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ABSTRACT 
 
We present several compressed-domain methods for reverse-play transcoding of MPEG video streams. A reverse-play 
transcoder takes any original MPEG IPB bitstream as input and creates an output MPEG IPB bitstream which, when decoded 
by a generic MPEG decoder, displays the original video frames in reverse order.  A baseline spatial-domain method requires 
decoding the MPEG bitstream, storing and reordering the decoded video frames, and re-encoding the reordered video.  The 
proposed compressed-domain transcoding methods achieve an order of magnitude reduction in computational complexity 
over the baseline spatial-domain approach. Much of the savings are achieved by using the forward motion vector fields 
available in the forward-play MPEG bitstream to efficiently generate the reverse motion vector fields used in the reverse-play 
MPEG bitstream.  Furthermore, the storage requirements of the compressed-domain methods are reduced and the resulting 
image quality is within 0.6 dB of the baseline spatial-domain approach for a difficult highly detailed computer-generated 
video sequence.  For more typical video sequences, the resulting image quality is even closer to the baseline spatial-domain 
approach. 
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1. INTRODUCTION 
 
The advent of video compression standards such as MPEG-1 and MPEG-2 is fuelling the emergence of a wide range of 
devices and applications that exp loit the compressed-domain representation of digital video, e.g. direct-broadcast by satellite 
services, DVD players, digital VCRs, digital TV broadcasts (DTV). These compression standards were however developed 
primarily for broadcast applications. In order to complete the transition to digital video from its current analog state, MPEG 
technology needs to encompass not just a compression methodology but also a video-processing framework. This will allow 
MPEG to be usable not just for the purposes of efficient storage and transmission of digital video, but also for systems 
wherein the user needs to interact with the digital video. 
 
The predictive processing techniques employed in MPEG severely complicate typical video-processing functions that may 
need to be performed on MPEG-compressed bitstreams; such functions include rewind, fast-forward, reverse-play, splicing, 
video resizing, and frame deletion. Consider the task of deleting a single video frame from a video sequence. If the video 
were available in analog form, this task is extremely simple: drop the data for the deleted frame and modify the time-codes of 
the remaining frames. If however the video were available as an MPEG bitstream, the naïve approach would be to decode the 
bitstream, delete the desired frame, and re-encode the remaining frames. We refer to this as the baseline spatial-domain 
approach. This requires excessive storage and has significant computational complexity. Hence, in recent years, there has 
been a great deal of research in developing efficient techniques for manipulating digital video when it is available only in 
compressed form; we refer to these techniques as compressed-domain processing methods. Compressed-domain processing 
may offer several advantages vis -à-vis' spatial-domain processing, such as (a) smaller data volume, (b) lower computational 
complexity since the complete decode and re-encode cycle may be avoided, and (c) preservation of image fidelity since the 
cascading of compression processes can often be eliminated. Several compressed domain processing methods for video 
resizing, inverse motion compensation, filtering, and splicing have been developed in [1]-[4]. The algorithms developed in 
[1]-[3] indicate computational savings when the processing is performed directly on intermediate DCT-domain data, while 
the algorithm developed in [4] achieves computational savings by exploiting the prediction structure used in MPEG. 
 
In this paper, we develop a compressed-domain approach for the following scenario: given a forward-coded MPEG 
bitstream, our goal is to create a new MPEG bitstream that when decoded displays the video frames in the reverse order from 
the original MPEG bitstream. Note that the reverse-play function is desirable in many applications, e.g. DVD players, digital 



VCRs, and digital video servers. For uncompressed video the solution for reverse-play is simple: reorder the video frame data 
in reverse order. The simplicity of this solution relies on two properties: the data for each video frame is self-contained and it 
is independent of its placement in the data stream. These properties typically do not hold true for MPEG-coded video data. 
Reverse-play transcoding is difficult because MPEG compression uses predictive processing techniques that are not invariant 
to changes in frame order e.g. simply reversing the order of the input frame data will not reverse the order of the decoded 
video frames. Furthermore, reversing the order of the input video frames requires the generation of a “reversed” motion 
vector field. We show that if the transcoding is performed carefully, much of the motion vector information contained in the 
original MPEG video stream can be reused to efficiently generate the "reversed" motion vector field. 
 
We have developed a reverse-play transcoding algorithm that operates directly on the compressed-domain data and can 
handle all combinations of intraframe (I), predicted (P), and bidirectionally predicted (B) coded video frames. Unlike the 
approaches in [1]-[3], we do not manipulate the DCT data to realize computational savings compared to the spatial-domain 
approach. Instead, the computational savings in our approach come from the reuse of the motion vector fields contained in 
the input MPEG bitstream. The proposed algorithm is simple and achieves high performance with low computational 
complexity and low memory requirements. 
 
This paper begins with a brief description of some aspects of the MPEG video compression algorithm that are relevant to this 
work. The transcoding problem is then defined and several architectures are developed for compressed-domain reverse-play 
transcoding. These architectures take any MPEG coded bitstream as input and generate an output standard-compliant MPEG 
bitstream which, when decoded with a generic MPEG decoder, yields video playback in the reverse order from which it was 
originally acquired. Simulations of the proposed transcoding schemes indicate that high quality reverse-play MPEG 
bitstreams can be generated with less than 0.6dB loss in image quality and with significantly lower computational complexity 
than the baseline spatial-domain approach. This technique can be implemented in digital VCRs, video servers, and any other 
devices requiring smooth frame-by-frame reverse-play functionality with minimal increase in storage. 
 
 

2. BACKGROUND 
 
The proposed compressed-domain, reverse-play transcoding algorithms were designed to exploit various features of the 
MPEG video compression standard. Detailed descriptions of the MPEG video compression standard can be found in [5]-[7]. 
In this section, we briefly discuss some aspects of the standard that are relevant to this work. 
 
In MPEG, each frame in a video sequence is coded with one of three modes: intraframe (I), forward prediction (P), and 
bidirectional prediction (B). A typical IPB pattern in display order and coding order is shown in Figure 1. 
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Figure 1: Display order and coding order of video frames coded in MPEG. 

 
I frames are coded independently of other frames. P frames depend on a prediction based on a previously coded  I or P frame. 
B frames depend on a prediction based on the preceding and following I or P frames. Notice that each B frame depends on 
data from a past and future frame, i.e. a future frame must be (de)coded before the current B frame can be (de)coded. For this 
reason, the coding order is distinguished from the display order. For each frame coded as a P or B frame, MPEG uses block 
motion-compensated prediction to reduce the temporal redundancies inherent to video. For example, MPEG exploits 
temporal redundancies between 16x16 macroblocks in frame P3 and a corresponding 16x16 square region in frame I0. The 
correspondence is then represented using a motion vector (MV) for the 16x16 block in P3. Since the correspondences may not 
be exact, the residuals are coded using an 8x8 discrete cosine transform (DCT). 
 
 
 



 
 

3. COMPRESSED-DOMAIN PROCESSING 
 
The goal of transcoding is to perform video-processing operations on standard-compliant compressed bitstreams. In MPEG 
transcoding, both the input and output data are MPEG-compliant video streams. The baseline approach for performing a 
transcoding operation is shown in the upper path of Figure 2. First, the MPEG video stream is completely decompressed into 
its pixel-domain representation; the pixel-domain video is then stored and processed; and finally the processed video is re-
encoded into a new MPEG video stream. This baseline approach can be computationally expensive and can have large 
memory requirements. In addition, the quality of the coded video can deteriorate with each recoding cycle. 
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Figure 2: Spatial-domain (baseline) versus compressed-domain approach to video processing of MPEG bitstreams . 
 

For some transcoding operations, it may be possible to design more efficient solutions by exploiting the properties of the 
compression algorithm and the desired video-processing operation. This is referred to as the compressed-domain approach 
and is performed by the Transcode module shown in Figure 2. For example, improved efficiency may be achieved by only 
partially decompressing the video stream and performing the processing directly on the compressed-domain data. In addition, 
further gains may be achieved by selectively processing the portions of the video that are affected by the video processing 
operation. 
  
In this paper, we address the problem of performing a reverse-play transcoding operation on MPEG-compressed video 
streams. In other words, given an MPEG stream as input, we wish to generate an output MPEG stream that emulates reverse 
play in a generic MPEG decoder. Rather than taking the baseline approach of decoding the MPEG stream, storing and 
reordering the decoded frames, and re-encoding the result, we take the compressed-domain approach and develop more 
computation- and memory-efficient solutions. These solutions exploit the properties of the MPEG video compression 
standard and the reverse-play operation. 
 
Specifically, in MPEG encoding, 60-80% of the computational complexity of the encoder is in the estimation of the motion 
vector fields. In our work, we reduce the computational complexity for reverse-play transcoding by processing the MV fields 
that are obtained from the input MPEG bitstream; thus, the motion-estimation task is eliminated during transcoding. Unlike 
the compressed-domain work of [1]-[3], in our work, we decompress the DCT data since the savings obtained using DCT-
domain processing is not significant compared with the savings realized by processing the motion vector fields. In future 
work, we will report on algorithms for reverse-play that avoid the Inverse DCT-DCT conversion steps.  
 
In the next section, we describe in detail various approaches that can be adopted for the Transcode module in Figure 2 for 
generating MPEG bitstreams suitable for reverse play. 
 
 
 
 
 
 
 
 



 
4. COMPRESSED-DOMAIN REVERSE-PLAY TRANSCODING ALGORITHMS 

 
Several approaches can be adopted for enabling the reverse play of an original (forward-play) MPEG bitstream. In this 
section, we examine several architectures for reverse-play transcoding. A reverse-play transcoder takes the original MPEG 
bitstream as input and creates as output a new MPEG stream which, when decoded by a generic MPEG decoder, plays the 
original video frames in reverse order. 
 
 
Reverse-Play Transcoding Architecture #1 – Baseline Approach 
The first architecture shown in Figure 3 describes the baseline approach in which the input MPEG video stream is decoded 
into uncompressed video frames, i.e. its pixel-domain representation. These frames are stored and reordered in a frame 
buffer, and the result is re-encoded with an MPEG encoder. The GOP structure used by MPEG allows this processing to be 
performed on a GOP-by-GOP basis; a typical IPB GOP may contain 15 frames. A difficulty that arises is that this transcoder 
requires a frame buffer that stores the frames of the entire GOP; in this case, the frame buffer must be large enough to store 
15 frames. The re-encoding process causes two additional difficulties. First, motion estimation is a computationally 
expensive operation that accounts for well over half of the computations needed for the entire transcoder. Second, the 
decoupled decoder and encoder cause a generation loss in the quality of the reconstructed video frames. 

Figure 3: Architecture #1 for reverse-play transcoding. 
 
Besides the baseline pixel-domain approach, one can envision an analogous baseline DCT-domain scheme, which we will 
call an I-frame only scheme. This is identical to the baseline approach since it requires decoding the DCT-domain IPB-frame 
data to DCT-domain I-frame data followed by re-encoding to an IPB MPEG bitstream. DCT-domain motion compensation 
and motion estimation modules may be used in this approach. 
 
In practice, both the baseline pixel- and DCT-domain approaches are not feasible due to the excessive computational 
requirements needed by the full MPEG decode and re-encode processes and/or the storage needed for the decoded video data. 
We will now examine architectures that have lower storage requirements and may not need the full MPEG decoding and re-
encoding cycle. 
 
Reverse-Play Transcoding Architecture #2 
The second reverse-play transcoder improves the efficiency of the baseline approach by 1) lowering the storage requirements 
of the transcoder and 2) reducing the necessity of the full MPEG decode and re-encode cycle. This is achieved by exploiting 
the symmetry of the B-frame prediction process used in MPEG video compression. Specifically, each B frame is coded with 
a predicted and a residual component. The predicted component is based on two anchor frames, one that proceeds and one 
that follows the actual B frame (in display order). A backward and a forward motion vector field describe the prediction from 
the proceeding and following anchor frames. The goal of the reverse-play operation is to reverse the order of the frames. In 
the coded stream, this will result in a swapping of the forward and backward anchor frames. To compensate for this 
reordering of the anchor frames, the B frames can simply swap the backward and forward motion vectors [8]. This B-frame 
swapping trick results in significant computational and memory savings in the reverse-play transcoder. The P-frame 
prediction process does not have this type of forward/backward symmetry; thus, P frames must be processed appropriately. 
 
The architecture of the second reverse-play transcoder is shown in Figure 4. The input MPEG bitstream is first separated into 
two parts; the first contains the portions of the bitstream representing the I and P frames and the second contains the portions 
of the bitstream representing the B frames. This separation process can be accomplished by simply searching the MPEG 
bitstream for picture startcodes and parsing the first few bytes of the picture header to determine the picture type. As in the 
baseline architecture, the I and P frames are decoded, the resulting frames are stored and reordered, and the reordered frames 
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are re-encoded into an I or IP MPEG bitstream. The B frames, however, only need to be Huffman decoded and re-encoded to 
extract and swap the forward and back motion vectors and coding modes. The processed data is then combined into a 
compliant MPEG bitstream. The frame storage and full decoding and re-encoding requirements are reduced to the number of 
I and P frames in each GOP, which is 5 frames for a typical 15-frame IPB GOP. An issue that remains is to determine how to 
best process the I and P frames. 
 

Figure 4: Architecture #2 for reverse-play transcoding. 
 
Reverse-Play Transcoding Architecture #3 
A third reverse-play transcoding architecture is shown in Figure 5. As with architecture #2, this architecture improves the 
efficiency of the baseline approach by 1) lowering the storage requirements of the transcoder and 2) reducing the necessity of 
the full MPEG decode and re-encode cycle. In addition, it improves the efficiency of the second architecture by reducing the 
computational requirements needed for motion estimation. Specifically, in architecture #2, the motion vectors used during the 
re-encoding process are derived by performing motion estimation on the reordered frames. In this architecture, the motion 
vectors are derived more efficiently by exploiting the motion vector information given in the input MPEG video stream. The 
remaining task is to find an efficient and effective method of estimating the reverse motion vectors from the forward motion 
vectors [9]. This is the topic of Section 5. 

Figure 5: Architecture #3 for reverse-play transcoding. 
 
Reverse-Play Transcoding Algorithms  
References [8] and [10] address the problem of reverse-play of MPEG video streams. While they do not specifically address 
the transcoding problem, the ideas presented in their work can be extended to fit the problem. In [10], a method is described 
for transforming an MPEG data stream into a local compressed form using a P-to-I frame conversion. During forward play in 
a video player device, after each P frame is retrieved, decompressed, and played out, it is encoded as an I frame and stored in 
local storage. The forward-play sequence I0 P3 B1 B2 P6 B4 B5 I9 B7 B8 (in coding order) is  converted to an IB frame sequence 
I0 I3 B1 B2 I6 B4 B5 I9 B7 B8, where I3 and I6 are converted P frames. For reverse playback, the frames are reversed before they 
are input to the decoder; during this reversal process, the locally stored I3 and I6 frames replace frames P3 and P6. This basic 
idea can be extended to the reverse-play transcoding algorithm shown in Figure 6. Note that once the IPB frame syntax has 
been changed to the IB frame syntax, the approach developed in [8] can be used for reverse-play. 
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The P-to-I frame conversion can be done in the DCT domain [1]-[2] or in the pixel domain by simply decompressing the P 
macroblocks to and performing the motion compensation in the DCT or pixel domain. If frame stores are available for 
decompression, the spatial-domain approach has lower computational complexity than the DCT-domain approaches. 
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Figure 6: IPB to IB frame conversions for compressed-domain reverse-play transcoding. 
 
The approaches proposed in [8] and [10] are however quite restrictive in that they only address reverse playback of MPEG 
bitstreams with the IB syntax. The IB syntax may be used in a digital studio setting; however, most MPEG coded video for 
broadcast applications will conform to the IPB syntax. Compared to I frames, P frames need only 1/2 as much storage and B 
frames need only 1/4th the storage [11]. For the group of frames shown in Figure 6, the storage requirements for the scheme 
proposed in [10] is 20% more than that needed for the original MPEG coded sequence. Since generic MPEG decoders may 
not have this additional storage, this scheme may not be readily usable in conventional MPEG decoding systems. 
 
The reverse-play transcoding algorithm shown in Figure 6 converts the MPEG IPB bitstream to an MPEG IB bitstream. The 
drawback of this approach is the increased bit rate that results from the P-to-I frame conversions. In this work, we propose a 
reverse-play transcoding algorithm that overcomes this drawback; this algorithm is shown in Figure 7. This algorithm differs 
from the first in that rather than performing P-to-I frame conversions, the I and P frames are converted to a new set of reverse 
I and P frames. The reverse IP frames can be coded to the same bit rate as the original IP frames, thus resulting in an output 
MPEG stream that has the same bit rate as the input. This algorithm can be implemented with the three reverse-play 
transcoding architectures discussed earlier. The computational requirements of architectures #2 and #3 are significantly 
reduced from the baseline approach of architecture #1 due to the savings in processing the B frames. Architecture #3 achieves 
additional savings over architecture #2 by significantly reducing the computations needed for motion estimation during the 
re-encoding process. 



Figure 7: IPB to IPB’ frame conversions for compressed-domain reverse-play transcoding. 
 
 

5. REVERSING MOTION VECTOR FIELDS 
 
In the previous section, we described three architectures for reverse-play transcoding of MPEG video streams. The first 
architecture requires all the video frames to undergo a full decode and re-encode cycle. The second and third architectures 
only require the I and P frames to undergo a full decode and re-encode cycle. In architecture #2, the motion vectors used in 
the re-encoding process are computed by performing motion estimation on the decompressed, reordered video frames. In this 
architecture, the motion estimation process is completely decoupled from the input data stream and its decoding process. In 
architecture #3, it is suggested that improved computational efficiency can be gained by estimating the reverse motion vector 
field from the motion vector information provided by the input data stream. 
 
The problem of estimating a reverse motion vector field from a given forward motion vector field was examined in [9]. A 
number of methods were presented that tradeoff motion vector accuracy for computational efficiency. The performance of 
each method was evaluated by examining the PSNR of the prediction that resulted when using the estimated reverse motion 
vector field. In this work, we examine the performance of the two simplest methods, in-place reversal and maximum overlap, 
in our reverse-play transcoding architecture. Each of these methods is discussed below. 
 
We begin by briefly describing the problem that arises in the reverse-play transcoding algorithm shown in Figure 6. The 
forward motion vector field for P6 is given in the input data stream and used in the decoding portion of the reverse-play 
transcoder. This forward motion vector field describes the motion between 16x16 macroblocks in frame P6 relative to 16x16 
blocks in frame P3. Given this forward motion vector field MVFA,B, our objective is to estimate the reverse motion vector 
field MVFB,A which describes the motion between 16x16 macroblocks in frame P3 relative to 16x16 blocks in frame P6. The 
problem of estimating the reverse motion vector field becomes quite difficult since only sparse motion vector fields are 
available, i.e. in MPEG the motion vectors are only available on a 16x16 sampling grid. This is illustrated with a simple 
example shown in Figure 8. The top half of Figure 8 shows the forward motion vector for a single macroblock in P6. This 
motion vector specifies the 16x16 block in frame P3 that is used as a prediction for the current macroblock in P6. The problem 
that now remains is to compute the motion vector for the corresponding macroblock in P3 in relation to a 16x16 block in P6.  
 
In-place Reversal 
The in-place reversal method simply requires reversing each element of the forward motion vector field such that MVFB,A = -
MVFA,B. This is illustrated in the lower half of Figure 8. The in-place reversal method performs well in the interiors of 
objects undergoing uniform translational motion. However, in the case of larger motions, it often produces incorrect motion 
vectors near the object boundaries. These incorrect motion vectors create false associations between unrelated blocks in the 
two video frames and thus can result in poor performance. Note that the in-place reversal method only requires one operation 
per macroblock to generate the reverse motion vector for that macroblock. 
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Figure 8: Reversing motion vector fields with the in-place reversal method. 
 
Maximum-Overlap 
A better estimate of the reverse motion vector field can be obtained by using a local neighborhood of motion vectors from the 
forward motion vector field. Consider a neighborhood of macroblocks and their corresponding forward motion vectors as 
shown in left half of Figure 9; here, we show the local nine-block neighborhood including and surrounding the current 
macroblock. Each forward motion vector in the neighborhood can be assigned a value that represents its importance or 
relevance in relation to the macroblock for which we must estimate the reverse motion vector. This importance is quantified 
by a weighting function w(k,l), where k and l represent the local index of the neighborhood of motion vectors.  

Figure 9: Local neighborhood and weights. 
 
The maximum-overlap method considers the corresponding forward motion vector and its neighbors. The motion vector with 
the largest weight, i.e. the one that overlaps the block with the largest area, is negated and used as the estimate of the reverse 
MV. In Figure 9, for example, w(-1,-1) has the largest weight; hence, for this macroblock, the reverse motion vector is simply 
-MV(-1,-1). If on the other hand w(1,0) had the largest weight, then the estimated reverse motion vector would have been -
MV(1,0). 
 
For small translational motions, the maximum-overlap and in-place reversal methods yield the same estimates of the reverse 
motion vectors. However, for larger translations, the maximum-overlap method produces better estimates. From a complexity 
viewpoint, the area of overlap must be computed for each motion vector in the neighborhood and the region with the 
maximum overlap must be chosen. Each weight can be computed with 6 adds and a multiply. For the nine-block 
neighborhood, finding the region with the maximum overlap and negating its corresponding motion vector requires 54 adds, 
9 multiplies, 8 compares, and 1 negation for a total operation count of 72 operations per output motion vector. This is the 
worst case result. Note that for the in-place reversal scheme, only 1 operation is needed per output motion vector. A spatial-
domain approach using a logarithmic search based motion estimation method [7] would require 19200 operations for a +/- 7 
pixel search range; furthermore, unlike our compressed-domain approach, additional operations would be needed for sub-
pixel accurate motion vectors. A detailed discussion of reverse motion vector fields can be found in [9]. 
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Here, we summarize the processing and storage requirements for the various transcoding schemes discussed in this paper. 
Since motion estimation dominates the computational cost in an MPEG encoder, our estimate of processing requirements is 
for the motion-estimation portion only.  
1. Baseline Approach: Besides Huffman decoding, inverse DCT, motion compensation, motion compensated prediction, 

DCT and Huffman encoding, we have to perform motion estimation for the P and B frames in the output bitstream. 
Assuming a logarithmic search method for motion estimation and a +/- 7 pixel search range, the motion estimation cost 
per macroblock for integer-valued motion vectors is 19200 operations; additional operations are needed for subpixel 
valued motion vectors. Since motion estimation is nearly 80% of the computational cost of MPEG encoding, this task 
dominates over the other tasks needed for the baseline approach. Furthermore, the baseline approach requires a frame 
buffer that stores all the frames of the GOP. 

2. Transcoding from IPB to IB: In this scheme full MPEG decoding is done only for the I and P frames. Motion estimation 
need not be performed for the B frames since their forward and backward motion vectors are simply swapped. For the 
example in Figure 5, this method requires a frame buffer that stores the I and P frames in the GOP. 

3. Transcoding from IPB to IPB’ using in-place reversal: As in the previous case, full MPEG decoding is done only for the 
I and P pictures. Modified P pictures are created using a simple in-place reversal of the forward motion vectors of 
original P pictures. This costs one operation per macroblock compared to the 19200 operations needed for the baseline 
approach. The storage requirements are same as in the previous case. 

4. Transcoding from IPB to IPB’ using maximum overlap: All of the steps are identical to the in-place reversal scheme 
except for the estimation of the reverse motion vector fields which requires 72 operations per macroblock. This cost is 
higher than that needed in the previous case; however, it is a factor of 260 lower than the motion estimation cost of the 
baseline approach. The storage requirements are same as in the previous case. 

 
 

6. EXPERIMENTAL RESULTS 
 
The proposed reverse-play transcoding architectures achieve an order of magnitude reduction in computational requirements 
as compared to the baseline approach by practically eliminating the number of computations needed to perform motion 
estimation during the re-encoding process. In this section, we examine the video quality of the resulting reverse-play MPEG 
streams. Experimental results show that the proposed architectures result in very little loss in PSNR. The details of the 
experiments are described below. 
 
Video sequences were processed in sets of 46 frames. The sequences are listed in the table below. All sequences were 
downsampled and/or cropped to CIF resolution of 352x240 pixels/frame at 30 frames/sec. The girl sequence contains 
synthetically generated panning and zooming motions of a high-resolution original image. In addition, it contains a fixed 
high-resolution rotating test pattern. The first part of the sequence predominantly contains panning motions, and the last part 
of the sequence predominantly contains zooming motions of increasing speed. The bus, carousel, and football sequences are 
MPEG test sequences containing natural video scenes. 
 

Number Video Sequence Frames RIPB, RIP  (Mbps) 
1 Girl 0-45 2.75, 1.33 
2 Bus 0-45 2.75, 1.33 
3 Bus 45-90 2.75, 1.33 
4 Bus 90-135 2.75, 1.33 
5 Carousel 0-45 1.375, 0.67 
6 Carousel 45-90 1.375, 0.67 
7 Carousel 90-135 1.375, 0.67 
8 Football 0-45 1.375, 0.67 
9 Football 45-90 1.375, 0.67 
10 Football 90-135 1.375, 0.67 

 
The video sequences were first MPEG coded in forward order. The resulting MPEG stream was used as the input to a number 
of reverse-play transcoding methods, each of which is described below. 
 
 
 



Forward 
The original frames of each sequence were MPEG coded at rate RIPB. The resulting MPEG stream is referred to as the 
forward-coded stream. The 46 frames were coded with three 15-frame IPB GOPs and one I frame. The PSNRs of the 
reconstructed frames are shown in each plot in reverse order. The forward-coded stream is the input to each of the reverse-
play transcoding algorithms. Thus, the PSNR of its reconstructed frames provide an upper bound on the performance that can 
be achieved with the compressed-domain transcoding algorithms. 
 
Reverse #1 
The forward-coded stream is first decompressed to its reconstructed video frames. The ordering of these frames is reversed, 
and the resulting reverse-order frames are re-encoded with MPEG at rate RIPB with three 15-frame IPB GOPs and one I 
frame. Motion estimation was performed with full-search block matching during the re-encoding process. 
 
Reverse #2 
The forward-coded stream is de-multiplexed into two streams: the picture data for the I and P frames make up the first stream 
and the picture data for the B frames make up the second stream. The first 15 of the 16 frames in the IP stream are then 
decompressed to its reconstructed video frames. The ordering of these frames is reversed, and the resulting reverse-order 
frames are re-encoded with MPEG at rate RIP  with 5-frame IP GOPs. Motion estimation was performed with full-search 
block matching during the re-encoding process. The B frames are simply Huffman decoded; their forward and backward 
coding modes and motion vectors are swapped on a macroblock-by-macroblock basis; and the result is Huffman re-encoded. 
The resulting IP and B streams are then combined appropriately to form the output MPEG bitstream. 
 
Reverse #3a and #3b 
The forward-coded stream is de-multiplexed into two streams: the picture data for the I and P frames make up the first stream 
and the picture data for the B frames make up the second stream. The first 15 of the 16 frames in the IP stream are then 
decompressed to its reconstructed video frames. The ordering of the reconstructed frames is reversed, and the resulting 
reverse-order frames are re-encoded with MPEG at rate RIP  with three 5-frame IP GOPs. The motion vectors from the 
forward coded stream are saved during the decoding process. These motion vectors are used to derive the motion vectors that 
are used in the following re-encoding process. Method #3a uses the maximum-overlap method and method #3b uses the in-
place reversal method. The B frames are simply Huffman decoded; their forward and backward coding modes and motion 
vectors are swapped on a macroblock-by-macroblock basis; and the result is Huffman re-encoded. The resulting IP and B 
streams are then combined appropriately to form the output MPEG bitstream. 
 
In summary, the original frames were first coded in forward order, creating the forward-coded MPEG stream. Reverse #1 
decodes the forward-coded stream and re-encodes the frames in reverse order with 15-frame IPB GOPs and full-search 
motion estimation. Reverse #2 differs from Reverse #1 in that it only re-encodes the I and P frames, while for the B frames 
the forward and backward coding modes and motion vectors are swapped. The resulting I, P, and B frames are then 
appropriately combined into an MPEG stream. The re-encoding of the I and P frames uses full-search motion estimation. 
Reverse #3a and #3b differ from Reverse #2 in that rather than determining the reverse motion vectors with full-search 
motion estimation, they are determined with the maximum overlap and in-place reversal methods. These methods process the 
motion vectors that are given in the forward-coded stream. 
 
The PSNR plots for each frame of sequences 1, 3, 5, and 9 are shown in Figure 10. These plots provide a good overview of 
the performance because the three bus sequences, the three carousel sequences, and the three football sequences performed 
similarly. The plot in Figure 11 shows the average PSNR performance across all the frames of each sequence. These average 
PSNRs are shown relative to the average PSNR of the forward-coded frames. 
 
The girl sequence showed the largest PSNR loss in the transcoding process. This is due to the high texture and detail in this 
synthetically generated sequence. The full re-encoding process results in a PSNR loss of 1.9 dB. The computational savings 
gained by simplifying the B-frame processing results in a loss of another 0.34 dB. The further computational savings gained 
by using the maximum overlap method for motion estimation loses another 0.24 dB and the in-place reverse method loses 
another 0.07 dB. Notice that for the girl sequence, the difference in performance across the reverse-play transcoding 
algorithms is 0.65 dB. This quality loss may be acceptable for the significant reduction in computational requirements. 
 
The bus sequences also showed measurable differences in performance for the various schemes. The overall drop in PSNR 
due to the transcoding operation is not as severe as the drop for the girl sequence. This is due to the lack of high texture in the 
sequence. These sequences exhibit less of a hit in performance when simplifying the B-frame processing. This indicates that 



much of the error is due to B-frame quantization, and not only due to the re-encoding of its anchor frames. For the three bus 
sequences, the maximum overlap method outperforms the in-place reversal method by 0.2, 0.1, and 0.13 dB. This is because 
the bus sequence has very large translational motions, which cause the in-place reversal method to fail at object boundaries 
where the maximum overlap method succeeds. 
 
The carousel and football sequences result in less differentiation between the schemes, i.e. all the methods seem to perform 
similarly. The differences in PSNR are so small (often within 0.05 dB) that they may not be reliable measures for 
differentiation. This may in part be due to the lower bit rate coding, which sacrifices some of the finer detail in the scenes. 
When the details are washed out by the coding, the accuracy of the motion vectors becomes less important. In addition, the 
carousel sequence undergoes motions that are not well modeled by block-based motion estimation and compensation 
methods. The football sequence has added difficulty in the blurred source material due to the fast movements of the camera 
and the football players. The lessened importance of motion vector accuracy supports the use of simplified reverse-play 
transcoding algorithms in that in these cases, the computational benefits of the proposed algorithms result in no loss in quality 
of the reconstructed frames. 
 
Experimental results show that the proposed reverse-play transcoding algorithms provide considerable reductions in 
computational requirements with little loss in PSNR performance. Specifically, the computations needed to perform motion 
estimation are practically eliminated, thus significantly reducing the overall computational requirements. This  is typically 
achieved with little if any loss in PSNR. Highly textured and detailed sequences such as the synthetically generated girl 
sequence show a measurable difference in the various reverse-play transcoding algorithms. The various algorithms are within 
0.6 dB in performance. The bus sequence provides variations of about 0.4 dB. The carousel and football sequences show 
little performance difference between the various algorithms. The maximum overlap method is recommended over the in-
place reversal method because it provides better performance in scenes with large motions with little added complexity. 

Figure 10: PSNR for various MPEG reverse-play transcoding schemes. 

 



 
Figure 11: Average PSNR for various MPEG reverse-play transcoding schemes. 

 
 

7. CONCLUDING REMARKS 
 
Several simple transcoding schemes have been developed for the reverse play of forward-play MPEG bitstreams. Unlike 
baseline spatial-domain methods, which require full MPEG decoding and re-encoding to generate the reverse-play MPEG 
bitstreams, the proposed transcoders are compressed-domain schemes that exploit the properties of MPEG video compression 
and the reverse-play operation. The compressed-domain transcoding schemes developed here reuse the forward motion 
vector fields available in the forward-play MPEG bitstream to efficiently generate the reverse motion vector fields used in the 
reverse-play MPEG bitstream. These transcoders offer an order of magnitude reduction in computational complexity relative 
to the baseline spatial-domain approach by practically eliminating the number of computations needed for motion estimation; 
furthermore, the storage requirements are reduced relative to the spatial-domain approach. From an image quality viewpoint, 
PSNR degradations for the compressed-domain schemes are within 0.6 dB relative to the baseline spatial-domain approach 
for the same coded bit rate. Unlike the schemes in [8] and [10], the proposed transcoders are capable of generating IPB 
bitstreams for reverse-play at the same bit rate and a similar IPB frame structure as the forward-play MPEG bitstream. 
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