also, this approach to code devel-
opment is not standardized and is idiosyncratic to each company as well as to each product
release. POS, based on Open Source methods, promotes standardization amongst the tools
and techniques used in partner collaboration, which has the potential of increasing speed
to market. The POS approach affords the opportunity for partners to work more broadly
across the code tree, especially regarding foundation level modules (e.g., network stacks) and
use more standardized approaches to coding and inspection that otherwise would be used
with Closed Source approaches.

In summary, POS enables the following benefits for an organization:

A readily available potpourri of software that can be built upon and used as starting
point — provides for reuse, stability, and reliable code;

e Improved quality levels of shared software as authors’ reputations are at stake;
e Shared, community debugging;

e Ability to easily integrate the corporate software development efforts into the overall
Open Source movement, leverage the Open Source tools and methods, and ensure
effective cross-learning where appropriate;

e Rapid re-deployment of key developers from one project to another who already are
familiar with the current POS code tree, tools, and coding standards; and,

e Faster development schedules with code leveraged among several products;

e Opportunity to work with selected partners in certain circumstances.

2 Challenges

Implementing POS within corporations has been—and will continue to be-challenging. Some
of these challenges are organizational: e.g., how do we develop code across project and
organizational boundaries, how do we identify and retain module designers? Yet other
challenges are related to infrastructure technology. Both these aspects must be addressed
in a satisfactory manner to ensure a successful and continuing deployment of POS. In this
section we present some of the challenges of deploying and running a POS program in a large
corporation.

2.1 Organizational

Organizational challenges of POS include:

Virtual Organizations: Most corporations today operate on a hierarchical organizational
structure. This complicates the process of code sharing by having differing product road-
maps and time-lines, where some managers may just push to get something delivered by
a promised date, irrespective of code quality, which might then be an embarrassment to
post into the POS code tree. It’s also possible that some managers or even developers
may be inimical to contributing any resources to perceived resource competitors within the
organization.

Leadership: The Open Source model depends on at least one leader or owner of given
software modules. Such leaders are efficient designers and implementers for the software
module they are leading. In the open market of the Internet, “invisible hand” sorts of
mechanisms (based on visibility, ego, and so forth) ensure that a good leader emerges for a
given software module. In the case of POS, two distinct challenges arise: (1) what happens
when a leader of a software module decides to leave the company, and several projects are
critically depending on that module for their projects; or, (2) worse yet, no particular leader
emerges for any given module?

Task Assignments: The Open Source model depends on a willing and able cadre of capable
software engineers who work on any given software module. The pool of people to draw from
is the entire world population! (As programming is getting easier, the world of programmers
is increasing.) For Inner and Controlled Source, the pool of programmers to draw from is
limited to the corporation and its partners. Traditionally, project managers can determine
their personnel skill requirements based on the requirements of their projects. In the POS
model, however, the entire company’s pool of programmers can potentially help out in the
development of a given project’s source code. How does one manage the appropriate software
skill set at the corporate level?

Developer Indoctrination: A fundamental aspect of software development is the skill set
of each individual developer. This necessitates that corporate developers be aware of the
POS tree and tools, that they adopt the coding standards set forth to be consistent with
the source tree, and that they develop a good judgment as to what constitutes a reasonable
contribution to the source tree. These are organizational and managerial challenges to broad
adoption and continued usage of POS within the enterprise. While many corporations have
established and clear coding standards, this model can break down across divisions that serve
distinctly different markets. This creates the challenge of maintaining coding standards, and
training new developers for maximally utilizing POS.

2.2 Technology Infrastructure

The technology infrastructure challenges for POS include:

3

Security: Corporate project managers and developers are wary of random exposure
to the internals of their products, i.e., source code and design. Typically they want to
at least know who is accessing their source code and for what purpose. This varies with
projects from very loose security requirements to highly-sensitive company confidential
information. Hence, POS requires appropriate authentication, authorization and audit
mechanisms to properly control access to source code. This is contrast to the Open
Source mechanism where potentially everyone has at least read access to source code.

Search and Navigation: Once the POS repository attains a certain size, searching
and navigating through the several projects and personnel details can easily become
time consuming to the point of making the effort worthless. Hence, a proper search
and navigation infrastructure is essential to the success of POS.

Migration from existing tools and Infrastructure: Each software project and
group within corporations today has a software engineering infrastructure in place
which typically includes a version management system, debugging and bug reporting
tools, and so forth. POS assumes a uniform toolset and infrastructure, at least from the
user interface perspective. Migrating existing source code to a common infrastructure
or user interface is a challenge, both from a technology and organization perspective.

Appropriate IT Support: POS, like any server-centric content, requires hosting and
maintenance of the code tree, platform, version control and related software engineer-
ing tools. While often overlooked, the IT support is absolutely crucial for maintaining
uptime, running scheduled backups and recovery when necessary, and hardware main-
tenance as well.

Approach

To test out our ideas about POS, we have defined two programs in the Hewlett-Packard
Company. The programs are: (1) Corporate Source Initiative championed within the
HP Labs community, and (2) Collaborative Development Program (CDP) championed
within HP’s Imaging and Printing Business. Corporate Source is an instance of the Inner
Source aspects of POS, while CDP is an instance of the Controlled Source aspects. In this
section we discuss the approaches and vision of each program.

3.1 Corporate Source
3.1.1 Corporate Source Objectives

The purpose of the Corporate Source Initiative is to extend the HP Labs research commu-
nity out into the product generation R&D community. HP Labs develops a wide variety of
technology and prototypes, which HP has traditional difficulty transferring into the product
generation portion of a business. Corporate Source, by utilizing the community focus of
the Open Source principles, is working to build a stronger community within HP Labs and
then extend that community to include product generation and other developers focused on
infrastructure and corporate operations. This results in much greater leverage of HP Labs
technology into HP’s products and operations. The expected results are greater compet-
itiveness of HP products, higher quality products, better return on HP Labs investment,
decreased product generation costs, and a more effective and efficient enterprise.

Figure 3 shows the main web page for accessing the Corporate Source service.

HP Corporate Source is currently hosted through the HP Labs Research Library. The library
pages are familiar to HP software engineers and thereby combines together in a known place
for “corporate knowledge management.” Appropriate I'T functions are provided for hosting,
system maintenance, and backup.

The Corporate Source web-site is searchable, and shows quick summaries, with active links,
of the most frequent downloads, and the most frequently viewed modules. It provides an
easy mechanism to upload modules. The HELP feature shows briefly how to use the site,
whom to contact, and displays publishing guidelines (i.e., coding standards). Each submitted
software module or item has a unique, one word software ID. Each software item lists one
contact person, who is also the publisher of the software, although a software item can have
multiple authors. The source code is stored in a configuration management system, called
Concurrent Version System (CVS) [9]. The information about source code is stored in XML
files. Both these reside on a Linux Corporate Source server. Also, a mail-reflector is used to
keep developers apprised of Corporate Source topics and submissions.

It’s worth noting that not all HP developers are focused on generating software products —
the company uses advanced decision technologies and supply chain management software as
well. Much of this software is internally developed and won’t necessarily be released into a
product for obvious reasons related to competitive corporate performance. Yet, Corporate
Source is well suited for long-term evolution of these tools and capabilities. In other words,
Corporate Source is beneficial for a broad array of software developers within the company:
developers in the Labs, in Infrastructure, Functions, as well as product generation groups.

File Edit Wiew Go Wincow Help
I T | 8 a 4 & 3 :
: Back Forward Reload Home search MNetscape Print Security Shop Stop
3§ Bookmarks Ji Netsite: [http://source. hpl hp. com/index2. shtml ;| " What's Related

' HP's Internal

w® Corporate Source |I = i[jﬂ

@ HPL Library @ Home

TOP DOWNLOADS

deprun (16)
editthispage (14)
colstats (11)
optimize (7)
hplinet (6)

&

hpes (35)

kparser (28)
Download Agent (17)
WebMon (16)
colstats (13)

Join our mailing list!

 Search Q Browse O Publish Q About CS Q Help

Fartl—CiPﬂ_tE! @ Browse
Get involved in
HP's software
communities!

@ Search
@ Publish

Welcome to HP’s Internal Corporate Source!

Leverage the strength of the HP community for your
software projects! Share your development efforts with
other HP people, and participate in other HP software
efforts. This site provides the tools that you’'ll need to
start yvour own HP software community, or participate
in an existing one.

We are applying Open Source development methods
within HP. Some other sources for Open Source tools
and methods are: GNU, Freshmeat, SourceForge.

Eric Raymond’s paper, The Cathedral and the Bazaar,
is a classic starting reference for understanding the
benefits of Open Source. Here'’s where you’ll find the
famous quote: "Given enough eyeballs, all bugs are
shallow.”

Feedback (to mailing list) Webmaster

|§| 100% |

Figure 3: Main page for Corporate Source

10

3.1.2 Corporate Source Results

The Corporate Source service has been operational for more than fourteen months in HP.
We have about two dozen software systems currently hosted by the service. Each of these
systems was volunteered by the submittor. Figure 4 shows the average number of requests
per day plotted against the month of operation. As the figure shows, recent months are
averaging about 200 requests per day.

300

T T
Average Requests per day —&—

250

200

150

50

.
0 2 4 6 8 10 12 14
Month of Operation

Figure 4: Request statistics for Corporate Source

3.2 Collaborative Development Program (CDP)
3.2.1 CDP Objectives

The purpose of the Collaborative Development Program (CDP) is to enable development
teams to collaborate effectively on a global scale, with partners both within HP and external
to the company.

CDP provides a comprehensive program to support HP’s shift from a vertical organization
focus to a virtual organization focus with:
e a supportive environment for virtual relationships.

e a set of supportive values and beliefs to better foster these relationships.

11

e a capabilities review and training program to ensure that HP’s talent is enhanced to
exploit this opportunity.

e a structure for ongoing behavioral migration to address these opportunities

The expected results of CDP include great agility to address new opportunities, reduced time
to market, higher quality, more consistency between HP products, and decreased product
generation costs.

3.2.2 CDP Program Structure

The CDP team consists of a set of executive champions, sponsors, R&D change leaders, and
Information Technology staff.

Executive Champions: It has been critical to CDP success to have a group of executive
champions. In CDP’s case we have two champions - the chief technology officer and the chief
information officer. These champions help provide the urgency to the organization to start
the change process. They have provided both vision and direct influence open individuals
perspective for the broad need of collaboration.

Sponsors: CDP has a group of nine sponsors. These sponsors were specifically chosen
for their current business requirement for broad collaboration. The program ensured that
each of these sponsors could feel the business pain of not having a collaborative model of
operation. This pain was quantified by requiring that each sponsor commit resources to help
CDP and a project to be hosted on the program. This helped ensure that they committed
to a positive result.

R&D Change Leaders: The program was originally led by a group of R&D change leaders
who would be the ultimate consumers of the program once successful. This was important
for credibility and focus purposes. While IT is working to become aligned with direct busi-
ness results, R&D productivity and flexibility is a bit too nebulous to quantify. In addition,
IT’s cost-focused history leaves them lacking the credibility to launch an R&D change man-
agement program.

IT Staff: IT experience with operations and support is absolutely critical to success. CDP,
as a central R&D facility, can have a huge negative impact on productivity, which directly im-
pacts both the top and bottom line returns. Maximum up time, especially when considering
the global scale, is warranted.

3.2.3 CDP Offering

The CDP tools are currently hosted on the Internet outside of the HP firewall. This decision
was made for a few reasons. First, HP’s focus on “anywhere, anytime, always on infrastruc-
ture” warrants an Internet-based solution. The Internet allows people to work anywhere,

12

any time and for all participants to be first class citizens in the development community
independent of whether they are HP employees, contractors, or solution partners. This even
opens the door for the direct inclusion of customers into the development, which is being
explored on a limited basis. The second reason for hosting the solution on the Internet is the
speed and agility in which we can bring on new partners. It previously required up to six
months to establish an infrastructure to support a partner integration. With an Internet-
based solution new partners can be added within a day. The third advantage of Internet
hosting is the ability of contracting best in class hosting services for performance, reliability,
and economies of scale.

The CDP toolset is integrated and hosted by an outside vendor. The vendor’s framework
integrates various open source and non-open source tools together into a common integrated
view of all project artifacts. HP has worked with the vendor to integrate HP’s existing
internal security system into their framework, to ease the internal migration of users to the
platform. Figure 5 shows an example screen image of a CDP home page.

Realizing that the Open Source methods have more to do with community development and
interaction than with the tools, HP has an internal culture team which is working to develop
the operating models, educate our internal users and partners, and recognize and reward
collaborative behavior. A collaboration skills assessment, training program, and exercises to
experience this collaboration are all components of this initiative.

HP continues to evolve its intellectual property in this area and work with its partners to
deliver a long-term road-map delivering deeper open collaboration.

3.2.4 CDP Results

The CDP team has completed a 6-month pilot program, which grew to over 600 users.
This pilot completed in April 2001 as the program migrated to a production version. As of
the end of August, CDP is hosting over 350 projects and 2000 users. Of those 2000 users
approximately 10% are non-HP users. Figure 6 shows the weekly growth of new projects in
CDP since April 2001.

There have been many examples of expected and unexpected returns from this more open
collaborative approach. In addition, a number of key learnings have been noted. These
learnings are discussed in the next section.

4 Lessons Learned

Both Corporate Source and CDP have been in some level of pilot and production for nearly
a year. During that period we have learned a great deal about not only changing the
development processes of a major technology company but about changing the development
culture as well.

ft Internet Expl

J File Edit “ew Favorites Tools Help

-lo|x]
a

| ©Back v = ~ @ 7} | Dsearch GaFavorites (HHistory | Bhv S

13

J Address I

j G0 HLinks ”

rnunity

#Project testproject is Locked

Project:

cdp-scm

asp
cdp
testproject
How do I...7 testprojects

¥y Projects

Description:

SCM solution discussions

cdp-framewark- CDP tool frameworl, integration, and ASP

environment

Collaborative Development Program

Test project for beta test

Test project for beta. Adrnin

Tip of the day: Users who subscribe to a mailing list can request digest format or standard
delivery of all posted emails.

My Start Page Welcome Dean Melson Edit Profile | Logout

O cop Community News

Tip of the Day Archive

CDP Support Home
Where to Enter CDP Tool
Defects/Enhancement
Fequests,

Basic Support Information
How to Contact 24hr COP
Support

7/19/2001: How to do
reporting in Issueilla,

Use This Page...
Learn about &

My Project News

project...
Join & project... Date: Project: Description:
Download cods... 2001-07-31 cdp-scm SCM Use cases document posted,
Start a new project...
Change my rale in &
project... My Discussion Forums
Edft m roflle Project: Forum: Poster: Subject: Date:
Edit my Project...
Re: Auqust
Planned _‘—341; 210001 -
cdp-support service IerhID 2001-08-24 20:52:25.0
outages Server
Upgrade

7492001 Training link now
available off the Damain
Mawvigation bar.

5/17/2001:
Planned/nplanned Outage
Information is now available
in the COP-Support Project!
2/28/2001: How to Reguest
a Mew Project: Use the
"Start new project” link
under the "How Do I" section
on the left hand side of this
weirdo,

[8 e nternet

| KN

Figure 5: Home page for CDP. SourceCast is a TradeMark of CollabNet, Inc.

14

250

T
Total projects —+—
New Projects pepWeek

200

150 -

50

. . . .
0 5 10 15 20 25
Week of Operation

Figure 6: Weekly growth of projects in CDP

Some learnings from our experiences are:

Adoption of Open Source practices within a corporation is, at its heart, more of a process
of social-rather than technical-change. While it does require learning of new tools (e.g.,
CVS, mail reflectors, other web based communication methods), the key elements are: (1)
leadership to draw people into using Open Source methodologies, and (2) getting developers
and their management chain comfortable with sharing code and development responsibility
across the company.

The motivations for participation in a corporate collaborative development environment can
differ immensely from the motivations of the Open Source community. A high level of
importance should be placed on identifying a value proposition that aligns the Open Source
style of project development with business objectives. The rate of adoption and participation
will be maximized when participation is critical to development needs as well as business
and project success.

Training on topics ranging from tool use to community development and social change are
necessary for all participants, including both developers and managers. As was noted earlier,
the change embodied in moving to a collaborative development model is both social and
technical: care should be taken to ensure that proper training exists and is encouraged in
both areas.

15

The value of having the correct effective Champions and Sponsors should not be underesti-
mated. In order to for this type of development to be successful key sponsors and leaders
should be identified in both the management chain and in the development community.

It’s a challenge to find an effective starting point regarding which software domain should
be an initial focus from which to populate the repository. CDP approached this problem by
tying participation to critical unmet business needs. In the case of CDP, those needs were
identified as secure collaboration with third party partners and supporting geographically
distributed teams. This was critical to the adoption of the tools, and methodologies as these
needs were not being effectively met using existing tools and processes. This seeded the
repository with resources that were critical to both the business and collaboration need. As
our economies become more global these needs will continue to grow. After a time we expect
a level of critical mass to occur so that the repository will be self-sustaining in regards to
sharing and leverage.

Using the word “module” somewhat generically, it’s a challenge to strike the balance between
module simplicity and utility. This age-old problem resurfaces with corporate collaboration
because there’s a tradeoff between how complete a module might need to be for another
developer to consider adopting it into his or her code stream. Each submission should not
have irrelevant features, APIs, or calling sequences that would take more time to reconfigure
the module than write it from scratch. Effective heuristics for this are developing within
POS in an evolutionary way.

Once a development community is established and is members understand the technical and
social aspects of participation are understood community tend to be self-managing. For
the early stages of adoption and in those rare cases where communities cannot come to
a consensus a method of problem resolution and arbitration should exist that can enable
problems and disputes to be resolved efficiently.

In the corporate development environment the protection of intellectual properties (IP) will
continue to be an ongoing issue. Tools must be put into place that allow for broad sharing
and collaboration while protecting valuable IP from being exposed inappropriately. This is
particularly true when working with third party partners.

The growing need for global collaboration combined with the easy access to tools, has led
to the use of these tools and methodologies in areas other than source code development.
While this could lead to additional tool requirements, it presents opportunities for additional
exposure and acceptance. It also presents opportunities for collaboration between disciplines
that were not possible in the past.

16

5 Related Work

The concept of Progressive Open Source embodies a fundamental shift in software develop-
ment both from a product and process viewpoint. From a process viewpoint, the shift is
from standard role definitions in broadening the population of possible developers to include
other kinds of process agents: users, customers, partners, marketing, technical writers, and
so forth. From a product viewpoint, the fundamental shift is that instead of the binary code
as being the end-product, the source code is the end-product. Such fundamental shifts natu-
rally have relationships and implications for several threads of software engineering research.
We highlight such implications in this section.

The software reuse community has long espoused the notions of interface-exposing component-
oriented software reuse. The theory is that as long as the interface to a component remains
unchanged, its implementation can be changed to accommodate new developments or situa-
tions. In fact, for such reasons, Parnas and others have argued that the source code for the
components should remain hidden from the users of components and only the interface be
exposed [13]. This ‘information hiding,” however, has a strong limitation: an interface can
never completely specify its implementation. This is a natural consequence of the fact that
the implementation is more than its interface, hence along with hiding the implementation
details, the interface also hides the hidden assumptions in the implementation. While speci-
fications of such assumptions can theoretically solve this issue, in practice specifications tend
to lag behind the implementations. Hence, usage of the interface that are consistent with the
assumptions work well, while novel or in-consistent usages break. This leads to significant
debugging problems for component users.

The POS solution for this problem is to open the source code for the implementation while
insisting on the use of only the interface. The users of such interfaces and the developers can
then have meaningful conversations in an “Open Source” manner to refine or appropriately
use the interfaces.

Several research groups are exploring the issues of of “Global Software Development (GSD)”
within large software organizations, e.g., Lucent Technologies [8, 7], Alcatel [5], Motorola [2],
Tenovis GmbH & Company [10]. They assume the work conducted in a hierarchical,
product-oriented organizational structures. Not surprisingly, Herbsleb et al. [8] report that
communication and coordination over long distances hinder progress of code improvement
or defect removals. Comparatively, Open Source projects report remarkable communica-
tion and coordination over long distances, e.g, see [12]. Our approach of Progressive Open
Source blends the requirements of GSD with Open Source practices. For example, Herbsleb
and colleagues list locating the person with the right expertise as one of the challenges of
GSD [8][page 89]. Within POS, each participating person has a digital presence through
their contributions to the mailing lists, news groups, or source trees. Locating the right
person, therefore, is easily and naturally facilitated.

17

Abrahamsson [1] explores the role and definition of commitment in software process improve-
ment programs.

While that paper focused on software process improvement, the ideas and lessons are rel-
evant for the software process itself. For example, one of his conclusions for practitioners
of software process improvement is “try to get people volunteering in [Software Process Im-
provement] SPI activities” (page 72). The Open Source software process fundamentally relies
on volunteers. While we do not know of any scientific study of commitment in Open Source
software development methods, the literature is abound with examples of heros with strong
commitments towards the Open Source software they created, e.g., Linus Trovalds to Linux,
Richard Stallman to Emacs, and Larry Wall to PERL [12]. We believe that similar levels of
commitments can be created within organizations, with the type of organizational structure
and infrastructure offered by POS.

Biffl et al. [3] describe positive results of re-inspecting software modules for defects. As
we mentioned in the introduction section, Open Source extends the notions of inspections
from a discrete, usually one or two-step process, to a continuous process. While not as
structured as the code-inspection process, this continuous review process can potentially lead
to better quality code. For example, Raymond [14] cites several anecdotal cases where defects
were detected and resolved quickly because source code was made available to users and
other developers. POS provides a fundamental infrastructure for such continuous inspection
processes.

Boehm’s risk-driven spiral model of software development [4] has found common use in
industrial practice. The model dictates that software development process should follow a
spiral from requirements through prototyping and development, with the most risky aspects
of the software being addressed in the inner most loops of the spiral. This way, the aspects of
the software that are the riskiest are addressed first, thereby reducing the chances of project
failure. The Open Source model seems to follow a spiral, although the spiral is driven by
useful features [12, 14] rather than by the risk. It’s a common practice in Open Source
software development to address the immediate feature requirement of a user, often by the
user himself. Such features (requirements through implementation) are then immediately
tried out by other users, critiqued and improved upon. Further studies of POS will determine
to what extent such Open Source feature-driven spirals are used in the corporate environment.

Software architectures have been studied in the past few years in the software engineering lit-
erature for several properties of reuse, extensibility, performance, and so forth. Open Source
projects typically have a strong up-front architecture design [9], usually from an expert de-
signer. One common theme in Open Source project architectures is that the architectures are
open for extensions, i.e., new developers (users) can add their own extensions and features
quite easily. This is true of a variety of successful Open Source projects like Apache, TEX,
PERL, Linux, Emacs, to name a few. While it’s too early to define the correct architectures
for POS, programs like CDP and Corporate Source will help determine such architectures.

18

6 Summary

We have defined the Progressive Open Source (POS) model for large corporations to take
advantage of the Open Source development model. POS embodies the Open Source concepts
of opening up the source code of software for review and modifications from others, and
building communities around software development. Unlike Open Source, however, POS
does not directly pose a threat to the competitive advantage of corporations in embedding
novel engineering and algorithms in their software system.

To take advantage of the POS method we have defined two large programs within HP: (1)
Collaborative Development Program, and (2) Corporate Source. Both these programs have
been in use for over six months and we showed some usage results from these programs that
demonstrate an increased usage of these programs in HP and a stabilization of the tools.
Security classification and enforcement is emerging as an important issue. We have developed
organizational plans for the success of the two programs. In the future we anticipate to refine
the organizational and cultural structure for the continued success of the programs.

Availability

The Corporate Source software is available for download from
ftp://src.hpl.external.hp.com/pub/open/hpcs/

Acknowledgements

We acknowledge the work of several people in HP and several HP partners, too many to
name here, who have made Corporate Source and CDP possible and successful.

7 References

[1] Pekka Abrahamsson. Committment Development in Software Process Improvement:
Critical Misconceptions. In Proceedings of the 23" International Confernce on Software
Engineering, pages 71-80, Toronto, Canada, May 2001.

[2] Rober D. Battin, Ron Crocker, Joe Kreidler, and K. Subramanian. Leveraging Resources
in Global Software Development. IEEE Software, 18(2):70-77, March/April 2001.

[3] Stefan Biffl, Bernd Freimut, and Oliver Laitenberger. Investigating the Cost-
Effectiveness of Reinspections in Software Development. In Proceedings of the 23"

International Confernce on Software Engineering, pages 155-164, Toronto, Canada,
May 2001.

[4] Barry W. Boehm. A Spiral Model of Software Development and Enhancement. In

[5]

[6]

[7]

8]

[9]
[10]

[11]

[12]

[13]

[14]

19

Richard H. Thayer, editor, IEEE Tutorial: Software Engineering Project Management,
pages 128-142. IEEE Computer Society Press, 1988.

Christof Ebert and Phillip De Neve. Surviving Global Software Development. IEEE
Software, 18(2):62-69, March/April 2001.

M. E. Fagan. Advances in Software Inspections. IEEE Transactions on Software Engi-
neering, 12(7), July 1986.

James D. Herbsleb and Rebecca E. Grinter. Slitting the Organization and Integrating
the Code. In Proceedings of the 215 International Confernce on Software Engineering,
pages 85—95, Los Angeles, California, USA, 1999.

James D. Herbsleb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter. An
Empirical Study of Global Software Development: Distance and Seed. In Proceedings

of the 23" International Confernce on Software Engineering, pages 81-90, Toronto,
Canada, May 2001.

Fogel Karl. Open Source Development with CVS. CoriolisOpen Press, 1999.

Werner Kobitzsch, Dieter Rombach, and Raimund L. Feldmann. Outsourcing in India.
IEEE Software, 18(2):78-86, March/April 2001.

Thomas S. Kuhn. The Structure of Scientific Revolutions. The University of Chicago
Press, Chicago, USA, 1970.

Glyn Moody. Rebel Code: Inside Linuzr and the Open Source Revolution. Perseus
Publishing, New York, NY, 2001.

D. Parnas. On the Criteria to be Used in Decomposing Systems into Modules. Com-
munications of the ACM, December 1972.

E. Raymond. The Cathedral and the Bazaar. See http://www.tuxedo.org/\~esr/
writings/cathedral-bazaar.

