
Submitted to IEEE ICASSP 99.

MANIPULATING TEMPORAL DEPENDENCIES IN COMPRESSED VIDEO DATA
WITH APPLICATIONS TO COMPRESSED-DOMAIN PROCESSING OF MPEG VIDEO

Susie J. Wee

Hewlett-Packard Laboratories
Palo Alto, CA USA
swee@hpl.hp.com

ABSTRACT

The ability to manipulate the temporal dependencies in
coded video data is important for a number of compressed-
domain video processing tasks. This paper formulates the
general problem and examines it in the context of MPEG.
This is used to develop a method for performing frame con-
versions in MPEG coded video data. These frame conver-
sions are used to develop compressed-domain video process-
ing algorithms for performing temporal mode conversion,
frame-by-frame reverse play, and frame-accurate splicing.

1. INTRODUCTION

Many modern video compression algorithms use predictive
methods to exploit the similarities that commonly exist be-
tween neighboring frames of a video sequence. These al-
gorithms achieve high degrees of compression, but in doing
so, they create temporal dependencies in the coded data
stream. When decoding a single video frame from the coded
data stream, the temporal dependencies may require us to
�rst decode one or more other video frames in the stream.

Consider now the problem of creating a new coded data
stream from a given coded data stream, where the new
stream contains only a subset of the video frames coded
in the given stream. This occurs when performing a splic-
ing operation on compressed video data. A di�culty occurs
from the temporal dependencies in the coded data. In par-
ticular, some of the frames included in the subset may use
a prediction that depends on frames that are not included
in the subset; it is not possible to reconstruct these frames
without their predictions. To address this problem, we pro-
cess these frames so that their predictions only depend on
other frames included in the splice. In more general terms,
we manipulate the temporal dependencies of the frames af-
fected by the video processing operation.

In this work, we present a method of manipulating tem-
poral dependencies in predictively coded data. This is use-
ful for performing a number of video processing tasks on
compressed data streams. The approaches developed here
are applicable to video compression algorithms that utilize
predictive processing, including MPEG-1/2/4 and H.261/3.
However, for ease of presentation and because of its use in
the digital television industry, we focus on applications in
MPEG-2 and MPEG-1, hereafter referred to as MPEG.

This paper begins by formulating the problem of manip-
ulating temporal dependencies in compressed video data.

We then show how this formulation can be used in the
context of MPEG video. We present methods of perform-
ing frame conversions on MPEG video frames. Finally, we
use these frame conversion methods to perform compressed-
domain video processing and transcoding tasks on MPEG
video streams. Tasks include temporal mode conversions,
frame-by-frame reverse play, and frame-accurate splicing.

2. PROBLEM FORMULATION

Consider a video compression algorithm that uses predic-
tive processing between video frames. The algorithm uses
a set of prediction rules to encode a video sequence into a
compressed representation. These rules allow many choices
to be made during the encoding process. Di�erent sets
of choices lead to di�erent compressed representations of
the original video sequence. Each representation is compli-
ant with the video compression algorithm; however, there
may be instances in which one compressed representation
is preferable over another.

A set of video frames is denoted by F = fF1; F2; :::; Fng.
The corresponding set of coded video frames is denoted by
F̂ = fF̂1; F̂2; :::; F̂ng. The subscripts represent the order in
which the frames are coded. The coding order may or may
not be equivalent to the temporal order in which the frames
are acquired or displayed.

Frame Fi is coded with a predicted and a residual com-
ponent. For a given prediction mode, a prediction process
P uses a set of anchor frames Ai which includes one or more
previously coded frames, i.e. Ai � fF̂1; F̂2; :::; F̂i�1g. Si de-
scribes the side information used in the prediction process.

If frame Fi is predicted with P (Ai; Si), then the result-
ing residual Ri is calculated by

Ri = Fi � P (Ai; Si): (1)

This residual is then coded into the data stream. The coded
residual R̂i leads to a reconstructed video frame F̂i, where

F̂i = P (Ai; Si) + R̂i: (2)

As stated earlier, the compression algorithm allows a
number of prediction modes. In another prediction mode,
a prediction process P 0 uses a di�erent set of anchor frames
A0

i and side information S0i. The resulting prediction is
di�erent, and a new residual R0

i is calculated by

R
0

i = Fi � P
0(A0

i; S
0

i): (3)



Using the �rst prediction mode, frame Fi is described
by two parts, its prediction and residual, where

Fi = P (Ai; Si) +Ri: (4)

Using the second prediction mode, frame Fi is described by
a di�erent prediction and residual, where

Fi = P
0(A0

i; S
0

i) +R
0

i: (5)

Neglecting coding distortions, the two representations
describe the same video frame, but they distribute the data
between the predicted and residual components di�erently.
Both representations are compliant with the compression
algorithm, but each has its own set of prediction dependen-
cies determined by the anchor frames associated with its
prediction mode. This idea, while quite simple, can lead to
useful results in the area of compressed-domain processing.
Speci�cally, the ability to manipulate the prediction depen-
dencies in coded video data is the basis of many compressed-
domain video processing tasks.

Compressed-Domain Approximation

Let us now consider the problem of converting a video frame
coded with one set of prediction dependencies to one coded
with a di�erent set of prediction dependencies. Assume
that we are given a coded video stream and that we do not
have access to the original signal. The video frame Fi was
originally coded with prediction P (Ai; Si) and residual R̂i.
The problem now is to change the prediction dependence
from anchor frames Ai to A

0

i, and the side information from
Si to S0i, i.e. the frame must now be coded with prediction
P 0(A0

i; S
0

i).
Equation 3 shows how to compute the new residual

when given the original frame. If we assume that the recon-
structed frame approximates the original frame, F̂i � Fi,
then equation 2 can be used to approximate the new resid-
ual by

R
0

i � R̂i + P (Ai; Si)� P
0(A0

i; S
0

i): (6)

Thus, in order to convert the prediction mode of a coded
video frame, we simply need to change its residual so that
it accommodates the change in prediction. We must also
update the side information so that it re
ects the new pre-
diction mode. This update should convey the change in
anchor frames and prediction process.

3. CDP OF MPEG VIDEO DATA

3.1. MPEG Prediction Rules

MPEG is a video compression standard based on motion-
compensated prediction and transform coding [1]. Some
relevant aspects of the standard are discussed brie
y below.

MPEG allows video frames to be coded in one of three
modes: intra-frame (I), forward predicted (P ), and bidirec-
tionally predicted (B). I frames are coded independently
of other frames; P and B frames are coded predictively us-
ing block-based motion compensation (MC). A set of video
frames can be coded in any sequence of I, P , and B frames.
A typical prediction sequence for a series of frames is:

I0 B1 B2 P3 B4 B5 P6 B7 B8 I9: (7)

The subscripts represent the temporal order of the frames.
While the prediction sequence shown above is common,

we stress that MPEG allows any prediction sequence to be
used as long as the rules and system requirements are satis-
�ed. This key fact allows coded frames to be converted be-
tween the I, P , and B prediction modes. Subsequently, we
can design compressed-domain video processing algorithms
by using appropriate sets of frame conversions.

The prediction rules for I, P , and B frames are:

� I frames do not use prediction.

� P frames can use forward prediction from the pre-
ceding I or P frame, Aforw. Forward motion vectors
(FMVs) describe the prediction.

� B frames can use forward prediction from the pre-
ceding I or P frame, Aforw, and backward prediction
from the following I or P frame, Aback. Forward and
backward motion vectors (FMV and BMV) describe
the forward and backward predictions.

Each frame is divided into 16�16 blocks of pixels called
macroblocks (MBs). Macroblocks can be coded in the modes
listed in the following table; the mode used for each mac-
roblock is speci�ed in the coded bitstream. The allowable
coding modes for each macroblock depend on the frame
type, and are shown below:

� I frames contain i MBs.

� P frames contain i or p MBs.

� B frames contain i, bforw, bback, or b, MBs.

In addition, we �nd it useful to de�ne the following frame
types and allowable macroblock coding modes:

� Bintra frames contain i MBs.

� Bforw frames contain i or bforw MBs.

� Bback frames contain i or bback MBs.

The signi�cance of Bforw and Bback frames is that they only
have forward or backward dependencies. It is important
to note that a Bforw frame di�ers from a P frame in that
a P frame is used as an anchor frame when coding other
predicted frames, while a Bforw frame is not. A Bintra frame
di�ers from an I frame for the same reason.

The anchor frames, side information, and prediction
process for each macroblock coding mode are shown in the
following table. In the table, the anchor frames and forward
and backward motion vectors are de�ned as:

Aforw = preceding I or P frame
Aback = following I or P frame
FMV = forward motion vector
BMV = backward motion vector

MC = block-based MC prediction process

MB type A S P (A; S)

i - - -
p Aforw FMV MC(Aforw;FMV)
b Aforw; FMV, :5MC(Aforw;FMV)+

Aback BMV :5MC(Aback;BMV)
bforw Aforw FMV MC(Aforw;FMV)
bback Aback BMV MC(Aback;BMV)



3.2. MPEG Frame Conversions

In an MPEG video stream, the temporal dependencies can
be manipulated with frame conversions. MPEG frame con-
versions are achieved by performing an appropriate set of
macroblock conversions. For example, a P frame can con-
tain i and pMBs, while an I frame can only contain i MBs.
Thus, a P ! I conversion requires converting the p MBs
to i MBs. The original i MBs may be left unprocessed. A
partial list of frame conversions and their corresponding set
of required macroblock conversions are listed below:

Frame conversion MB conversions

P ! I p! i

B ! Bforw b! bforw
bback ! i

B ! Bback b! bback
bforw ! i

B ! Bintra b! i

bforw ! i
bback ! i

Once we determine the desired conversion, we can use
equation 6 to convert the MBs between various modes. A
number of MB conversions are shown in the table below. In
principle, we �rst reconstruct the original and new predic-
tions. The new residual is then the sum of the original resid-
ual and the di�erence between the original and new predic-
tions. The side information is updated to S0 to indicate the
new frame type and the new MB types. Since the MPEG
prediction sequence is determined by the frame types, up-
dating the frame types implicitly updates the anchor frames
to A0. The result is recoded into the data stream.

Conversion New Residual R0

p! i R+MC(Aforw;FMV)
b! i R + :5MC(Aback;BMV) + :5MC(Aforw;FMV)

b! bforw R + :5MC(Aback;BMV)� :5MC(Aforw;FMV)
b! bback R � :5MC(Aback;BMV) + :5MC(Aforw;FMV)
bforw ! i R+MC(Aforw;FMV)
bback ! i R+MC(Aback;BMV)

These frame conversions can be performed in the pixel
or DCT domain. In the former, the frames are recon-
structed to their pixel-domain representations, and conven-
tional motion compensation is used to reconstruct the an-
chor frames and calculate the new residuals. In the latter,
the anchor frames are stored in DCT-domain representa-
tions, and DCT-domain motion compensation techniques
are used [2].

3.3. Discussion

Note that the anchor frames, the frames on which a predic-
tion is based, are solely determined by the frame types of the
surrounding frames and are not explicitly speci�ed in the
MPEG bitstream. This is a key concern when performing
frame conversions on coded MPEG streams. Speci�cally,
when performing a frame conversion on a single frame, one
must consider the e�ects on its surrounding frames. As
an example, consider the prediction sequence shown in 7.

If we convert frame B5 to P5, then we must consider the
consequences on other frames. Speci�cally, after perform-
ing this conversion, frame B4 must use anchor frames P3

and P5, and frame P6 must use anchor frame P5. The
rule of thumb is that conversions between I and P frames
do not a�ect other frames, nor do conversions between B,
Bforw, and Bback frames. However, conversions between any
other modes may a�ect the predictions of one or more other
frames, and therefore may require them to be processed ap-
propriately.

The frame conversions shown in the table above remove
temporal dependencies between the frames. For example,
in the B ! Bforw frame conversion, the original prediction
was based on both a forward and a backward anchor frame,
while the resulting prediction is only based on a forward
anchor frame. In this conversion, the forward and back-
ward motion vectors were given, and creating the resulting
stream involves discarding the backward motion vectors and
retaining the forward motion vectors.

Now consider the problem of adding temporal depen-
dencies between video frames. This may require generating
a new set of motion vectors between the current frame and
its new anchor frame. For example, consider an I ! P

frame conversion. The original I frame did not use predic-
tion, and therefore did not have an anchor frame or forward
motion vectors. When converting this frame to a P frame,
the MPEG prediction rules specify that the previous I or
P frame will be the anchor frame for forward prediction.
The task that remains is to determine an appropriate set of
forward motion vectors.

A set of motion vectors can be generated by using con-
ventional motion estimation techniques on the reconstructed
video frames, however, this may be a computationally ex-
pensive task. Research is being performed on developing
e�cient DCT-domain motion estimation techniques. An-
other area of research lies in developing more e�cient mo-
tion estimation methods that exploit the motion informa-
tion given in the original compressed video stream. This
problem, described as motion vector resampling, is cur-
rently under investigation by the author. A method of re-
sampling motion vector �elds for a compressed-domain re-
verse play operation is developed in [3]. While the topic of
motion vector estimation is beyond the scope of this paper,
it is a crucial part of achieving arbitrary frame conversions
for various compressed-domain video processing operations.

4. COMPRESSED-DOMAIN PROCESSING
APPLICATIONS

Video frames are typically coded with a prediction based on
one or more previously coded frames. Thus, properly de-
coding one frame requires �rst decoding one or more other
frames. This temporal dependence among frames severely
complicates a number of video processing and transcod-
ing tasks, such as temporal mode conversion, reverse play,
and splicing. The frame conversion methods presented ear-
lier are used to manipulate the temporal dependencies of
coded data streams. This is the basis for developing e�cient
compressed-domain algorithms that perform video process-
ing and transcoding tasks on MPEG-coded video streams.



4.1. MPEG System Issues

The previous section discussed the prediction rules of the
MPEG video compression standard. In addition to issues
of temporal dependencies, MPEG also addresses system-
level issues such as bu�er requirements, coding order, and
bitstream syntax requirements. A complete compressed-
domain video processing solution must address all of these
issues to create fully compliant MPEG data streams.

Temporal dependency issues are resolved by manipu-
lating the prediction dependencies with the frame conver-
sion methods discussed earlier. Bu�er constraints are sat-
is�ed by using rate control techniques such as requantiza-
tion. Coding order rules are satis�ed by reordering the new
coded data. Bitstream syntax requirements are satis�ed by
updating the appropriate header information such as time
stamps and picture and macroblock types.

The compressed-domain video processing and transcod-
ing tasks require the following steps:

1. Determine and perform an appropriate set of frame
conversions.

2. Perform rate control by requantizing the DCT coef-
�cients.

3. Reorder the new coded data.

4. Update the relevant header information.

Steps 2, 3, and 4 are common to the following tasks and are
beyond the scope of this paper. In the following sections we
focus on the frame conversions that need to be performed
for each compressed-domain operation.

4.2. Temporal Mode Conversion

The ability to transcode between various temporal modes
adds a great deal of 
exibility to video communication and
processing applications. For example, it provides a method
of achieving various tradeo�s in rate and robustness. An
MPEG sequence consisting of all I frames, while least e�-
cient from a compression viewpoint, is more robust to chan-
nel impairments in a video communication system. In addi-
tion, an I-frame MPEG video stream facilitates many video
editing operations, e.g. DCT-domain image processing al-
gorithms [4] can be applied to each frame of the sequence
to achieve the same e�ect on the entire sequence.

Temporal mode conversions can be used to accommo-
date particular rate/robustness pro�les or IPB prediction
sequences. However, performing conversions between some
sets of modes may require generating new sets of motion
vectors. Motion estimation can be performed on fully recon-
structed frames in the pixel domain, partially reconstructed
frames in the DCT domain, or by using motion vector re-
sampling techniques that use the motion vector and residual
information in the original coded data stream.

4.3. Frame-by-Frame Reverse Play

The goal of reverse-play transcoding is to create a new
MPEG stream that, when decoded, displays the video frames
in the reverse order from the original MPEG stream. The
problem is di�cult because of the prediction dependen-
cies in the coded data. Reverse-play transcoding can be

achieved by performing an appropriate set of frame con-
versions. First, we convert P frames to I frames. Then,
we exploit the symmetry of the B-frame prediction process
and simply exchange their forward and backward motion
vectors. We then appropriately reorder the data, perform
rate control, and update the header information. A detailed
description of the reverse-play algorithm is given in [5].

The resulting MPEG stream will be slightly larger than
the original stream because of the extra data that results
from the P ! I frame conversion. If the increase in data
rate is not acceptable, the P frames can be converted to P
frames in the reverse order. The problem then becomes one
of estimating the motion vectors of the reversed P frames.
One approach is to perform full motion estimation to get
the new forward motion vector �eld. Computational sav-
ings can be achieved with fast approximate motion esti-
mation techniques that use the motion vector information
contained in the original MPEG video stream [3].

4.4. Frame-Accurate Splicing

The goal of the splicing operation is to form a video data
stream that contains the �rst Nhead frames of one video se-
quence and the last Ntail frames of another video sequence.
For uncoded video, the solution is a simple cut-and-paste
operation. For MPEG-coded video the problem is di�-
cult because of the prediction dependencies in the coded
stream. Frame-accurate, compressed-domain splicing can
be achieved by performing an appropriate set of frame con-
versions. These conversions must remove the prediction
dependencies on dropped frames. The basic steps of the
splicing operation are given below:

1. Process the head data stream. If the last frame is
an I or P frame, there is no dependence on dropped
frames. If it is a B frame, convert the last string of
consecutive B frames to Bforw frames.

2. Process the tail data stream. If the �rst frame is an
I frame, there is no dependence on dropped frames.
If it is a P frame, convert it to an I frame. If it is a
B frame, convert the �rst string of B frames to Bback

frames and convert the �rst P frame to an I frame.

3. Match and merge the head and tail data. Reorder
the data, perform the rate control, and update the
header information.

A more detailed description is given in [6].

5. REFERENCES

[1] MPEG-2 International Standard, Video Recommendation ITU-T
H.262, ISO/IEC 13818-2, January 1995.

[2] N. Merhav and V. Bhaskaran, \Fast algorithms for DCT-domain
image downsampling and for inverse motion compensation,"
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 7, June 1997.

[3] S. Wee, \Reversing motion vector �elds," in IEEE International
Conference on Image Processing, (Chicago, IL), October 1998.

[4] S.-F. Chang and D. Messerschmitt, \Manipulation and composit-
ing of MC-DCT compressed video," IEEE Journal on Selected
Areas in Communications, vol. 13, January 1995.

[5] S. Wee and B. Vasudev, \Compressed-domain reverse play of
MPEG video streams," in SPIE Voice, Video, and Data Commu-
nications Conference, (Boston, MA), Nov 1998.

[6] S. Wee and B. Vasudev, \Splicing MPEG video streams in the
compressed domain," in IEEE Workshop on Multimedia Signal
Processing, (Princeton, NJ), June 1997.


