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Abstract

The memory consistency model for a shared-memory multiprocessor specifies
the behavior of memory with respect to read and write operations from multiple
processors. As such, the memory model influences many aspects of system
design, including the design of programming languages, compilers, and the under-
lying hardware. Relaxed models that impose fewer memory ordering constraints
offer the potential for higher performance by alowing hardware and software to
overlap and reorder memory operations. However, fewer ordering guarantees can
compromise programmability and portability. Many of the previously proposed
models either fail to provide reasonable programming semantics or are biased
toward programming ease at the cost of sacrificing performance. Furthermore,
the lack of consensus on an acceptable model hinders software portability across
different systems.

This dissertation focuses on providing a balanced solution that directly ad-
dresses the trade-off between programming ease and performance. To address
programmability, we propose an alternative method for specifying memory be-
havior that presents a higher level abstraction to the programmer. We show that
with only a few types of information supplied by the programmer, an implemen-
tation can exploit the full range of optimizations enabled by previous models.
Furthermore, the same information enables automatic and efficient portability
across awide range of implementations.

To expose the optimizations enabled by a model, we have developed a formal
framework for specifying the low-level ordering constraints that must be enforced
by an implementation. Based on these specifications, we present a wide range of
architecture and compiler implementation techniques for efficiently supporting a
given model. Finally, we evaluate the performance benefits of exploiting relaxed
models based on detailed simulations of realistic parallel applications. Our results
show that the optimizations enabled by relaxed models are extremely effective in
hiding virtually the full latency of writes in architectures with blocking reads (i.e.,
processor stalls on reads), with gains as high as 80%. Architectures with non-
blocking reads can further exploit relaxed models to hide a substantial fraction of
the read latency as well, leading to a larger overall performance benefit. Further-
more, these optimizations complement gains from other latency hiding techniques
such as prefetching and multiple contexts.

We believe that the combined benefits in hardware and software will make
relaxed models universal in future multiprocessors, as is aready evidenced by
their adoption in several commercial systems.
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Chapter 1

| ntroduction

Parallel architectures provide the potential for achieving substantially higher performance than traditional
uniprocessor architectures. By utilizing thefastest available mi croprocessors, multiprocessorsareincreasingly
becoming a viable and cost-effective technology even at small numbers of processing nodes.

The key differentiating feature among multiprocessorsis the mechanisms used to support communication
among different processors. Message-passing architectures provide each processor with alocal memory that
is accessible only to that processor and require processors to communicate through explicit messages. In
contrast, multiprocessors with a single address space, such as shared-memory architectures, make the entire
memory accessible to al processors and alow processors to communicate directly through read and write
operationsto memory.

The single address space abstraction greatly enhances the programmability of a multiprocessor. In
comparison to a message-passing architecture, the ability of each processor to access the entire memory
simplifies programming by reducing the need for explicit data partitioning and data movement. The single
address space a so provides better support for parallelizing compilers and standard operating systems. These
factors make it substantially easier to develop and incrementally tune parallel applications.

Since shared-memory systems allow multiple processors to simultaneously read and write the same
memory locations, programmers require a conceptua model for the semantics of memory operationsto alow
themto correctly usethe shared memory. Thismodel istypically referred to as amemory consistency model or
memory model. To maintain the programmability of shared-memory systems, such amodel shouldbeintuitive
and simple to use. Unfortunately, architecture and compiler optimizations that are required for efficiently
supporting a single address space often complicate the memory behavior by causing different processors to
observe distinct views of the shared memory. Therefore, one of the challenging problems in designing a
shared-memory system is to present the programmer with a view of the memory system that is easy to use
and yet alows the optimizationsthat are necessary for efficiently supporting a single address space.

Even though there have been numerous attempts at defining an appropriate memory model for shared-
memory systems, many of the proposed models either fail to provide reasonable programming semantics or



are biased toward programming ease at the cost of sacrificing performance. In addition, the lack of consensus
on an acceptable model, aong with subtle yet important semantic differences among the various models,
hinder simple and efficient portability of programs across different systems. This thesis focuses on provid-
ing a balanced solution that directly addresses the trade-off between programming ease and performance.
Furthermore, our solution provides automatic portability across a wide range of implementations.

1.1 TheProblem

Uniprocessors present a simple and intuitive view of memory to programmers. Memory operations are
assumed to execute one at atime in the order specified by the program and a read is assumed to return the
value of the last write to the same location. However, an implementation does not need to directly maintain
this order among al memory operations for correctness. The illusion of sequentiality can be maintained by
only preserving the sequential order anong memory operationsto the samelocation. Thisflexibility to overlap
and reorder operations to different locations is exploited to provide efficient uniprocessor implementations.
To hide memory latency, architecturesroutinely use optimizationsthat overlap or pipelinememory operations
and alow memory operations to complete out-of-order. Similarly, compilers use optimizations such as
code motion and register allocation that exploit the ability to reorder memory operations. In summary, the
uniprocessor memory model is simple and intuitive for programmers and yet alows for high performance
implementations.

Allowing multiple processors to concurrently read and writea set of common memory locations compli-
cates the behavior of memory operations in a shared-memory multiprocessor. Consider the example code
segment shown in Figure 1.1 which illustrates a producer-consumer interaction between two processors. As
shown, thefirst processor writesto location A and synchronizes with the second processor by setting location
Flag, after which the second processor reads location A. The intended behavior of this producer-consumer
interaction is for the read of A to return the new value of 1 in every execution. However, this behavior may
be easily violated in some systems. For example, the read of A may observe the old value of O if the two
writes on the first processor are alowed to execute out of program order. This simple exampleillustratesthe
need for clearly specifying the behavior of memory operations supported by a shared-memory system.*

Since amultiprocessor isconceptually a collection of uniprocessors sharing the same memory;, it isnatural
to expect itsmemory behavior to be asimpleextension of that of auniprocessor. Theintuitivememory model
assumed by most programmers requires the execution of a paralel program on a multiprocessor to appear
as some interleaving of the execution of the parallel processes on a uniprocessor. This intuitive model was
formally defined by Lamport as sequential consistency [Lam79]:

Definition 1.1: Sequential Consistency

[A multiprocessor is sequentially consistent if] the result of any executionis the same asif the operations of all
the processors were executed in some sequential order, and the operations of each individual processor appear
in this sequencein the order specified by its program.

Referring back to Figure 1.1, sequential consistency guaranteesthat theread of A will returnthenewly pro-
duced valuein al executions. Even though sequential consistency provides asimple model to programmers,
the restrictions it places on implementations can adversely affect efficiency and performance. Since severd

1Even though we are primarily interested in specifying memory behavior for systems with multiple processors, similar issues arise
in a uniprocessor system that supports a single address space across multiple processesor threads.
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Initially A=FLAG =0

P1 P2

A=1,
FLAG =1; while (FLAG == 0);
LA

Figure 1.1: Example producer-consumer interaction.

processors are alowed to concurrently access the same memory |ocations, reordering memory operations on
one processor can be easily detected by another processor. Therefore, ssimply preserving the program order
on aper-location basis, as is done in uniprocessors, is not sufficient for guaranteeing sequential consistency.
A straightforward implementation of sequential consistency must disallow the reordering of shared memory
operations from each processor. Consequently, many of the architecture and compiler optimizations used
in uniprocessors are not safely applicable to sequentially consistent multiprocessors. Meanwhile, the high
latency of memory operations in multiprocessors makes the use of such optimizations even more important
than in uniprocessors.

To achieve better performance, aternative memory models have been proposed that relax some of the
memory ordering constraints imposed by sequential consistency. The semina model among these is the
weak ordering model proposed by Dubois et al. [DSB86]. Weak ordering distinguishes between ordinary
memory operations and memory operations used for synchronization. By ensuring consistency only at the
synchronization points, weak ordering allows ordinary operationsin between pairs of synchronizationsto be
reordered with respect to one another.

The advantage of using a relaxed memory model such as weak ordering is that it enables many of the
uniprocessor optimizationsthat require the flexibility to reorder memory operations. However, amajor draw-
back of this approach isthat programmers can no longer assume a simple serial memory semantics. This
makes reasoning about parallel programs cumbersome because the programmer is directly exposed to the
low-level memory reorderingsthat are allowed by arelaxed model. Therefore, whilerelaxed memory models
address the performance deficiencies of sequential consistency, they may unduly compromise programma:
bility. Programming complexity is further exacerbated by the subtle semantic differences among the various
relaxed models which hinders efficient portability of programs across different systems.

1.2 Our Approach

The trade-offs between performance, programmability, and portability present a dilemma in defining an
appropriate memory consistency model for shared-memory multiprocessors. Choosing an appropriate model
requires considering three important factors. First, we need to determine how the modd is presented to
the programmer and how this impacts programming ease and portability. Second, we need to specify the
restrictions the model places on the system and determine techniques required for correctly and efficiently
implementing the model. Finally, we need to evaluate the performance of the model and consider the
implementation complexity that is necessary to achieve this performance. We discuss our approach for
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addressing these issues bel ow.

1.2.1 Programming Ease and Portability

Relaxed memory models such as weak ordering are specified as a set of conditionsthat define the allowable
orderings among memory operations. Such specifications can be considered system-centric since they in
effect expose the low-level system optimizationsto the programmer. To address programmability, we have
developed an alternative framework for specifying relaxed memory models that presents the programmer
with a higher-level abstraction of the system. We refer to thistype of specification as programmer-centric.

The premise behind a programmer-centric specification isthat programmers prefer to reason withasimple
memory model such as sequential consistency. Therefore, in contrast to the system-centric approach, the
programmer is alowed to use sequential consistency to reason about programs. To enable optimizations,
the programmer is required to provide information about the behavior of memory operationsin sequentially
consistent executions of the program. This information allows the system to determine the memory ordering
optimizations that can be safely exploited without violating sequential consistency. Furthermore, the same
information can be used to automatically and efficiently port the program to awide range of implementations.
Overdl, providing thistype of program-level information is simpler and more natura for programmers than
directly reasoning with system-centric models.

In this thesis, we present a set of programmer-centric models that unify the optimizations captured by
previoussystem-centric models. We show that thisapproach iseasier to use and providesahigher performance
potential than previous system-centric models.

1.2.2 Implementation Issues

To better understand the implementation needs of a memory consistency model, we must first specify the
precise conditions that an implementation must obey to satisfy the semantics of the model. To address this
issue, we have developed a formal framework for specifying the low-level system conditionsimposed by a
model. Specificationsin thisframework havethe advantage of being formal and precise, and naturally expose
the system optimizationsthat are allowed by a model. We use the above framework to express the sufficient
conditionsfor implementing the programmer-centric model s described in the previous section, in addition to
the conditionsfor several of the system-centric models.

Based on the above specifications, we next consider awide range of architecture and compiler techniques
for correctly and efficiently supporting a given memory model.

1.2.3 Performance Evaluation

The primary motivation for studying relaxed memory modelsis to achieve higher performance. Evaluating
the performance of such modelsis critical in deciding whether the benefits of a model outweigh its costsin
terms of programming and implementation complexity. In addition, such a study sheds light on the features
in amodel that have the most impact on performance. Surprisingly, numerous relaxed memory models have
been proposed without any attempt to quantify their performance effects.

We focus on evaluating performance gains from exploiting relaxed memory models in cache-coherent
shared-memory architectures using a set of redlistic paralel programs. By studying implementations with
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varying degrees of complexity, we identify the key architectural features for efficiently supporting relaxed
memory models and relate the performance gains to the level of implementation complexity. Our results
show that with a modest level of architectural support, relaxed memory models are extremely effective in
hiding the large latency of memory operationsin shared-memory machines.

1.3 Contributions

The primary contributionsof this dissertation are as follows:

o Wepropose a set of programmer-centric model s that unify the optimizations enabled by system-centric
models. Compared to the system-centric models, the programmer-centric models are superior in
their programming ease, portability, and performance potential. The models presented in this thesis
extend our previouswork on the release consistency model and properly labeled programs [GLL 90,
GAGT92].

o We present a forma framework for specifying the implementation conditions that are required to
maintain the semantics of a memory model. Thisframework leads to precise specifications that can be
easily trandated into correct and efficient implementations of both the architecture and the compiler.
The framework presented in this thesis extends our previous work in this area [GGH93b, GAGT93].
We use it to specify the sufficient conditionsfor implementing our programmer-centric models, as well
asto specify the conditionsfor severa system-centric memory models. Expressing these modelswithin
auniform and precise framework allows for a direct comparison of the optimizations enabled by each
model. Furthermore, based on these specifications, we determine transformations for automatically
porting programs across different models.

o We present a variety of practical implementation techniques for efficiently supporting memory models
at the architecture and compiler level. Severa of the architectural techniques discussed here have been
successfully used in thedesign of the Stanford DASH [LLG*92] and FLASH [KOH* 94] multiproces-
sors. We also describe a couple of aggressive techniques that can significantly boost the performance
of models such as sequential consistency relative to straightforward hardware implementations of
such models [GGH91b]. These latter techniques have recently been adopted by several commercial
processors, including the Intel Pentium Pro (or P6) and the M1PS R10000.

o We provide a detailed performance evaluation of relaxed memory models at the architecture level.
Our earlier studiesin this area [GGH91a, GGH92] represent the first set of comprehensive results to
quantify the performance gains from exploiting relaxed memory models.

1.4 Organization

Chapter 2 presents the background material for thethesis. We begin by describing the various components of
amultiprocessor system that are affected by the memory consistency model. We next discusstheimplications
of sequentia consistency on both architecture and compiler optimizations. Finally, we provide an overview
of the previoudly proposed memory consistency models.
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Chapter 3 presents the programmer-centric approach for specifying memory models. We discuss the
abstraction that is presented to the programmer and describe the type of information that the programmer is
required to convey about memory operations.

Chapter 4 presents the framework for specifying system requirements for different memory models. This
framework isused to specify sufficient conditionsfor implementing the programmer-centric model s proposed
in Chapter 3. In addition, we provide specifications for severa of the system-centric models and describe
how programsthat are written for programmer-centric models can be automatically ported to such models.

Chapter 5 presents a wide range of implementation techniques for efficiently supporting memory consis-
tency models at both the architecture and the compiler level.

Chapter 6 presents adetail ed eval uation of the performance gainsfrom expl oiting relaxed memory models.
Weidentify thekey optimizationsand architectural enhancementsthat are necessary for achieving these gains
in cache-coherent shared-memory architectures. In addition, we study the interaction of relaxed memory
models with other latency hiding techniques such as prefetching and use of multiple contexts.

Finally, Chapter 7 summarizes the major results of this dissertation and discusses potential directionsfor
future research.
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Chapter 2

Background

This chapter providesthe background information on memory consistency models. Thefirst section describes
the role of memory consistency models in specifying the behavior of memory operations and introduces
sequential consistency as an intuitive model for shared-memory systems. We next consider the impact of
common architecture and compiler optimizations on the behavior of shared memory operations. The third
section illustrates the inherent difficulties in exploiting these optimizations in conjunction with sequentia
consistency. Finaly, we explore some of the aternative models that have been proposed to remedy the
performance inefficiencies associated with sequential consistency.

2.1 What isaMemory Consistency M odel?

A memory consistency model, or memory model, for a shared-memory multiprocessor specifies how memory
behaves with respect to read and write operations from multiple processors. From the programmer’s point
of view, the model enables correct reasoning about the memory operationsin a program. From the system
designer’s point of view, the model specifies acceptable memory behaviors for the system. As such, the
memory consistency model influences many aspects of system design, including the design of programming
languages, compilers, and the underlying hardware.

This section begins with a brief description of the interfaces at which a memory model may be defined.
We next present some basic terminology and assumptions for describing memory models. Thisisfollowed
by a description of the sequential consistency model aong with numerous examples that provide further
familiarization with this model. Finally, we describe how different models or implementations may be
compared based on the memory behaviorsthey alow.

2.1.1 Interface between Programmer and System

A memory model can be defined at any interface between the programmer and the system. Figure 2.1 shows
avariety of possibleinterfacesin atypical multiprocessor system. At thelowest interface, the system consists
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Figure 2.1: Various interfaces between programmer and system.

of the base hardware and programmers express their programs in machine-level instructions. At higher level
interfaces, the system is typically composed of more components, including the compiler, assembler, and
base architecture.

The definition of thememory model is oftenincorporated into the semantics of the programming language
used at a given interface. Therefore, the memory model may vary for different interfaces or for different
languages at the same interface. An intermediate system component such as the compiler is responsible for
correctly mapping the memory semantics of itsinput language to that of its output language.

The majority of programmers deal with the highest interface, using a high-level programming language
for specifying programs. At thislevel, a programmer typically has the choice of using either a traditiona
sequential language or an explicitly paralel language. The sequentia languageinterface providesthefamiliar
uniprocessor semantics for memory, thus relieving the programmer from reasoning about the multiprocessor
aspects of the system. This interface is typically supported either by atraditional sequential compiler that
generates a singlethread of control to execute on the multiprocessor or by a parallelizing compiler that deals
with the multiprocessor issues transparently to the programmer. On the other hand, programmers who opt to
express their algorithms more directly using an explicitly paralel language are exposed to the multiprocessor
semantics for memory operationsin one form or another.

Many of the concepts that are discussed in thisthesis apply across all interfaces. We will explicitly point
out any concepts that are interface-specific.

2.1.2 Terminology and Assumptions

This section presents some of the basic terminology and assumptions we use to describe multiprocessor
systems and memory consistency models. Our goal is to provide intuitive definitions; a more forma and
genera framework for describing memory models will be presented in Chapter 4.

A multiprocessor program conceptually consists of several parale threads of control, each with its
individua program consisting of a sequence of instructions. Since we are primarily concerned with the
behavior of memory operations, our focus will be on instructions that generate memory accesses to shared
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data

We assume a canonical multiprocessor system that consistsof several virtual processors sharing acommon
memory. To execute a multiprocessor program, we assume there isa virtua processor per parallel thread of
control inthe application. Therefore, the semantics of amemory model should not be affected by the physical
mapping of multiplethreads to the same physical processor.

An execution consists of a sequence of shared memory operationsthat isgenerated as aresult of executing
the multiprocessor program. A memory operation corresponds to a specific instance of executing a memory
instruction. Initializing the state of memory may be modeled by a set of initial write operationsto memory
that occur before the program execution begins.

We assume processors communicate with one another solely through read and write memory operations
to the shared data memory. A read operation specifies a memory location and resultsin a single read event
that returnsthe value of that memory location. Similarly, awrite operation specifies amemory location along
with anew value and results in asingle write event that modifies the memory location to the new value. Two
operations conflict if they are to the same location and at least one of them is awrite [SS88]. Except for the
events described above, there are no other side effects due to a read or write operation. For ssimplicity, we
assume the instruction space is read only; Chapter 4 discusses how this assumption may be removed.

In generd, an instructionmay specify more than a single memory operation. Multiplememory operations
generated by the execution of an instruction should appear to execute atomically; for any two instructionsil
and i2, either all operations of i1 appear to execute before any operation of i2 or vice versa. Each instruction
must a so specify the order in which its constituent operations must execute. The above generality is useful
for modeling read and write memory operations to multiple granularities of data (e.g., byte, word, double
word) and for modeling atomic read-modify-write operations (e.g., test-and-set, compare-and-swap). For
simplicity, we assume instructions can generate a single read operation, a single write operation, or a read
followed by a write operation to the same location, al with the same data granularity. Extensions to this
assumption will be discussed in Chapter 4.

The program for each virtual processor imposes a conceptual total order on the operationsissued by the
processor in agiven execution. The program order isdefined as a partia order on all memory operations that
is consistent with the per-processor total order on memory operationsfrom each processor [ SS38].

Finally, we need to discuss the notion of result or outcomefor an execution of a program. Wewill assume
that the result of an execution comprises of the values returned by the read operationsin the execution. The
final state of memory can be included in this notion by modeling it through read operations to memory that
occur after the actual program execution completes. The above notion of result does not capture the time or
actual order inwhich operationsexecute; we can only deduce the order inwhich operationsappear to execute.
Therefore, the results of two executions are considered equivalent if the reads return the same valuesin both
executions, regardless of whether the actual order of operationsis the same in the two executions. Chapter 4
will discuss more redlistic notions of result that include the effect of 1/0O devices.

2.1.3 Sequential Consistency

A natural way to define a memory model for multiprocessors is to base it on the sequential semantics of
memory operationsin uniprocessors. Anintuitivedefinitionwould require executionsof aparallel programon
amultiprocessor to behave the same as some interl eaved execution of the parallel processes on a uniprocessor.

Section2.1  What isaMemory Consistency Model? 9



P1 P2l ... Pn
T~ \ —

Memory

Figure 2.2: Conceptual representation of sequentia consistency (SC).

Such amodel was formally defined by Lamport as sequential consistency [Lam79] (abbreviated as SC). The
definition bel ow assumes a multiprocessor consists of several correctly-functioning uniprocessors, referred to
as sequential processors [Lam79], that access acommon memory. Another implicit assumption isthat aread
returnsthe value of thelast writeto the same location that isbeforeit in the sequential order described above.

Definition 2.1: Sequential Consistency

[A multiprocessor is sequentially consistent if] the result of any executionis the same asif the operations of all

the processors were executed in some sequential order, and the operations of each individual processor appear

in this sequencein the order specified by its program.

Sequentia consistency maintainsthe memory behavior that isintuitively expected by most programmers.
Figure 2.2 provides a conceptual representation of sequential consistency with several processors sharing
a common logical memory. Each processor is required to issue its memory operations in program order.
Operations are serviced by memory one-at-a-time; thus, they appear to execute atomically with respect to
other memory operations. The memory services operations from different processors based on an arbitrary
but fair global schedule. Thisleadsto an arbitrary interleaving of operations from different processorsinto a
single sequential order. The fairness criteria guarantees eventual completion of all processor requests. The
above requirements lead to a total order on al memory operations that is consistent with the program order
dictated by each processor’s program.

An execution (or the result of an execution) of a program is sequentially consistent if there exists at least
one execution on a conceptua sequentially consistent system that provides the same result (given the same
input and same initia state in memory). Otherwise, the execution violates sequential consistency.

2.1.4 Examplesof Sequentially Consistent Executions

Figure 2.3 provides some canonical sample programs to illustrate the semantics of sequential consistency.
We use the following convention for specifying programs. We use uppercase |etters (e.g., A, B, C) to denote
shared memory locations and lowercase letters (e.g., u, v, w) to denote private memory locations. Register
locations are denoted as r1, r2 . .. rn. Each ingtructionis given a unique label. Instructions from the same
processor are sequenced by lettersin a phabetical order with the processor number following the letter (e.g.,
(al) isthefirst instruction on processor 1). Wewill often use theinstructionlabel sto a so identify the memory
operation that results from executing the instruction. Unless specified otherwise, the initia values for all
memory locations are implicitly assumed to be zero.
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al1: A=1; a2: u=B; al: A=1; a2: B=1;
b1: B=1; b2: V=A; bl: u=B; b2: V=A;
(a) (b)
Pl P2 P3
al: A=1; a2: U=A; a3: v=B;
b2: B=1; b3: W=A;
(©)
P1 P2 P3 P4
al1: A=1; a2: U=A; a3: B=1; a4: W =B;
b2: v=B; b4: X =A;
(d)

Figure 2.3: Sample programsto illustrate sequential consistency.
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Consider the program segment in Figure 2.3(a). The result of executions of this program segment can
be depicted by enumerating the values for variables (u,v). Consider an execution with the result (u,v)=(1,1).
Thisexecution is sequentially consistent because thereis atotal order on the operations, (al,b1,a2,b2), that is
consistent with program order and produces the same result. Now consider another execution with the result
(u,v)=(1,0). Thisresult violatesthe simple notion of causality since P2 observesthe new valuefor B, but does
not observe the new value for A even though the write to A is before the write to B on P1. One total order
on operations that produces the same result is (b1,a2,b2,al), but this total order violates the program order
imposed by P1. Furthermore, there are no other total orders that are consistent with program order and yet
produce the same result. Therefore, an execution that resultsin (u,v)=(1,0) violates sequentia consistency.
Figure 2.3(b) shows another two processor example, where an execution with the result (u,v)=(0,0) violates
sequentia consistency. Again, al total ordersthat produce the same result are inconsistent with the program
order on at least one of the processors.

Figure 2.3(c) shows athree processor example. Consider the result (u,v,w)=(1,1,0), which is not sequen-
tialy consistent. This result violates causality across the three processors since P2 writes the new value
of B after observing the new value of A, after which P3 observes the new value of B written by P2, but
failsto observe the new vaue of A. And finaly, in the four processor example of Figure 2.3(d), the result
(u,v,\w,x)=(1,0,1,0) violates sequential consistency. The result suggests that P2 observes the write of A hap-
pened beforethewrite of B, while P4 observes the opposite order for the two writes. However, al processors
should observe the same order on al writesin sequentially consistent executions.

An important attribute of the definition for sequential consistency isthat it depends on the order in which
operations appear to execute, not necessarily the order in which they actually execute in a system. For
example, refer back to the program segment in Figure 2.3(a). Consider an execution on a system where the
actual execution order on operationsis (b1,al,b2,a2) with theresult (u,v)=(1,1). Even thoughthe actual order
above violatesthe program order on both processors, the execution is still considered sequentially consistent.
Thisisbecause theresult of the execution isthe same as if the operationswere donein the order (al,b1,a2,b2)
which is consistent with program order.

Figure 2.4 provides a couple of examples with multiple memory operations per instruction. The example
in Figure 2.4(a) illustrates accessing data at multiple granularities. Assume A and B are consecutive words
aligned at a double word boundary. The instruction on P1 represents an atomic double word write. We show
the operations specified by the same instruction in a dotted box, and use an extended version of our labeling
scheme to identify these operations (e.g., (al.1) and (al.2) are the operations specified by instruction (al)).
Since the two operations on P1 must appear atomic, the result (u,v)=(1,0) is disallowed under sequential
consistency. Figure 2.4(b) illustrates the same example except the operations on P1 are now separated into
two instructions. Theresult (u,v)=(1,0) isallowed under sequentia consistency inthelatter example sincethe
total order (al,a2,b2,b1) explainstheresult and is consistent with program order. Notethat the analogoustotal
order (al.1,a2,b2,a1.2) for the first example violates the atomicity requirement for the multiple operations
frominstruction (al).

Figure 2.4(c) illustrates the use of multiple operations per instruction to achieve an atomic read-modify-
write. The example shows a fetch-and-increment of the same location on both processors. Again, atomicity
requires all operations specified by one instructionsto appear to execute before any operations specified by
the other instruction. Therefore, (u,v)=(0,1) and (u,v)=(1,0) are possible outcomes, while (0,0) and (1,1) are
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al.l: | A=1; a2: U=A; al: A=1; a2: U=A;
al2: 1B = 1; b2: V= B; b1: B=1: b2 V= B;
(@) (b)

P1 P2 P1 P2
all'U=A; i a2l V=A 3 al: U= A; a2: V=A;
al2 A=u+1] a22 i A=v+1 bl: A=u+1: b2: A=V +1:

© (d)

Figure 2.4: Examplesillustrating instructionswith multiple memory operations.

not possible. Figure2.4(d) illustratesthe same exampl e except the operations on each processor are separated
into two instructions. In contrast to the previous case, the outcome (u,v)=(0,0) is now possible. The total
order on operationsthat explainsthisresult is (al,a2,b1,b2) and is consistent with program order.

Finally, our last set of examplesillustratethe need for synchronization under sequential consistency. Even
though sequential consistency maintains the sequential order among operations on each processor, it alows
operationsfrom different processorsto bearbitrarily interleaved at theinstructiongranul arity. Therefore, extra
synchronization is required to provide atomicity across operations belonging to multiple instructions (e.g.,
by using locks). Similarly, synchronization is required to impose a deterministic order among operations
on different processors (e.g., by waiting for a flag to be set). A number of mutua exclusion algorithms
(e.g., Dekker's or Peterson’s algorithm [And91]) have been developed for the sequentia consistency model
using single read and write operations. However, most current systems support atomic read-modify-write
instructions, providing a simpler and more efficient mechanism for achieving mutual exclusion.

Consider the program segment in Figure 2.5(a). Assume A and B are two fields in arecord and assume
the desired semantics for the program is that reads and writes to the record should be done in a mutualy
exclusive fashion. Therefore, if P1 writesthe two fields, and P2 reads the two fields, the only two acceptable
resultsare (u,v)=(0,0) or (u,v)=(1,1) corresponding to either P1 or P2 accessing therecord first. The program
in Figure 2.5(a) fails to satisfy this requirement because the results (u,v)=(1,0) or (u,v)=(0,1) are possible
under sequentia consistency (possible total orders for these two results are (al,a2,b2,b1) and (a2,al,b1,b2),
respectively). Figure 2.5(b) shows one way of guaranteeing atomic behavior by using atest& set instruction
to achieve mutual exclusion; the two outcomes of (u,v)=(1,0) and (u,v)=(0,1) are no longer allowed.

Now consider the case where the programmer wants to communicate the new values of A and B to P2
in every execution as in a producer-consumer interaction. Therefore, we would like to guarantee the result
(uv)=(1,1) in every execution. Obviously mutual exclusion is not sufficient for guaranteeing this since if
P2 gains access to the critical section before P1, then we can get the result (u,v)=(0,0). Figure 2.5(c) shows
one possibleway of supporting the desired producer-consumer semantics whereby P1 sets aflag after writing
to the two locations and P2 waits for the flag to be set before reading the two locations. Other forms of
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al: A=1; a2: U=A;
b1: B=1; b2: v=B;
()
P1 P2
al: while (test&set(L)==0); a2: while (test&set(L)==0);
bl1: A=1,; b2: U =A;
cl: B=1; c2: V=B;
di: L=0; d2: L=0;
(b)
Pl P2
al: A=1; a2: while (Flag==0);
b1: B =1, b2: U=A,
c1: Flag=1, c2: V=B;
(©)

Figure 2.5: Examplesillustrating the need for synchronization under SC.
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synchronization (e.g., barriers) can aso be easily implemented using read, write, and atomic read-modify-
write operationsto shared memory.

2.15 Relating Memory Behavior Based on Possible Outcomes

We can compare the memory behaviorsof two different model s, two different implementations, or amodel and
an implementation, by considering the set of possible results or outcomes (for executing various programs)
that isalowed by each model or implementation.

Let A and B refer to different models or implementations. A and B are equivalent iff (abbreviation for if
and only if) for any run of any program, the outcomein Aispossiblein B and vice versa. Aisstricter than B
iff for any run of any program, the outcomein A is possiblein B but not vice versa. The above two relations
aretransitive by definition. A and B are distinguishableif they are not equivalent. A and B areincomparable
iff they are distinguishable and neither is stricter than the other. Finally, a program that runs “correctly” on
A is guaranteed to run correctly on B if B is equivaent to or stricter than A. Thisis because there will be no
“unexpected outcomes’; all outcomes allowed by B are aso possible on A. It is sometimes useful to define
the equivalent and stricter relations over a subset of all programs. For example, two implementations may
behave the same across a large subset of programs even though they are distinguishable if we consider al
programs.

An implementation satisfies a given memory model if it is equivalent to or is stricter than the model. In
practice, most implementations are actually stricter than the model they satisfy, i.e., they alow a subset of
the outcomes alowed by the model. For example, arealistic design issuesinstructionsat a set rate and does
not arbitrarily vary the rate at which operations are issued, thus eliminating the possibility for some of the
interleavingsthat are allowed by a conceptual model.

2.2 Impact of Architectureand Compiler Optimizations

This section considers the impact of common architecture and compiler optimizations on the behavior of
shared memory operations. Many of the optimizationswe discuss are critical to achieving high performance.
However, most of them end up violating the semantics of a strict model such as sequentia consistency. The
issues presented here will be described in greater detail in Chapter 5.

221 Architecture Optimizations

Figure 2.6 shows the typical architecture for a scalable shared-memory multiprocessor. The processor
environment (i.e., processor, write buffer, cache) within each node is quite similar to that of a uniprocessor.
The nodes are connected using ageneral network (thefigure shows atwo-dimensiona mesh network), and the
shared memory is distributed among the nodes. The latency of memory operationsis one of the key factors
that determines the performance of amultiprocessor system such as the one shown above. Optimizationsthat
reduce or hide the latency of memory operations are especially important in multiprocessors because of the
following two reasons. First, memory latencies are typically larger than in a uniprocessor especialy if the
operation involves aremote node. Second, multiprocessorstypically exhibit alarger cache miss rate relative
to uniprocessors due to the inherent communication that takes place among the processors.
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Figure 2.6: A typica scalable shared-memory architecture.

Aside from using caches, the typical way in which uniprocessors deal with large memory latenciesis to
overlap the service of multiplememory operations. For example, instead of stalling after awriteoperation, the
processor simply places the write into awrite buffer and continuesto execute other instructionsand memory
operations. Even though such optimizations can potentially lead to a reordering of memory operations to
different locations, theillusion of a sequential execution is still maintained. Maintaining thisillusionis more
difficult in multiprocessors because there is more than one processor that can observe the memory state.
For example, the out-of-order execution of shared memory operations by one processor can potentialy be
detected by other processors.

To maintain sequentia consistency, memory operationsfromindividua processors must appear to execute
in program order and al memory operations must appear atomic with respect to one another. Werefer to these
asthe programorder and atomicity requirements, respectively. Below, we describe how various architectural
optimizations can violate the above two requirements. We will use the following notion of completion for
memory operations. A read completes when its return value is bound (i.e., cannot be changed). A write
compl etes when the corresponding location is updated with the new value. When there is more than asingle
copy of the same location (e.g., due to caching), the write is considered complete after all the copies have
been affected. Explicit acknowledgement messages may be required for detecting the completion of write
operationsin a system such as the one shown in Figure 2.6.

Program Order Requirement

Memory operations from individual processors may complete out of program order due to a number of
optimizations that attempt to overlap the servicing of such operations. We begin with optimizations at the
processor level and move down in the memory hierarchy.

Operations may execute out of program order if the processor issues them out-of-order. This can easily
occur in a dynamically scheduled (or out-of-order issue) processor, for example. Consider the program
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Figure 2.7: Reordering of operations arising from distribution of memory and network resources.

segment from Figure 2.3(a). Assume the processor issues the read of A before the read of B on P2, for
example, because the effective addressfor A isavailable earlier. 1t isnow possiblefor the execution to result
in (u,v)=(1,0), which violates SC. An analogous situation can arise if the processor issues the writes on P1
out-of-order.

Even if the processor issues memory operationsin program order, there is ample opportunity for them to
get reordered due to optimizations within the memory hierarchy. Consider the write buffer. Optimizations
such as read bypassing and forwarding have the effect of reordering a read with respect to previous write
operations. Similarly, optimizationssuch aswrite merging (or coal escing) can lead to thereordering of writes.
At the next level, a non-blocking or lockup-free cache [Kro81] can cause reordering. For example, consider
two operations 01 and 02 in program order where 01 misses in the cache and 02 is a cache hit. Even if the
two operations are issued to the cache in program order, operation 02 completes earlier than operation o1.

Past the processor environment, reordering of memory operations can occur due to the distribution of
memory system and network resources. Figure 2.7 shows an example of such reordering. The program
segment we consider isthesame asin Figure1.1. As shown, the physical memory corresponding to locations
A and Flag reside on two separate nodes. Assume the processor on the left issues thewrites to theselocations
in program order. Since the write operationstravel on separate paths to two different nodes, it is possible for
thewrite of Flag to reach its memory module first. It isthen possiblefor the processor on theright to observe
the set flag and to read the old value of A from memory, al beforethewriteto A reachesits memory module.
Therefore, the presence of multiple paths in the network causes a reordering of the writes which leads to a
violation of SC.

The reordering of memory operations from the same processor can be eliminated if a processor issuesits
operationsin program order and waits for one to complete beforeissuing the next operation. Whilethe above
solution will satisfy the program order requirement, it fails to exploit many of the optimizations discussed
above that are critical for dealing with large memory latencies.

Atomicity Requirement

Caching of shared datais an important optimization for reducing memory latency in shared memory systems.
Of course, caching leads to multiple copies of dataon different nodes which must be kept up-to-date on every
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A=1; —_— while (A==0);
B=1,; while (B==0);
. =A;
Processor Processor Processo
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Figure 2.8: Non-atomic behavior of writes due to caching.

write. This can be achieved by either invalidating (i.e., eliminating) the copies or updating them to the new
value. However, the distribution of the copies, aong with the presence of multiple pathsinthe network, make
it difficult to invalidate or update these copiesin an atomic fashion.

Figure 2.8 shows an exampl e of how caching can lead to a violation of the atomicity requirement for write
operations. The program segment shown is similar to the one in Figure 2.3(c). Assume P2 initially has a
copy of A and P3 initially has a copy of A and B in its cache. Furthermore, assume these copies are updated
on every write to the corresponding location. Therefore, the writeto A on P1 generates two update message,
one for each copy of A. Because these update messages traverse different network paths, it is possiblefor the
update to P2’s cache toreach itstarget earlier. Therefore, P2 can observe the new value of A and can proceed
with itswrite to B, which causes an update message to be sent to P3's copy of B. Thislatter update message
can aso reach P3 before the earlier update for A arrives there. It is now possible for P3 to proceed with
itsread of A which can return the old value of O that still resides in its cache. The above outcome violates
sequential consistency and arises because the updates to the cached copies of A do not preserve theillusion
of atomicity with respect to other operations. A similar situation can arise for the four processor example
in Figure 2.3(d). As we will see later, there are efficient solutions to the above problem for systems that
use invalidationsto eliminate stale copies. However, solutionsfor update-based systems are inherently more
difficult and inefficient.

Figure 2.9 shows another example of how caching can violate the atomicity requirement for writes to
the same location. The program segment shown is similar to the one in Figure 2.3(d) except all operations
are to the same location. Assume both P2 and P3 initialy have a copy of A in their caches. Consider P1
and P4 attempting to writeto A at the same time. Therefore, P1 will send an update message to P2 and P3
with the value of 1. Similarly, P4 will send an update message to P2 and P3 with the value 2. Due to the
multiple paths in the network, the update messages may reach P2 and P3 in a different order. For example,
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Figure 2.9: Non-atomic behavior of writesto the same location.

P2 may observe P1'swritefirst followed by P4’swrite, while P2 may observe thewritesin the oppositeorder.
This can lead to the outcome (u,v,w,x)=(1,2,2,1) which violates sequential consistency. Furthermore, the two
cached copies of A may remain permanently incoherent, with P2 caching the value of 2 and P3 caching the
value of 1. Unlikethe problem shown in Figure 2.8, this problem can be solved relatively efficiently for both
invalidation and update-based protocols by seriaizing write operations on a per location basis.

In summary, many architectural enhancementsthat are commonly used to deal withlarge memory latencies
affect memory behavior by either alowing operationsto complete out of program order or making them appear
non-atomic.

2.2.2 Compiler Optimizations

Analogous to architecture optimizations, many common compiler optimizations can also affect the behavior
of shared memory operations. For example, optimizations such as register alocation, code motion, common
sub-expression elimination, or loop interchange and blocking transformations, al have the effect of either
reordering or eiminating memory operations. We briefly consider the effect of such optimizations in the
context of compiling explicitly parallel programs.

In most cases, compiler optimizationslead to a violation of the program order requirement by reordering
operations from the same processor. For example, consider applying code motion to the example program
segment in Figure 2.3(a). Reordering the two writes on P1 or the two reads on P2 through code motion can
change the behavior of this program by alowing the non-SC result of (u,v)=(1,0). Therefore, the overall
effect issimilar to hardware optimizationsthat reorder memory operations. Figures 2.10(a) and (b) show an
example of how register alocation can lead to a similar reordering. The two program segments correspond
to before and after register allocation. The result (u,v)=(0,0) is disalowed by the original program under
SC. However, al executions of the program after register allocation result in (u,v)=(0,0). In effect, register
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P1 P2 P1 P2

al: B=0; a2: A=0; al: r1=0; a2: 12=0;
b1: A=1, b2: B=1, b1: A=1,; b2: B=1;
cl: u=B; c2: V=A; cl: u=rl, c2: V=1r2;
1. B=rl; 2: A=r2;
(a) before d d
(b) after
P1 P2 Pl P2
al: A=1,; a2: while (Flag == 0); al: A=1; a2: rl =Flag;
b1: Flag =1, b2: U=A; b1: Flag =1, b2: while (rl == 0);
D U=A;
(c) before cz: U
(d) after

Figure 2.10: Program segments before and after register allocation.

allocation reorders the read of B with the write of A on P1 and the read of A with thewrite of B on P2. Note
that the above transformation would be considered safe if we treat each processor’s code as a uniprocessor
program.

Figures 2.10(c) and (d) illustrate yet another effect of optimizations such as register allocation that arise
due to the elimination of memory operations. The whileloop in the program segment on the left terminates
in every SC execution. The program segment on the right shows the Flag location register alocated on P2,
thus eliminating the multiple reads of Flag within the while loop. Consider an execution of the transformed
program where the read of Flag on P2 returnsthe value 0. This execution violates SC because the whileloop
on P2 will not terminate. In effect, register alocating Flag disallows P2 from observing any changes to the
location caused by the write on P1, making it appear asif the write of Flag on P1 is never observed by P2.
Again, this optimization would be considered safe in a uniprocessor program.

In summary, the above examples show that common uniprocessor compiler optimizations can lead to
“erroneous’ program behavior if they are applied to explicitly parallel programs.

2.3 Implications of Sequential Consistency

This section providesa brief overview of the requirements that a system must satisfy to guarantee sequential
consistency. We begin by considering the set of sufficient conditions proposed by Lamport [Lam79] and by
Scheurich and Dubois [SD87]. We then briefly mention some of the more aggressive approaches that have
been proposed for implementing sequential consistency more efficiently. The goa of thissectionisto provide
a basic intuition for the relevant implementation issues. Chapter 5 provides a more thorough discussion of
these issues.
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2.3.1 Sufficient Conditionsfor Maintaining Sequential Consistency

In the same paper that introduces the notion of sequential consistency, Lamport proposes a set of system
requirements that are sufficient for satisfying the semantics of thismodel [Lam79]. The conceptua system
that is assumed consists of a set of processors having access to a set of memory modules; theoretically, there
can be as many memory modules as there are unique memory locations. Thetwo requirementsare asfollows.

Condition 2.1: Lamport’sRequirementsfor Sequential Consistency

(a) Each processor issues memory requestsin the order specified by its program.

(b) Memory requests from all processors issued to an individual memory module are serviced from a single

FIFO queue. Issuing a memory request consists of placing the request in this queue.

Based on the above requirements, each processor needs to issue its memory operationsin program order
and needs to wait for each operation to get to the memory module, or its queue, before issuing the next
memory operation. In architectures with general networks such as the one shown in Figure 2.7, detecting
that a memory operation has reached its memory modul e requires an acknowledgement reply to be sent back
from the memory modul e to the processor. Therefore, the processor is effectively delayed for the full latency
of an operation before issuing its next operation. More efficient implementations are conceptually possible,
especialy with a more restrictive interconnection network such as a bus. The key observation made by
Lamport’s conditions is that, from an ordering point of view, a memory operation is effectively complete
as soon as it is queued at its memory module (as long as the queue is FIFO). Therefore, a processor can
conceptually overlap the period of time from when an operation reaches the queue to when the memory
actually responds with the time to issue and service a later operation. The above observation does not hold
for designs with caches, however. Furthermore, Condition 2.1 itself is not sufficient for correctness in the
presence of datareplication.

Scheurich and Dubois [SD87] provide a more genera set of requirements that explicitly deals with
optimizations such as caching. One of the key issues that arises in the presence of multiple copies is that
writes may no longer behave atomically with respect to other memory operations. Scheurich and Dubois
sufficient conditions are summarized below. A read is considered complete when its return value is bound
and awriteis considered complete when al copies of the location are brought up-to-date(i.e., either through
an invalidation or update mechanism).

Condition 2.2: Scheurich and Dubois' Requirementsfor Sequential Consistency

(a) Each processor issues memory requestsin the order specified by its program.

(b) After awrite operation is issued, the issuing processor should wait for the write to complete before issuing

its next operation.

(c) After aread operation isissued, the issuing processor should wait for the read to complete, and for the write

whose valueis being returned by the read to complete, before issuing its next operation.

(d) Write operations to the same location are serialized in the same order with respect to all processors.

There are several important differences with Lamport’s conditions that arise from dealing with multiple
copies of the same location. For example, awriteis considered complete only after all copies of the location
are brought up-to-date, and a processor cannot issue operationsfollowing aread until the read return valueis
bound and thewriteresponsiblefor that valueis complete. Condition2.2(c) and (d) are important for dealing
with the inherently non-atomic behavior of writes, and address the problems depicted in Figures 2.8 and 2.9,
respectively. One way to satisfy Condition 2.2(c) in an invalidation-based caching scheme isto disalow a
newly written value from being read by any processor until all invalidations corresponding to the write are
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complete. Maintainingthisconditionfor update-based protocol sismore cumbersome, however, and typically
requires atwo phase interaction where cached copies are updated during the first phase followed by a second
message that is sent to al copiesto signal the completion of the first phase. These and other techniques are
covered in detail in Chapter 5.

The conditions for satisfying sequential consistency are often confused with the conditions for keeping
caches coherent. A cache coherence protocol typically ensures that the effect of every write is eventually
madevisibleto all processors(throughinvalidation or update messages) and that all writesto the samelocation
are seen in the same order by all processors. The above conditions are clearly not sufficient for satisfying
sequential consistency. For example, sequentia consistency ultimately requires writes to all locations to
appear to be seen in the same order by all processors. Furthermore, operations from the same processor must
appear in program order.

From an architecture perspective, the above conditions effectively require each processor to wait for
a memory operation to complete before issuing its next memory operation in program order. Therefore,
optimizations that overlap and reorder memory operations from the same processor may not be exploited.
In addition, designs with caches require extra mechanisms to preserve the illusion of atomicity for writes.
Similarly, from a compiler perspective, program order must be maintained among memory operations to
shared data

We next discuss how program-specific information can be used to achieve more aggressive implementa-
tions of SC.

2.3.2 Using Program-Specific Information

The sufficient requirements presented in the previous section maintain program order among all shared
memory operations. However, for many programs, not all operations need to be executed in program order
for the execution to be sequentially consistent. Consider the program segment in Figure 2.5(c), for example.
The only sequentially consistent outcome for this programis (u,v)=(1,1). However, maintaining the program
order between the two writes to A and B on P1 or the two reads to A and B on P2 is not necessary for
guaranteeing a sequentially consistent result for this program. For example, consider an actual execution
wherethetwo writeson P1 are executed out of program order, with the correspondingtotal order on operations
of (bl,al,c1,a2,b2,c2) whichisnot consistent with program order. Nevertheless, theresult of the executionis
(u,v)=(1,1) sincethewritesto A and B still occur before thereadsto thoselocations. Thisresultisthesame as
if the total order was (al,bl,c1,a2,b2,c2), which does satisfy program order. An analogous observation holds
for the program segment in Figure 2.5(b). Of course, some program orders may still need to be maintained.
For example, referring back to Figure 2.5(c), executing the write to Flag before the writesto A and B are
complete can easily lead to the non-SC result of (u,v)=(0,0). Therefore, program-specific information must
be used about memory operationsin order to decide whether a given program order can be safely violated.
Shashaand Snir [ SS88] have actually proposed an automatic method for identifyingthe“critical” program
ordersthat are sufficient for guaranteeing sequentially consistent executions. This method may be used, for
example, to determine that no program orders must be maintained in the example program segment in
Figure 2.5(a). The reason is the outcomes (u,v)=(0,0), (0,1), (1,0), and (1,1) are al sequentially consistent
outcomes, and allowing the operationsto execute out of program order does not introduce any new outcomes
that are not possible under sequential consistency. The information that is generated by such an analysis can
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be used by both the architecture and the compiler to exploit the reordering of operations where it is deemed
safe. Similar to Lamport’swork, Shashaand Snir assumed writes are atomic; therefore, their framework does
not deal with issues of non-atomicity arising from the presence of multiple copies.

Unfortunately, automatically figuring out the critical set of program ordersis a difficult task for genera
programs. The primary source of difficulty is in detecting conflicting data operations (i.e., operations to
the same location where at least one is a write) at compile time. Thisis virtually the same as solving the
well-known aliasing problem, except it isfurther complicated by thefact that we are dealing with an explicitly
parallel program. The above problemisundecidablein the context of general programs. Furthermore, inexact
solutions are often too conservative especialy if the program uses pointers and has a complex control flow.
Therefore, while the above techniques may work reasonably well for limited programs and programming
languages, it is not clear whether they will ever become practical in the context of general programs.

The next section describes alternative techniques for enhancing system performance without violating the
semantics of SC.

2.3.3 Other Aggressive Implementations of Sequential Consistency

This section presents a brief overview of a few other techniques that have been proposed to enhance the
performance of sequentially consistent implementations. These techniques are specifically targeted at hard-
ware implementations and are not applicable to the compiler. More detailed descriptions are presented in
Chapter 5.

The first technique we discuss reduces the latency of write operations when the write has to invalidate
or update other cached copies. A naive implementation of sequential consistency would acknowledge the
invalidation or update message from each cache after the relevant copy has actually been affected. A more
efficient implementation can acknowledge the invalidation or update earlier, i.e., as soon as the message
is buffered by the target processor node. Thus, the issuing processor will observe a lower latency for the
write. Sequentia consistency is still upheld as long as certain orders are maintained with respect to other
incoming messages. Afek et a. [ABM89, ABM93] originally proposed thisidea, referred to as lazy caching,
in the context of a bus-based implementation using updates and write-through caches. We present several
extensions and optimizations to this idea in Chapter 5, making this technique applicable to a much wider
range of implementations.

The above technique can be extended to more dramatically reduce the write latency in systems that use
restrictive network topologies. Examples of such networksinclude buses, rings, trees, and hierarchies of such
topologies. Landin et al. [LHH91] propose an implementation of SC that exploitsthe ordering guaranteesin
such networksto providean early acknowledgement for writes. The acknowledgement is generated when the
writereaches the“root” nodein the network, which occurs before the write actually reaches itstarget caches.
Chapter 5 presents our generalized version of this optimization in the context of various restricted network
topologies.

Adveand Hill [AH90a] have also proposed an implementation for sequentia consistency that can aleviate
some of the write latency by allowing certain operations that follow the write to be serviced as soon as the
write is serialized (i.e., receives ownership for the line) as opposed to waiting for al invalidations to be
acknowledged.

Finally, amore promising way to enhance the performance of SCisto use acombination of thespeculative
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read and automatic write prefetching techniques that we proposed in an earlier paper [GGH91b]. The idea
behind speculative reads is to actually issue reads in an overlapped manner with previous operations from
the same processor, thus alowing the operations to potentially complete out of program order. A simple
mechanism is used to detect whether the overlapped completion of the operations can possibly violate
sequential consistency. In the unlikely case that such a violation is detected, the speculative read and any
computation that isdependent on it are simply rolled back and reissued. Thistechniqueisespecialy suited for
dynamically scheduled processors with branch prediction capability since the required roll-back mechanism
isvirtually identical to that used to recover for branch mispredictions. The idea behind the second technique
is to automatically prefetch the cache lines for write operations that are delayed due to the program order
requirements. Thus, the write is likely to hit in the cache when it is actually issued. This latter technique
allowsmultiplewritesto be (almost fully) serviced at the sametime, thusreducing thewritelatency as seen by
the processor. The above two techniques have been adopted by several next generation processors, including
the MIPS R1000 and the Intel Pentium Pro (both are dynamically scheduled processors), to allow for more
efficient SC implementations.

Overdll, except for the specul ativeread and thewrite prefetching techni queswhich are primarily applicable
to systems with dynamically scheduled processors, the rest of the techniques described above fail to exploit
many of the hardware optimizationsthat are required for dealing with large memory latencies. Furthermore,
we are not aware of any anal ogoustechniquesthat allow the compiler to safely exploit common optimizations
without violating SC. Therefore, preserving the semantics of sequential consistency can till severely limitthe
performance of a shared-memory system. The following quotation from the two-page note by Lamport that
originally proposed sequentia consistency [Lam79] echoes the same concern: “The requirements needed to
guarantee sequential consistency ruleout some techniqueswhich can be used to speed up individual sequential
processors. For some applications, achieving sequential consistency may not be worth the price of slowing
down the processors.”

To achieve higher performance, many shared-memory systems have opted to violate sequential consistency
by exploiting the types of architecture and compiler optimizations described in Section 2.2. Thishasledto a
need for aternative memory consistency modelsthat capture the behavior of such systems.

2.4 Alternative Memory Consistency M odels

This section describes the various relaxed memory consistency models that have been proposed to capture
the behavior of memory operationsin systemsthat do not strictly obey the constraints set forth by sequential
consistency. We begin the section by presenting a progression of relaxed models that enable more aggressive
architecture and compiler optimizations as compared to sequential consistency. We next consider the rela-
tionship among these models in terms of the possible outcomes they alow for individual programs. Finally,
the latter part of the section describes some of the shortcomings of relaxed models relative to sequential
consistency.

24.1 Overview of Relaxed Memory Consistency Models

The basic idea behind relaxed memory modelsisto enable the use of more optimizationsby eliminating some
of the congtraints that sequential consistency places on the overlap and reordering of memory operations.
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While sequentia consistency requires the illusion of program order and atomicity to be maintained for all
operations, relaxed models typicaly alow certain memory operations to execute out of program order or
non-atomically. The degree to which the program order and atomicity constraints are relaxed varies among
the different models.

The following sections provide an overview of severa of the relaxed memory consistency models that
have been proposed. We have broadly categorized the various models based on how they relax the program
order constraint. The first category of models includes the IBM-370 [IBM83], Sun SPARC V8 tota store
ordering (TSO) [SFC91, SUN91], and processor consistency (PC) [GLLT90, GGH93b] models, all of
which allow a write followed by a read to execute out of program order. The second category includes
the Sun SPARC V8 partid store ordering (PSO) moded [SFC91, SUN91], which also allows two writes to
execute out of program order. Finaly, the models in the third and last category extend this relaxation by
allowing reads to execute out of program order with respect to their following reads and writes. These
includethe weak ordering (WO) [DSB86], rel ease consistency (RC) [GLL* 90, GGH93b], Digital Equipment
Alpha (Alpha) [Sit92, SW9I5], Sun SPARC V9 relaxed memory order (RMO) [WG94], and IBM PowerPC
(PowerPC) [MSSW94, CSB93] models.

In what follows, we present the basic representation and notation used for describing the models and
proceed to describe each model using this representation. Our primary goal isto provide an intuitive notion
about the behavior of memory operations under each model. A more formal and compl ete specification of
the models is provided in Chapter 4. Since many of the above models were inspired by the desire to enable
more optimizationsin hardware, our preliminary discussion of the models focuses mainly on the architectural
advantages. Discussion of compiler optimizationsthat are enabled by each model isdeferred to Section 2.4.6.

24.2 Framework for Representing Different Models

This section describes the uniform framework we use to represent the various relaxed memory models. For
each model, our representati on associ ates the model with a conceptual system and a set of constraintsthat are
obeyed by executions on that system. Below, we use sequential consistency as an example model to motivate
the various aspects of our representation.

Figure 2.11 shows the basic representation for sequential consistency. The conceptual system for SC
consists of n processors sharing asinglelogical memory. Notethat the conceptual system ismeant to capture
the behavior of memory operations from a programmer’s point of view and does not directly represent the
implementation of amodel. For example, even though we do not show caches in our conceptual system, an
SC implementation may still cache dataas ong as the memory system appears as a single copy memory (e.g.,
writes should appear atomic).

We represent shared memory read and write operations as R and W, respectively. A read operation is
assumed to complete when its return value is bound. A write operation is assumed to complete when the
corresponding memory location is updated with the new value. We assume each processor issues its memory
operations in program order. However, operations do not necessarily complete in this order. Furthermore,
unless specified otherwise, we implicitly assume all memory operations eventually complete.

Atomic read-modify-write operations are treated as both a read and a write operation. Most models
require that it appears as if no other writes to the same location (from a different processor) occur between
theread and the write of the read-modify-write. The TSO, PSO, and RMO models, however, require that no
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Figure2.11: Representation for the sequentia consistency (SC) model.

other writes to any location occur between the read and the write of the read-modify-write.

Thefirst type of constraint on the execution of memory operationsrelatesto program order and isreferred
to as the program order requirement. We use a pictorial representation to illustrate the program orders that
are maintained by amodel. Asshown onthe right side of Figure 2.11, we represent al possible pairs of read
and write operations issued by the same processor that follow one another in program order: read followed
by aread, read followed by a write, write followed by a read, and write followed by awrite. The presence
of aline between a given pair of operations signifiesthat program order should be maintained between such
pairs, (i.e., the operations are required to complete in program order). As shown, SC requires program order
to be maintained among all operation types.

The second type of constraint relates to the values returned by reads and is referred to as the value
requirement. For sequential consistency, the value requirement is as follows: aread is required to return the
value of thelast writeto the same location that completed in memory before theread completes. Wewill refer
to this as the memory value requirement. Some of the models, such as TSO and PC, have a different value
requirement that allows a processor to read the value of its own write before the write completes in memory.
This latter semantics models the effect of optimizations such as read forwarding that allows a read to return
the value of awrite from awrite buffer. We refer to this as the buffer-and-memory value requirement. Other
models may impose additional types of constraintsthat will be discussed as we introduce each modd.

The conceptual system shown in Figure 2.11 must obey the program order and memory val ue requirement
described above to satisfy sequential consistency. An implementation obeys a given model if the result
of any execution is the same as if the program was executed on the conceptua system. Therefore, a real
system need not satisfy the constraints imposed on the conceptua system (e.g., program order) as long as
the results of its executions appear as if these constraints are maintained. As aresult, smilar techniques to
those described in Section 2.3 for implementing SC more aggressively are applicable to relaxed models as
well. For simplicity, our discussion on the possible optimizations enabled by each model will concentrate on
straightforward implementations. Chapter 5 provides more details about aggressive techniques that can be
used to implement these models more efficiently.

24.3 RelaxingtheWriteto Read Program Order

Thefirst category of relaxed modelsthat we consider are those modelsthat allow a write followed by a read
to execute out of program order. The typical way hardware exploitsthisrelaxation isthrough buffering writes
and alowing aread to bypass the writes in the buffer. While maintaining sequential consistency typically
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Figure2.12: The IBM-370 memory model.

requiresthe processor to wait for a previouswrite to complete before completing the next read operation, this
optimization allows the processor to continue with a read without waiting for write operations to complete.
As aresult, the write latency can be effectively hidden. Furthermore, many applications function correctly
(i.e., providesequentially consistent results) evenif the program order fromawriteto aread isnot maintained.
Therefore, even though systems that exploit this optimization are not sequentially consistent, they appear
sequentially consistent to alarge class of programs.

The three models that we describe in this section are the IBM-370, TSO, and PC models. These models
all provide the relaxation described above. The differences among them arise from the way they deal with
the atomicity of memory operations and whether a processor is alowed to return the vaue of its own write
before the write completes in memory.

IBM-370

Figure2.12 providesthe representation for the IBM-370 model [IBM83]. The IBM-370 model allowsawrite
followed by aread to complete out of program order unless the two operations are to the same location, or if
either operation is generated by a seriadization instruction, or if thereis aserialization instruction in program
order between the two operations. The IBM-370 modd has two types of serialization instructions: specia
instructionsthat generate memory operations(e.g., compare-and-swap) and special non-memory instructions
(e.g., aspecia branch).

The conceptual system shown in Figure 2.12 is similar to that used for representing SC with a single
logical memory shared by the processors. The main difference is the presence of a buffer between each
processor and the memory. Since we assume that each processor issues its operations in program order, we
use the buffer to modd the fact that the operations are not necessarily issued in the same order to memory.
Of course, the program order requirement places constraints on the reordering that can take place within the
buffer. We aso use the buffer to capture the behavior of models that alow a read to return the value of a
conflicting write in the buffer before the writeis actually issued to the memory.

The program order requirement for the IBM-370 model is shown on theright side of Figure2.12. Similar
to SC, the program orders between two reads, aread followed by awrite, and two writes are maintained. The
only difference is in the program order from a write to a read, which is only maintained in the three cases
enumerated below. First, awritefollowed by aread to the same location must completein the same order. We
use adashed line between thewrite-read pair to depict program order between operationsto the same location.
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Second, program order ismaintained if either the write or theread are generated by a serialization instruction.
We use Rg and Wy to depict read and write operations generated by serialization instructions; R and W till
denote any read or write, including those generated by seriaization instructions. Finaly, program order is
maintained if thereis a non-memory serialization instruction between the write and the read. We generically
refer to non-memory instructionsthat enforce program order as fence instructions[BMW85, GLL*90], and
use a line with an “F’ symbol (for fence) beside it to depict the presence of a program order enforced by
afence instruction. The program order constraints are transitive by definition. For example, if we have a
sequence of (W,Rg,R) in program order, program order is automatically enforced between the first write and
thelast read.

Thefact that the IBM-370 requiresawrite followed by aread to the same location to completein program
order implies that a read is not alowed to return the value of a write from the buffer. We depict thisin
Figure 2.12 by showing the reply path for a read from memory with the forwarding path from the buffer
blocked. Therefore, the value requirement for IBM-370 isthe same asfor SC, i.e,, aread returns the latest
value in memory. Among the models we discuss in this section, IBM-370 is the only model that disallows
optimizations such as read forwarding in an implementation.

To better understand the rel ationship between the SC and the IBM-370 models, we consider the possible
outcomes under the two models for the program segments in Figure 2.3. Of the four programs, al except the
example in Figure 2.3(b) provide the same set of outcomes on SC and the IBM-370 models. By alowing
a read to be reordered with respect to a previous write, the IBM-370 model allows the non-SC outcome
(u,v)=(0,0) for the example in Figure 2.3(b). Of course, the above difference with SC can be aleviated by
using serialization or fence instructionsto enforce the write-read program orders.

By requiring a write followed by aread to the same location to complete in program order, the IBM-370
model does not alow the latency of some writes to be hidden from the processor since the read must be
delayed for the write to complete. The TSO model which is described next removes this restriction.

SPARC V8 Total Store Ordering (T SO)

The total store ordering (TSO) model is one of the models proposed for the SPARC V8 architecture [SFC91,
SUN91]. Figure 2.13 shows the representation for thismodel. The main difference between the IBM-370
model and the TSO modéd isthat TSO always allows awrite followed by aread to complete out of program
order. All other program orders are maintained. The conceptual system isamost identical to that of IBM-370
except theforwarding path from the buffer to aread isno longer blocked. Therefore, if aread matches (i.e,, is
to the same location as) awrite in the write buffer, the value of the last such writein the buffer that is before
it in program order is forwarded to the read. Otherwise, the read returns the value in memory, asin the SC
and IBM-370 models.

Because the value of awritein the buffer is allowed to be forwarded to aread, the value requirement for
TSO isdifferent from the simple memory value requirement for SC and IBM-370. If we consider operations
as executing in some sequentia order, the buffer-and-memory value requirement requires the read to return
the value of either the last write to the same location that appears before the read in this sequence or the last
write to the same location that is before the read in program order, whichever occurs later in the sequence.
This requirement captures the effect of forwarding the value of awritein the buffer in case of a match.

Figure 2.14 presents a couple of program segments that illustrate the differences between the TSO and
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Figure 2.13: Thetotal store ordering (TSO) memory model.
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Figure 2.14: Example program segments for the TSO mode.

IBM-370 or SC models. First consider the program segment in Figure 2.14(a). Under the SC or IBM-370
model, the outcome (u,v,w,x)=(1,1,0,0) isdisallowed. However, thisoutcome is possible under TSO because
reads are alowed to bypass al previouswrites, even if they are to the same location; therefore the sequence
(b1,b2,cl,c2,a1,a2) isavalid total order for TSO. Of course, the value requirement still requires bl and b2
to return the values of al and a2, respectively, even though the reads occur earlier in the sequence than the
writes. This maintains the intuition that a read observes all the writes issued from the same processor as the
read. Figure 2.14(b) showsadightly different program segment. In thiscase, the outcome (u,v,w,x)=(1,2,0,0)
isnot alowed under SC or IBM-370, but is possible under TSO.

Processor Consistency (PC)

The models we have considered up to now al provide the appearance of a single copy of memory to the
programmer. Processor consistency (PC) [GLL* 90, GGH93b] isthe first moddl that we consider where the
multiple-copy aspects of the memory are exposed to the programmer.? Figure 2.15 shows the representation
for thismodel. The conceptual system consists of several processors each with their own copy of the entire
memory. By modeling memory as being replicated at every processing node, we can capture the non-atomic
effects that arise due to presence of multiple copies of a single memory location.

Since the memory no longer behaves as a single logica copy, we need to extend the notion of read and
write memory operations to deal with the presence of multiple copies. Read operations are quite similar to
before and remain atomic. The only difference isthat aread is satisfied by the memory copy at the issuing
processor’s node (i.e., read from P; is serviced by M;). Write operations no longer appear atomic, however.

1The processor consistency model described here is distinct from the (informal) model proposed by Goodman [Goo89, Goo91].
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Figure 2.15: The processor consistency (PC) model.

+ Coherence

Each write operation conceptualy resultsin all memory copies corresponding to the location to be updated
to the new value. Therefore, we model each write as a set of n sub-operations, W(1) ... W(n), wherenis
the number of processors, and each sub-operation represents the event of updating one of the memory copies
(e.g., W(1) updates the locationin M1). Since we need to refer to the sub-operations of awrite, we will also
refer to aread as a single atomic sub-operation for uniformity (denoted as R(i) for aread from P;).

Giventhat writes consi st of multiplesub-operationsnow, our notion of maintai ning program order changes
dightly as well. Consider two writesin program order, for example. To maintain the program order among
the two writes, we require all sub-operations of the first write to complete before any sub-operations of
the second write complete. As before, a read sub-operation completes when its return value is bound. A
write sub-operation W(i) completes when it updatesits corresponding location in M;. Figure 2.15 shows the
program order requirement for PC. We use the doubl elines between apair of operationsto denote thefact that
operations may no longer be atomic and that al sub-operations of the first operation must complete before
any sub-operations of the second operation.

Since write operations are no longer atomic, processor consistency imposes an additional constraint on
the order of write sub-operationsto the same location. This requirement is called the coherence requirement.
The coherence requirement constrains al write sub-operations to the same location to complete in the same
order across al memory copies. In other words, given W1 and W2 are two writes to the same location,
if W1(i) completes before W2(i), the coherence requirement requires W1(j) to also complete before W2(j)
for dl j. Therefore, there is conceptualy a serialization point for all write operations to the same location.
Finally, the value requirement for PC is an extension of the buffer-and-memory value requirement described
for TSO. The following summarizes the conditionsfor PC.

Condition 2.3: Conditionsfor Processor Consistency (PC)

Memory sub-operations must execute in a sequential order that satisfies the following conditions:

(a) sub-operationsappear in this sequencein the order specified by the program order requirement of Figure2.15,
and

(b) the order among sub-operations satisfies the coherence requirement, and

(c) aread sub-operation issued by R(i) returns the value of either the last write sub-operation W(i) to the same
location that appearsbefore the read in this sequenceor the last write sub-operation to the location that is before
the read in program order, whichever occurs later in the execution sequence.

Toillustratethe effect of non-atomicwrites, consider the program segmentsin Figures2.3(c) and (d). Pro-
cessor consi stency alowsthe outcome (u,v,w)=(1,1,0) inthefirst example and the outcome (u,v,w,x)=(1,0,1,0)
in the second exampl e, while none of the previous models we have discussed allow these outcomes.

The fact that writes are not required to appear atomic makes PC suitable for update-based as well as
invalidation-based designs (as discussed in Section 2.2.1, supporting atomic writesisdifficult in update-based
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Figure 2.16: The partial store ordering (PSO) modedl.

designs). However, by far the magjor advantage of models such as PC, TSO, and IBM-370 over SC is the
ability to hide the write latency by allowing reads to execute out of program order with respect to previous
writes.

244 RelaxingtheWriteto Write Program Order

The second category of relaxed models that we consider alow two writes to execute out of program order
in addition to alowing the reordering of a write followed by aread. This relaxation enables a number of
hardware optimizations, including write merging in awrite buffer and overlapping multiple write misses, all
of which can lead to a reodering of write operations. Therefore, write operations can be serviced at a much
faster rate. Below, we describe the characteristics of the partia store ordering (PSO) model which allowsthis
optimization.

SPARC V8 Partial Store Ordering (PSO)

The partia store ordering model (PSO) [SFC91, SUN91] is an extension of the TSO model and isthe second
model provided by the SPARC V8 architecture. Figure 2.16 shows the representation for this model. The
conceptua system isidentical to that of TSO. The program order requirement isalso similar except that writes
to different locations are allowed to execute out of program order. We use the same notation of a dotted line,
which we used for the IBM-370 model, to indicate program order is maintained between (write) operations
to the same location. PSO also provides afence instruction, called the store barrier or STBAR, that may be
used to enforce the program order between writes.

Referring back to the program segment in Figure 2.5(c), the only outcome allowed by the previousmodels
we have discussed is (u,v)=(1,1). However, since PSO alows writes to different locations to complete out
of program order, it aso alows the outcomes (u,v)=(0,0) or (0,1) or (1,0). For this specific example, it is
sufficient to place a single store barrier immediately before the write to Flag on P1 in order to disallow all
outcomes except (u,v)=(1,1).

245 RelaxingtheRead to Read and Read to Write Program Order

The third category of relaxed models we consider provide a more general set of reorderings by also alowing
two reads or a read followed by a write to complete out of program order. The hardware can exploit the
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overlap of aread operation with operations that follow it in program order to hide some of the read latency.
We will consider the following five relaxed memory models in this section: weak ordering (WO), release
consistency (RC), Alpha, Relaxed Memory Order (RMO), and PowerPC. Weak ordering [DSB86] is the
semina model among these. We extended the ideas in weak ordering to define the rel ease consistency model;
this model is supported by the Stanford DASH design [LLG92]. Finally, the last three models have been
proposed for use in commercia multiprocessors.

In what follows, we describe the characteristics of each of the above models. For simplicity, we ignore
afew subtle ordering requirements, related to control dependences, that are imposed by some of the original
definitionsfor these models.? We also have had to make some interpretations of our own to describe afew of
the model swhose origina definitionsare partially ambiguous. Finally, we do not attempt to model instruction
fetches, I/0 operations, or multiple granularity data operations, even though some of the commercial models
describe the semantics for such operations. Formal specifications for these models are presented in Chapter 4
and Appendix I.

Weak Ordering (WO)

Theweak ordering model (al so known asweak consistency) was proposed by Duboiset al.[DSB86] andrelies
on maintaining program order only at the synchronization pointsin the program. The intuition behind weak
ordering isthat most programs are written using synchronization operationsto coordinate memory operations
on different processors and maintaining program order at such synchronization operations typically leads
to correct outcomes (e.g., SC outcomes) for the program. For example, consider the program segment in
Figure 2.5(b). In this example, locks are used to ensure that accesses to shared data occur within critical
sections on each processor. If the test-and-set operation and the write to reset the lock variable on each
processor are identified explicitly as synchronizations, weak ordering guarantees the executions of this
program will be sequentially consistent.

Figure 2.17 shows the representation for weak ordering. The conceptual system is similar to that of PC
since weak ordering also exposes the multiple-copy semantics of memory to the programmer.® The only
differenceisthat, similar to the IBM-370 model, aread isnot allowed to return the value of a previous write
to the same location until the write completes (i.e., the forwarding path from the buffer is blocked).

Figure 2.17 aso shows the program order requirements for WO. We use Rg and W to denote read and
write operationsthat areidentified as synchronization. Asbefore, R and W denoteany read or write operation,
including synchronization operations. As with PC, the double lines between operations in program order
denotes the fact that each operation may consist of multiple sub-operations and that al sub-operations of the
first operation must complete before any sub-operations of the second operation. We & so use a new notation
consisting of triple lines between a read and a following operation in program order. This notation denotes
that the read sub-operation and the sub-operations of the write (possibly from a different processor) whose
valueis returned by the read should complete before any of the sub-operations of the operation that follows
the read in program order. Duboiset al. refer to this as the read being “globally performed” [DSB86]. As
shown in the figure, weak ordering maintains the program order between a synchronization operation and

2See the description of the reach condition in Appendix F and Appendix 1.
3The way multiple-copy semantics is exposed is subtle and is only apparent from the formal specification of WO presented in
Appendix I.
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Figure 2.17: The weak ordering (WO) modd.

operations that are before or after it in program order. Furthermore, program order is maintained among
conflicting operations (i.e., operationsto the same location with at least one being a write).

Similar to PC, the weak ordering model also constrains the order of writes to the same location by the
coherence requirement. Therefore, writes to the same location must complete in the same order with respect
to al memory copies.

Finally, the value requirement for WO is an extension of the memory value requirement: a read sub-
operation R(i) returns the value of the last write sub-operation W(i) to the same location that appears before
the read in the execution sequence. It turns out that the outcomes alowed by WO would be identical if we
relax the program order requirement from a write to a read and use the extension of the buffer-and-memory
value requirement defined for PC. Therefore, optimizations such as read forwarding can be safely exploited.
Nevertheless, since the behavior of the model is the same without this relaxation, we do not need to expose
the relaxation to the programmer. This same observation holds for the Alphaand PowerPC models.

Figure 2.18(a) illustrates the types of reordering alowed by WO by showing a sample set of operations
from the same processor. Each block with a set of reads and writes represents a run of non-synchronization
operations. Synchronization operation are identified separately. The figure shows that a synchronization
operation (either aread or awrite) must be delayed until al previousread and write operations complete, and
read and write operations may not complete until the previous synchronization operation is complete. Weak
ordering allows operations to different locationsto be reordered in the region between two synchronization
operations. Since synchronization operationsare infrequent in many applications, thisflexibility providesthe
opportunity to reorder and overlap operationsacrosslarge regionsof code. Notethat by conservatively identi-
fying all operations as synchronization, weak ordering trivialy guarantees sequentially consistent executions
for any program.

Release Consistency (RC)

Release consistency extends the ideas in weak ordering by further distinguishing among memory opera-
tions[GLLT90, GGH93h]. Specificaly, release consistency further categorizes synchronization operations
into acquire and rel ease operations. An acquireisaread memory operation that isperformed to gain access to
a set of shared locations (e.g., alock operation or spinning for aflag to be set). A release isawrite operation
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that is performed to grant the permission for accessing a set of shared locations (e.g., an unlock operation or
the setting of aflag). This extrainformation is used to allow further reordering among memory operations.
For simplicity, we describe only a subset of the operation categories used by release consistency. Chapter 4
presents the compl ete specification for thismodel.

Figure 2.18 shows the difference between WO and RC for the example we discussed in the previous
section. The main idea behind release consistency is that read and write synchronization operations have
different ordering requirements. The purpose of a write synchronization used as a release is to signa that
previous accesses are complete and it does not have anything to say about ordering of accesses that follow
it. Therefore, while the completion of the release is delayed until previous memory operationsin program
order complete, memory operations after arelease are not delayed for the rel ease to complete. Similarly, the
completion of aread synchronization used as an acquire need not be delayed for previous memory operations
to complete. This is because the acquire is not giving permission to any other process to read or write the
previous pending locations. As shown in the figure, this allows for extra reordering and overlap of memory
operations across acquires and rel eases.

Figure2.19 providestherepresentation for rel easeconsistency. Therearetwo flavorsof release consistency
that differ in the order that is maintained among synchronization operations. The first flavor maintains
sequentia consistency among synchronization operations and is referred to RCsc, while the second flavor
maintains processor consistency among such operations and is called RCpc. Except for the program order
requirements, these two models are identical. Considering the conceptua system, release consistency is
similar to weak ordering except aread is allowed to return the value of awrite (to the same location) that is
inthe buffer. The value requirement for both RCsc and RCpc is the same as that for PC. Finally, both models
obey the coherence requirement.

Let us consider the program order requirements in more detail. Aswe mentioned above, release consis-
tency providesa further categorization of operations. Both acquires and releases belong to a category called
competing operations. Intuitively, competing operations are those operationsthat are involved in arace with
other conflicting operations.* Competing operations also include a third category of operations that are not
used to achieve synchronization. We use R¢ and W to depict competing operations. R,., and W,..; denote

4In release consistency, the requirement for a write operation to eventually complete applies to competing writes only.
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Figure 2.19: The release consistency (RC) models.

acquire and release operations. Finally, R and W till denote any read or write. For RCsc, al competing
operations are required to complete in program order. In addition, the program order between an acquire
and following operations, and between an operation and a following release, are maintained. Finaly, for
conflicting operations, program order is maintained from a read to a write and between two writes (shown
with dotted lines); the order from a conflicting write to a read is not upheld, however. RCpc differs from
RCsc only in the order maintained among pairs of competing operations.

Referring back to Figure 2.5(c), it is sufficient to identify the write to Flag as a release and the read
of Flag as an acquire operation to ensure SC outcomes under both RCsc and RCpc models. The release
consistency model was proposed in conjunction with the proper labeling (PL) framework [GLL*90], which
is a programmer-centric specification that presents the programmer with a higher level abstraction of system
behavior to simplify the task of programming with RC. This framework is described in detail in the next
chapter.

DEC Alpha (Alpha)

In contrast to the WO and RC model s which require memory operationsto be identified or labeled according
to a given categorization, the three commercia memory models we consider impose ordering solely through
explicit fence instructions. We begin by considering the Alpha memory model [Sit92, SW95]. Figure 2.20
providesthe representation for thismodel. The conceptua system isidentical to that of the IBM-370 model.
The program order constraints allow reads and writes to different locationsto complete out of program order
unlessthereisafence instruction between them. The Alphamodel supportstwo types of fences, the memory
barrier (MB) and thewritememory barrier (\WMB); these arelabeled asF1 and F2 inthefigure for fence types
1 and 2, respectively. Asshown, an MB imposes program order between all read and write operations, while
the WMB only imposes program order between writes. Finally, memory operations to the same location,
including reads to the same location, are required to completein program order. Among the model s discussed
in this category (i.e., WO, RCsc, RCpc, Alpha, RMO, PowerPC), Alphaisthe only model that enforces the
program order between reads to the same location.

The value requirement for Alphais the same as the memory value requirement used for SC or IBM-370,
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which requires aread to return the value of the last write operation to the same location. However, similar
to WO, the semantics of the model is unaffected if we relax the program order requirement from a write to
aread and use the buffer-and-memory value requirement of TSO.5 Therefore, implementations can safely
exploit optimizations such as read forwarding.

The Alpha memory model can be used to emulate severa of the previous models we have discussed by
appropriately using the explicit fence instructions. For example, we can guarantee SC by naively placing a
fence instruction between any pair of memory operations. Similarly, we can preserve the requirements for
WO by placing a fence instruction before and after every memory operation identified as a synchronization.
Frequent use of fence instructionscan incur asignificant overhead, however, dueto an increase in the number
of instructionsand the extra delay that may be associated with executing fence instructions. This observation
holds for any model that requires the use of explicit fence instructions to impose orders (e.g., PSO, RMO,
PowerPC).

SPARC V9 Relaxed Memory Order (RMO)

Therelaxed memory order (RMO) model is an extension of the TSO and PSO model s and was adopted for the
SPARC V9 architecture [WG94]. RMO extends the PSO mode to alow aread to complete out of program
order with respect to following read and write operations. Our research on the release consistency model
and quantifying its performance gains had a direct influence on the design of RMO, and we helped Sun with
formalizing the semantics of thismodel. Figure 2.21 shows the representation for RMO. RMO providesfour
types of fences that allow program order to be selectively maintai ned between any two types of operations. A
single fence instruction can specify a combination of the above fence types by setting the appropriate bitsin
afour-bit opcode. The program order constraints are shown in the figure, with the four fence types depicted
as F1 through F4. RM O also maintains the program order between a read followed by awrite or two writes
to the same location. The value requirement for RMO is the same as for TSO and PSO.
Similar to the Alphamodel, the RMO model can be used to provide sufficient implementationsfor severa

of the model s we have discussed.

SWe are not consideringthe effect of dataaccessesat multiple granularities (e.g., byte, word, longword, quad word) in this discussion.
Capturing the behavior of the Alphamodel with multiple granularity accesses would actually require the use of the buffer-and-memory
value requirement, along with allowing a write followed by aread to the same location to complete out of program order [SW95].
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Figure 2.22: An approximate representation for the PowerPC model.

IBM Power PC (Power PC)

In contrast to the Alpha and RMO models, the IBM PowerPC model [CSB93, MSSW94] exposes the
multiple-copy semantics of memory to the programmer. Figure 2.22 shows the representation for PowerPC.
This representation is only approximate for reasons that will be described shortly. The conceptual system
isidentical to that of WO. PowerPC provides a single fence instruction, called a SYNC, that may be used
to impose program orders. Remember that the double lines between operations in program order denotes
the fact that each operation may consist of multiple sub-operations and that all sub-operations of the first
operation must compl ete before any sub-operationsof the second operation. Notethat the program order from
aread to its following operations does not delay for the read to be globally performed, which would have
been depicted by atripleline. Program order is also maintained among conflicting operations. PowerPC also
constrainsthe order of writes to the same | ocation through the coherence requirement. The value requirement
for PowerPC isthe same asfor WO: aread sub-operation R(i) returnsthe value of the last write sub-operation
W(i) to the same location that appears before the read in the execution sequence. The semantics of the model
is unaffected if we relax the program order requirement from a write to a read and use the extension of the
buffer-and-memory value requirement used for PC. Therefore, optimizations such as read forwarding from
the buffer are actually safe.

The representation shown in Figure 2.22 is stricter than the actual PowerPC moddl. Figure 2.23(a)
shows an example program that illustrates this distinction. The representation in Figure 2.22 along with the
consgtraints described above imply that the outcome (u,v)=(1,0) is disallowed under PowerPC. However, the
formalism provided by Corellaet al. [CSB93] implies that this outcome is actually allowed even though a
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P1 P2 P1 P2

al: A=1; a2: U=A; al: Ptr=..; a2: while (Ptr==0);
b2: Sync; b2: Sync;
c2: V=A; c2: u=Ptr—>._;
(a) (b)

Figure 2.23: Example program segments for the PowerPC model.

fence instruction is placed between the two reads on P2. Figure 2.23(b) shows a similar code segment to
illustrate that this scenario can actually occur in practice. P2 waits for a null pointer to be set and then
proceeds to dereference the pointer. Under PowerPC, it is possible for P2 to erroneoudly dereference a null
pointer. Capturing thisbehavior inthe simpleframework we havebeen using isdifficult. Similarly, designing
a hardware implementation that satisfies PowerPC and yet alows the outcome (u,v)=(1,0) for the program
in Figure 2.23(a) also seems quite difficult. Therefore, this behavior arises more as a side effect of the way
PowerPC has been formalized, and actual implementations of the model will likely not behave in this way.
Nevertheless, this subtle relaxation in PowerPC can make ports to this model more difficult and inefficient.
Appendix | provides the precise specification for PowerPC using our more general framework.

24.6 Impact of Relaxed M odelson Compiler Optimizations

In discussingtherel axed memory model's, we have mainly concentrated onthe performance differencesamong
the model s based on the types of architectural optimizationsthey enable. This section briefly discusses some
of theimplicationsfor compiler optimizations.

The main flexibility required for doing compiler optimizations is to alow memory operations within
each process or thread to be reordered with respect to their program order. As we discussed in Section 2.3,
maintaining sequential consistency effectively disallows such reordering on shared memory operations.
Compared to SC, thethree categories of relaxed model s that we discussed provide a higher degree of freedom
for such reordering. However, not all the relaxed models provide sufficient flexibility to alow general
compiler optimizations. For example, thefirst category of models that we discussed (e.g., TSO and PC) only
allow reordering of reads with respect to previous writes in program order. While hardware can exploit this
relaxation to hide write latency, exploitingthislimited type of reordering is difficult for a compiler.

Enabling areasonable set of compiler optimizations effectively requiresfull flexibility in reordering both
reads and writes with respect to one another. Among the models we discussed, only the last category of
models (i.e.,, WO, RC, Alpha, RMO, PowerPC) provide such flexibility. With WO or RC, the compiler is
allowed to freely reorder operations in between consecutive synchronization points. Similarly, with Alpha,
RMO, and PowerPC, memory operations between consecutive fence instructions can be arbitrarily reordered
with respect to one another. Therefore, the compiler can perform optimizations such as register allocation
and code motion on regions of code delimited by synchronization or fences. Chapter 5 will provide a more
detailed discussion about compiler optimizations.
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24.7 Relationship among the Models

Figure 2.24 provides a pictoria view of the “stricter” relation introduced in Section 2.1.5 among the models
we have discussed so far. Given A and B refer to different models, A is stricter than B iff for any run of any
program, the outcomein A ispossiblein B but not viceversa. The models are partitionedinto four categories
based on the level of flexibility they alow in reordering the program order among memory operations. In
the figure, A — B denotes that A is stricter than B. Since the stricter relation is transitive, the arrows can
be followed transitively as well. For example, RCpc is stricter than SC. The lack of an arrow between two
models means that the two models are incomparable. For example, even though a model such as WO alows
amore general set of reorderings compared to TSO, neither is stricter than the other due to subtle differences
among thetwo models. Similarly, IBM-370isnot stricter than TSO because TSO imposes stricter constraints
on read-modify-write operations.

The relations in the figure are based on precise specifications of the models presented in Chapter 4 and
Appendix |. We should note that we do not consider the semantics for operations such as instruction fetches
and 1/0O operations or the effect of multiple granularity accesses. Some of the stricter relations shown in the
figure depend on strai ghtforward assumptions regarding the interpretation of fences or operation labelsacross
different models. For example, weassumeal SY NC instructionsin PowerPC aretreated as M B instructionsin
Alpha. Similarly, we assume competing operationsin RCsc or RCpc are treated as synchronization operations
in WO. We make no assumptions about transforming fences to labels or label s to fences, however.

A program written for model A is guaranteed to run “correctly” (i.e., all outcomes will be allowable by
A) on another model B if the latter is stricter than the former. For example, any programs written assuming
the PC model can be safely executed on the TSO, IBM-370, or SC models. However, the reverse is not
necessarily true because PC violates some of the ordering requirements guaranteed by the other three models.
Nevertheless, it is still possible to port programs between any two models by appropriately transforming
the program. We will further discuss automatic techniques for porting program across different models in
Chapter 4.

2.4.8 Some Shortcomingsof Relaxed Models

Even though relaxed model s enable desirable optimizations, their major drawback isincreased programming
complexity. Most programmers have implicit assumptions about the memory behavior of a shared-memory
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multi processor and usethese assumpti onswhen reasoning about the correctness of their programs. Correctness
problems arise when certain orders that are implicitly assumed by the programmer are not maintained by
the underlying memory model. The advantage of sequential consistency is that no matter what implicit
assumptions a programmer makes regarding the program order or atomicity of memory operations, SC
conservatively maintains al such orders. Therefore, the programmer’s implicit assumptions are never
violated.

In contrast to sequential consistency, relaxed memory models require programmers to abandon their
implicit and intuitive understanding of how memory behaves. Most of the relaxed models we have described
require the programmer to reason with low level (and non-intuitive) reordering optimizationsto understand
the behavior of their programs. In addition, many of the models have been defined using complicated
terminology, and in some cases, the original definitions have ambiguities which leave the semantics open to
interpretation. These factors further exacerbate the difficultiesin programming these models.

Another difficulty with relaxed models is the lack of compatibility among the numerous models and
systems in existence. Many of the subtle differences among models make little difference in the actual
performance of a model. However, such differences make the task of porting programs across different
systems quite cumbersome. Similarly, the variety of modelsin existence make it difficult for programmersto
adopt a programming methodol ogy that works across a wide range of systems.

With al their shortcomings, relaxed models are widely used in many commercial multiprocessor systems,
including systems designed by magjor computer manufacturers such as Digital Equipment, IBM, and Sun
Microsystems. The wide-spread use of these systems suggests that even though sequential consistency is
simpler to use for programmers, performance often plays an important role in the ultimate choice made by
system designers and programmers. Nevertheless, we would idedlly like to provide the extra performance
with as little programming complexity as possible.

2.5 How to Evaluate a Memory Model?

Designing a new memory model that provides a higher performance potential is in some ways quitetrivial.
After al, performance can often be enhanced by simply ensuring fewer program ordersand reducing atomicity
constraintson memory operations. The challengeliesin providing abalanced design that appropriately trades
off diminishing programming ease for the extra performance that is attained. The lack of a metric for
objectively quantifying programming ease further complicates the choice for a system designer.

In what follows, we discuss some important issues in eval uating the trade-off between programming ease
and performance.

25.1 Identifyingthe Target Environment

Thefirst step in eval uating amemory model istoidentify the environment for whichit isintended. Evaluating
the programming ease of a memory model requires identifying the target programmers and the target appli-
cations. For example, sophisticated system programmers will likely have an easier time with complicated
model s because they are accustomed to dealing with low-level abstractionsand system details. Similarly, itis
easier to reason about the memory behavior of well-structured applications with synchronized access to data
structures as compared to applications with unstructured access to shared data.
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Evaluating the performance of amemory model a so requiresidentifyingthetarget system and architecture.
Specifically, itisimportant toidentify thecomponentsin asystem that may benefit from theflexibility provided
by arelaxed model. The attainable performance gainscan vary greatly if we are focusing on the hardware, the
compiler, or both. Similarly, architectural assumptions play an important role; the performance gains from
exploiting arelaxed model can be quite different depending on whether we are considering a tightly coupled
shared-memory multiprocessor or aloosely coupled system that supportsshared memory in software. Finally,
the achievable gains can depend heavily on the characteristics of the target applications.

25.2 Programming Ease and Perfor mance

Figure 2.25 shows the conceptual design space for memory models with respect to performance and pro-
gramming complexity. The trends shown in this figure should be considered only as a coarse guideline
for providing some intuition about the design space. The programming complexity axis is a measure of
programmer effort required to devel op a correctly functioning program that exploitsthe flexibility of a given
model. The performance axis reflects the performance of the overall system, including both the compiler
and underlying architecture. Each point in this space corresponds to a system that exposes some level of
memory operation reordering and overlap to the programmer. The point labeled SC corresponds to a system
that supports sequential consistency. Such a system has the advantage of low programming complexity, but
provideslow performance.

The figure shows a curve that corresponds to the envelope of maximum performance in the design
space. In other words, systems that lie on the curve provide the highest performance for a given level of
programming complexity. The shape of this curve can provide some intuition about the design choices. We
have shown four hypothetical systems (denoted as A, B, C, and D) that lie on the curve, each successively
exploiting more optimizations to achieve a higher performance. Aswe move from SC to A, thereisalarge
increase in programming complexity before we observe any noticeable performance gains. The intuitive
explanation for the sudden increase in programming complexity is that as soon as we move to a non-SC
system, the programmer can no longer rely on theintuitiveorders maintained by SC and isforced to explicitly
reason with the low-level reordering optimizations. After this point, the curve is shown to be steep as we
moveto systems B and C. Since the programmer isalready burdened with directly reasoning with reorderings,
exploitingmore memory reorderings can be quite eff ective because we can achievelarge gainsin performance
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with a marginal increase in programming complexity. Eventually, exploiting more optimizations provides
diminishing returns in performance (e.g., we have achieved most the gains that are possible from alowing
memory operationsto execute out of order) and can cause ajumpin programming complexity sinceit becomes
difficult to write correct programs given an extreme lack of order among memory operations. This effect is
shown as a leveling off of the curve when we go from system C to system D. Given the non-linear shape of
the curve, the most sensible design point for a non-SC system probably lies at the second knee of the curve,
near point C.

It isimportant to notethat not every system fallson the maximum performance curve (e.g., consider point
E). Infact, one of the challenges in designing a relaxed model isto at least ensure that it providescloseto the
highest performance possiblefor itslevel of programming complexity. Given thelarge number of modelsthat
have been proposed in the literature, it is not difficult to find poorly designed models that fail in this respect.

25.3 Enhancing Programming Ease

Therelaxed model swe have discussed so far providethe programmer with an abstract specification for thelow
level reordering and overlap optimizationsthat are allowed among memory operations. Because thesemodels
directly expose the programmer to reordering optimizationsin a system, we refer to them as system-centric
models.

The next chapter will present an aternative category of memory models, called programmer-centric
models. Programmer-centric models present the programmer with a higher-level abstraction of the system,
thus relieving the programmer from directly reasoning with low-level reordering optimizations. To enhance
programming ease, programmersareallowed to reason with sequentia consistency. Programmers can enhance
performance by providing intuitive program-level information about the behavior of memory operationsin
their programs (e.g., identifying synchronization operations). Thisinformationisinturn used by thesystemto
determine the opti mi zationsthat may be safely exploited without viol ating sequential consistency for thegiven
program. We will show that programmer-centric models can achieve better or comparable performance to
system-centric models, and yet provide amuch higher level of programming ease. Thiseffect isconceptually
depicted in Figure 2.26 as a shift of the performance curve towards lower programming complexity. By
enhancing the programming ease of relaxed models, the programmer-centric approach makes it easier to
justify the use of relaxed memory models over sequentia consistency.
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2.6 Related Concepts

This section presents a brief comparison of sequential consistency with other related correctness conditions
such as linearizability [HW90] and serializability [Pap86].

Linearizabilityisacorrectness condition proposed by Herlihy and Wing [HW9O0] for concurrent operations
on shared objects. Shared objectsare typically represented by abstract datatypes. For example, an object may
represent aqueue with corresponding operations such as enqueue and dequeue. Unlike sequentia consistency,
linearizability implicitly assumes the notion of an observable global time across al processes. Operations
are modeled by an interva which consists of the period of time between the invocation and response for the
operation and each operation is assumed to take effect instantaneously at some point within thisinterval. A
processor does not issue an operation until it receives the response to its previous operation.

Linearizability can betrivially transformed to a correctness condition on memory operations by limiting
objects to only represent shared memory locations with corresponding read and write operations. When
interpreted in thisway, linearizability issimilar to sequentia consistency because it requiresvalid executions
to represent atotal order on al operations that is consistent with individua program orders for each of the
processes. However, linearizability is a stricter correctness condition than sequentia consistency because it
requires the actual order in which operations were executed in time to be reflected in this total order. For
example, consider the program segment in Figure 2.3(a). Assume an actual execution of this program with
operations executing in the time order (al,bl1,a2,b2) and with outcome (u,v)=(0,0). While this execution and
outcomeare sequentially consistent because it appearsasif the operationsweredoneintheorder (a2,b2,al,b1)
to produce (u,v)=(0,0), the executionisnot linearizabl e because the total order that explainsthe outcomeisnot
consistent with the actual times at which the operations were executed. The stricter nature of linearizability
naturally makes it aless efficient model to implement compared to sequential consistency. Furthermore, there
are no compelling arguments that justify preserving linearizability over sequential consistency as the base
correctness condition for multiprocessors.

Serializability is the correctness condition that is commonly assumed by most databases and distributed
systems [Pap86]. In serializability, parallel threads consist of separate transactions each executing a finite
sequence of operations to a set of objects shared with other transactions. An execution is considered
serializableif it appearsasif all transactions were executed in a sequential order with no interleaving within
transaction boundaries. Strict serializability further constrains this condition by requiring this sequential
order to correspond to the order in which the transactions are executed in real time [Pap86]. This difference
between serializability and strict serializability is analogous to the difference we noted above between
sequentia consistency and linearizability.

Even though there are superficial similarities between sequential consistency and serializability, the two
correctness conditionstarget different system and problem domains. Seriaizability isappropriatefor systems
such as databases and allows programmers to reason about transactions without considering the concurrency
that the underlying system exploits. On the other hand, sequentia consistency is targeted for programmers
who write explicitly parallel programs and are willing to reason with the concurrency in a multiprocessor
system. We refer the interested reader to Herlihy and Wing's paper [HW90] for a more thorough discussion
of some of the theoretical differences among the correctness conditions discussed in this section.
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2.7 Summary

This chapter presented the background information for the remainder of the thesis. We motivated the need
for a memory consistency model for the purpose of specifying the behavior of memory operations, and
introduced the notion of sequential consistency as an intuitivemodel for shared-memory multiprocessors. We
next considered some of the architecture and compiler optimizations that are desirable in multiprocessors,
and showed that the majority of these optimizationsviolate the semantics of sequentia consistency. Thisled
to the discussion of aternative memory models that enable a higher degree of performance by relaxing some
of the constraints imposed by sequential consistency. Choosing among these models requires considering
fundamental trade-offs between programmability, portability, implementation complexity, and performance.
The remaining chaptersin thisthesis are devoted to athorough analysis of each of these issues with the hope
of clarifying and resolving the various trade-offs.
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Chapter 3
Approach for Programming Simplicity

This chapter presents our approach for enhancing the programmability of relaxed memory models while
mai ntai ning the performance advantages associated with the system-centric model s described in the previous
chapter. We propose an aternative method for specifying memory behavior that presents a higher level
abstraction to the programmer. Instead of requiring the programmer to deal with the complex semantics of
system-centric models, we allow programmers to reason with sequentia consistency and simply requirethem
to provide program-level information about shared memory operations. Thisinformation isthen exploited to
provide higher performance. Models developed using thisframework are referred to as programmer-centric
models.

Section 3.1 provides an overview of the programmer-centric approach. We next present a set of related
programmer-centric models that successively exploit more information about memory operationsto achieve
higher performance. Sections 3.3 and 3.4 compare the above programmer-centric modelswith system-centric
models in terms of performance and ease of use. Section 3.5 describes practical ways that may be used by
programmers to convey the required information about memory operations. We discuss the relevance of
programmer-centric models to programs that exhibit frequent unsynchronized data accesses in Section 3.6.
Finally, Sections 3.7 and 3.8 discuss possible extensions to this work and describe the related work in this
area.

3.1 Overview of Programmer-Centric M odels

Programmer-centric models provide an aternative approach to system-centric models for specifying the
memory behavior of a system. The primary goa of programmer-centric models is to achieve the high
performance associated with system-centric models while maintaining the programming ease of sequential
consistency. We describe the basic foundation for this approach bel ow.

The programmer-centric approach is based on the premise that programmers prefer to reason with an
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Figure 3.1: Exploiting information about memory operations.

intuitive model such as sequentia consistency. Therefore, the programmer is allowed to reason with se-
guentia consistency. To alow for higher performance, we require the programmer to provide program-level
information about the behavior of shared-memory operations. This information isthen used by the system to
determine the memory reordering optimizationsthat can be exploited safely without affecting correctness.

Figure 3.1(a) shows an example program segment to motivate the use of program-level information about
memory operations. The program shows a producer-consumer interaction between two processors, where
P1 writes to two memory locations and sets a flag and P2 waits for the flag to be set before reading the two
locations. A straightforward implementation of sequential consistency would maintain al program ordersin
this example, thus disabling overlap and reordering of memory operations within each processor. However,
as we discussed in Section 2.3.2, maintaining al program orders is not necessary for achieving sequentially
consistent results in most programs. Figure 3.1(b) shows a sufficient set of program orders that guarantee
sequential consistency (SC) in thisexample. The multiple reads of Flag correspond to reading the old vaue
multiple times before the set value is read. As shown, reordering the writes to A and B on P1, or the
reads of A and B on P2, does not affect the correctness of the execution; the result of the execution with
reordering isindistinguishablefrom the result with no reordering. The intuitivereason for thisisthat the flag
synchronization ensures there is only one processor accessing locations A and B at any given time. Once P2
proceeds past itswaiting loop, P1 is aready donewith itswritesto A and B. Therefore, reordering the reads
to A and B does not change the result of the execution since each read occurs after the write to the same
location. A similar argument holdsfor reordering the writesto A and B on P1.

Ideally, we would like to automatically identify (e.g., through compiler analysis) the memory operations
in a program that can be safely reordered and overlapped without violating sequentia consistency. Shasha
and Snir have proposed such an approach [SS88]. However, as we pointed out in Section 2.3.2, the success
of such approaches has been limited to simple programs written with restrictive languages or programming
models.

Instead of depending on automatic techniques, we requirethe programmer to provideexplicitinformation
about the usage and semantics of memory operations, which allows the system to easily determine the
set of orders that may be safely violated. For example, referring back to Figure 3.1, simply knowing
that the operations to the flag location function as synchronization alows us to determine that reordering
the operations to the other locations is safe. The information we require is often naturally known by the
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programmer. Furthermore, with only afew types of information supplied by the programmer, we can exploit
the full range of optimizations captured by the aggressive system-centric models.

Overdl, the programmer-centric approach unifies the memory optimizations captured by the system-
centric models without sacrificing programming ease or portability. Providing the extra program-level
informationis easier and more natural than reasoning directly with the system-centric models. In addition, as
long as the information provided by the programmer is correct, the system guarantees sequentially consistent
results and yet performs comparably to the most aggressive system-centric models.

3.2 A Hierarchy of Programmer-Centric Models

This section presents a hierarchy of programmer-centric models that exploit information about memory
operations to provide higher performance. We describe the categorization that can be used to distinguish
different memory operations based on their semantics and behavior in sequentially consistent executions of
a program. This information is used by the system to determine whether a given operation can be safely
executed out of program order or non-atomically without violating sequential consistency. The hierarchy
of programmer-centric models described here is an extension of our earlier work on the PL [GLL*90] and
PLpc [GAGT92] models which are described in more detail in Section 3.8.

We usethenotion of alabel associated with each memory operation asan abstraction for distinguishingthe
operation based on itscategorization. Section 3.5 discusses practica techniquesfor alowing programmersto
convey such informationabout memory operations. For now, we assume that thelabel is conveyed aong with
the static memory instructionsin a program; the execution of the instruction generates a memory operation
with the associated label. A program that provides correct labels (will be defined shortly) for its memory
operationsis referred to as a properly-labeled (PL) program. Given a properly-labeled program, a canonica
programmer-centric model guarantees that all executions of the program will be sequentially consistent. We
refer to programmer-centric models that are based on the above framework as properly-labeled (PL) models.

We will present three properly-labeled models that successively exploit more information about memory
operationsto achieve higher performance. Thefirst type of information categorizes amemory operation based
onwhether it executes simultaneously with other operationsto the samelocation. Thisinformation effectively
identifiesconflicting operationsthat areinvolved in arace; werefer to such operations as competing operations.
The second type of information distinguishes between competing operations based on whether they are used
to order or synchronize operations to other locations. Finadly, the third type of information identifies a
common use of competing operations for synchronization where one processor waits on a location until a
particular valueiswritten by another processor. Among the above three types of information, the first typeis
by far the most important in allowing the system to achieve higher performance relative to a straightforward
implementation of SC. The latter two types of information become more relevant if competing operations
are frequent. The categorization described here can be extended to include other useful information about
memory operations. However, there is a trade-off between how easy it is for the programmer to provide the
extrainformation and what incremental performance benefitsit can provide.

Before presenting the models, we clarify some terminology and assumptionsthat will be used throughout
this section. Some of this terminology was introduced in Chapter 2. Memory operations are modeled as
asingleread or a single write access to a memory location. Read-modify-write operations are modeled as
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a separate read and write operation. Two operations conflict if they are to the same location and at least
one of them is a write operation. A system is considered an SC system if it obeys sequential consistency.
An execution is an SC execution if it is possible on an SC system. By every SC execution, we mean all
SC executions of the program for al valid inputs and initial states of memory. Memory operations appear
to execute in some total order in an SC execution, referred to as the execution order. Given an execution
order, the conflicting order (—=) isthe order imposed on conflicting memory operations.® Finally, for every
execution of a program, the program order () represents a partial order on all memory operations that
is consistent with the per-processor total order on memory operations imposed by the program for each
processor.

The following sections describe each model in detail and provideintuitionfor how the extra information
about memory operations can be exploited by the system to enable further reordering and overlap of memory
operations. Chapter 4 provides the more precise set of system requirements for guaranteeing sequential
consistency for properly-labeled programs, and describes how properly-labeled programs can be efficiently
ported to systems that support a system-centric model.

3.21 Properly-Labeled Model—L evel One (PL1)

Thefirst programmer-centric model we consider requires the programmer to identify the memory operations
that may beinvolvedinarace. Thefollowing describestheformal categorization of shared-memory operations
used by this model and provides intuition for the optimizationsthat can be exploited by a system based on
such a categorization.

Categorization of Shared-Memory Operationsfor PL1

We use the example program from Figure 3.1 to illustrate the intuition behind competing operations, which
are memory operationsthat areinvolved in arace. Figure 3.2 shows the program order and conflict order for
one execution of this program. In the SC execution shown, the conflicting operations to location A, and to
location B, are synchronized or ordered by operations to the Flag location. In contrast, conflicting accesses
to the Flag location are not ordered through other operations. Therefore, we refer to the memory operations
to Flag as competing operations and to A and B as non-competing operations. The formal definitionsfollow.
Appendix A presentsadlightly different definition for an ordering chain and explainswhy we chose Definition
3.1 below.

Definition 3.1: Ordering Chain

Given two conflicting operations u and v in an execution, an ordering chain exists from operation u to operation
vif and only if

@uZv,or

GuZw 2 2w 2 2w 22, 22 v, wheren > 1, w; is awrite access, 1, is aread
access, and w; and r; are to the samelocation if i = j. If all accessesin this chain areto the same location, then
u may be the same as wy, and v may bethe same asr ., aslong asthere s at least one 22 arc in the chain.

Definition 3.2: Competing and Non-Competing Oper ations

Given apair of conflicting operationsu and v in an execution, operation u competeswith operation v if and only
if thereis no ordering chain (as defined above) between u and v (either from u to v or vice versa). An operation
u is a competing operation if and only if there exists at least one conflicting operation v in this execution that
competeswith u. Otherwise, the operation is a non-competing oper ation.

1This order is not transitive (i.e, not a partial order) becauseit does not hold between two reads to the same location.
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Figure 3.2: Example of program order and conflict order.
shared
competing  non—competing

Figure 3.3: Categorization of read and write operationsfor PL1.

Referring back to Figure 3.2, there is an ordering chain between the conflicting operations to locations
A and B in the execution that is shown. However, there is no ordering chain between the write and read
operationsto Flag. Therefore, operationsto Flag are indeed competing while the remaining operationsto the
other locations are non-competing. Although theformal definition for competing operations seems complex,
it essentially captures thefairly intuitivenotion of arace. Thus, programmers should be able to identify such
operationsrelatively easily.

Figure 3.3 showsthe categorization of shared-memory operationsdiscussed above. Aswewill see shortly,
the PL1 model also distinguishes between competing read and competing write operations and exploitsthis
digtinction to provide more optimizations. However, since determining whether an operation is a read or
awriteistrivia and can be done automatically, we do not include it in the categorization that is visible to
the programmer. Given the categorization shown in the figure, the valid labels for memory operations are
competing and non-competing. Note that operations that access the same location can have differing labels;
€.g., one operation may be competing while another is non-competing.

Since asystem expl oitstheinformation conveyed by thelabel sto ensure correctness, alabel needsto have
aproper relationship to the actua category of amemory operation. We consider the labeling correct if every
memory operation is labeled with the category that it actually belongs to. However, providing labels that
exactly correspond to the actual category of an operation requires perfect information about the behavior of
memory operations. Sinceit may bedifficult for the programmer to obtain such exact information, we provide
theflexibility of allowing conservative labels. Intuitively, alabel isconservativeif it leadsto fewer reordering
and overlap optimizationsby a system as compared to the actual category of the operation. The conservative
labels for PL1 are shown in bold in Figure 3.3. As we will see, the system exploits fewer optimizations
for competing operations as compared to non-competing operations. Therefore, labeling an operation that
is actually non-competing as competing still leads to correct (i.e., sequentially consistent) executions. In
contrast, labeling an operation that isintrinsically competing as non-competing is not safe. While alowing
conservative labels can substantially enhance programming ease, it isimportant to redlize that frequent use
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Figure 3.4: Program segments with competing operations.

of conservative labels can reduce system performance.
Below, we introduce the notion of proper labeling to formally capture the correctness property for labels.
The subscript L is used to distinguish an operation’slabel from the operation’sintrinsic category.
Definition 3.3: Properly-Labeled Execution—L evel One (PL 1)

An execution is a properly-labeled (PL1) execution if and only if all operations labeled non-competing;, are
non-competing (i.e., non-competing;, € non-competing), and the remaining operationsare |abeled competings. .

Definition 3.4: Properly-Labeled Program—L evel One (PL1)
A program is a properly-labeled (PL1) programif and only if al sequentially consistent executions of the
program result in properly-labeled (PL 1) executions.

Notethat the programmer can directly reason with sequential consistency to determinewhether aprogram
is properly-labeled.? Figure 3.4 shows a couple of program segments with competing operations. The
memory instructions that can potentialy generate a competing operation are shown in bold; i.e, there is at
least one SC execution of the program where the operation that is generated by the instruction is competing.
Below, we overload the competing label to refer to the instruction as well. Consider the program segment in
Figure 3.4(a). For each instruction, there is at least one SC execution where the operation that is generated
by the instruction competes with another conflicting operation. Therefore, al instructions are competing.
Figure 3.4(b) shows asimilar program segment except now the memory instructions are encapsul ated within
critical sections. Thereisstill some non-determinism since either P1 or P2 may enter thecritical section first.
Nevertheless, in every SC execution, memory operationsto locations A and B are non-competing because the
lock synchronization provides an ordering chain separating the conflicting pairs. In contrast, the instructions
that access location L are competing.

Given the above definitions, we can now define the properly-labeled (PL1) memory model. The basic
idea behind this model is to guarantee sequential consistency for programs that are properly-labeled. The
formal definition follows.

Definition 3.5: The Properly-Labeled Memory Model—L evel One (PL 1)
A system obeysthe PL1 memory model if and only if for any PL1 program (defined above), all executions of
the program on this system are sequentially consistent.
An interesting observationisthat the above definition specifies the memory behavior for properly-labeled
programs only; the behavior of programsthat are not properly-labeledisunspecified. Of course, any practica
implementation of the above model will have a specified behavior for al programs, regardless of whether the

2|tisconceptually possiblefor aninstructionin aprogramto never generate an operation in any SC execution. Naturally, the decision
on whether the programis a PL1 program does not depend on the label on such instructions. Therefore, the programmer is free to use
any label for such instructions.
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Figure 3.5: Possible reordering and overlap for PL1 programs.

program is properly-labeled. Nevertheless, the above under-specification provides implementations with an
extraflexibility in the behavior they support for non-PL programs.

Possible Optimizationsfor PL1

Aswediscussed in Chapter 2, asimple and sufficient way to maintain sequentia consistency isto (i) execute
memory operations from each processor one at atime and in program order, and (ii) ensure write operations
execute atomicaly (i.e, asif thereisasingle copy of memory). The information conveyed by thelabelsin a
PL1 program allowsthe system to relax some of these constraints while maintaining sequentia consistency.

The system can exploit the distinction between competing and non-competing operations, and between
competing read and competing write operations. Figure 3.5 illustrates the overlap and reordering that is
possible among the operations from a single processor. Figure 3.5(a) shows a sample sequence of memory
operationsin program order. The operations shown in bold are competing operations. Each block of multiple
operations depicts a sequence of non-competing operations between two competing ones. The numbers
beside each block uniquely identify the block. Figure 3.5(b) shows the sufficient program ordersthat can be
maintained to satisfy the PL1 model. Within each block of non-competing operations, reads and writes to
different locations can be overlapped or reordered. The system can trivially distinguish between competing
read and competing write operationsto alow extraoverlap between competing and non-competing operations.
A competing read isonly ordered with respect to operationsthat follow it in program order, whileacompeting
write is only ordered with respect to operations that precede it in program order. This is analogous to the
distinction between acquire and release operations in the release consistency model (see Section 2.4 of the
previouschapter), and arisesfrom thefact that theinterprocessor linksin an ordering chain (Definition 3.1) are
always from a competing write to a competing read. Finaly, program order is maintained among competing
operations. Regarding atomicity, non-competing writes are allowed to appear non-atomic.

PL1 programs can be easily ported to a system-centric model such as release consistency (RCsc) to
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exploit most of the above optimizations;, competing reads and writes can be mapped to acquire and release
operations, respectively, and non-competing operations can be simply mapped to ordinary data operations.
Chapter 4 describes a dightly more aggressive set of system requirements (relativeto RCsc) that still satisfies
the PL1 model. Overadl, the most important optimization is the ability to reorder memory operations in
between competing operations, which can provideasubstantial performance potential especially if competing
operations are infrequent.

3.2.2 Properly-Labeled Model—L evel Two (PL2)

The second programmer-centric model we consider requires extra information about memory operations to
identify competing operationsthat are directly used for synchronizing non-competing operations. Below, we
describe the formal categorization of operations and the types of optimizationsthat are enabled by thisextra
information.

Categorization of Shared-Memory Operationsfor PL2

This section extends the categorization of memory operationsto identify the subset of competing operations
that are used to order non-competing operations through ordering chains. We refer to such operations as
synchronization (abbreviated to sync) operations and the remaining competing operations are referred to as
non-synchronization (or non-sync) operations.

Consider the program segment in Figure 3.4(b) (from the previous section) that shows two processors
accessing memory locations within critical sections implemented using test-and-set operations. As we
discussed in the previous section, the operationsto locations A and B are non-competing because in every SC
execution, there is an ordering chain between conflicting pairs of operationsto these locations. Therefore,
the read and write of the test-and-set and the write to unset the lock are the only competing operationsin the
program. By considering SC executions of this program, it becomes apparent that while the write to unset
the lock and the read of the test-and-set are required to form ordering chains among conflicting operations
to locations A and B, the write of the test-and-set is not part of the ordering chains. Intuitively, the write to
unset the lock acts as arelease operation and informsthe other processor that operationsthat appear before it
in program order have completed. Similarly, theread of the test-and-set acts an acquire operation which, in
conjunctionwith thewhileloop, delaysfuture operationsthat follow it in program order until areleaseisdone
by another processor. In contrast, the write of the test-and-set is ssmply used to ensure mutua exclusion and
doesnot function as either an acquireor arelease. Therefore, we categorize theread of thetest-and-set and the
writeto unset thelock as synchronization operations and thewrite of the test-and-set as anon-synchronization
operation.

Figure 3.6 shows the categorization of shared-memory operations for the PL2 memory model. Given
this categorization, the valid labels for memory operations (i.e., leaves of the categorization tree) are sync,
non-sync, and non-competing. As discussed above, read synchronization operations function as an acquire,
while write synchronization operations function as arelease. This extra distinction between read and write
synchronization operations will aso be used to allow further optimization, but is not shown as explicit labels
since the distinction between reads and writes is trivial and automatic. The conservative labels are shown
in bold in Figure 3.6. For example, operations that are non-competing or hon-sync can conservatively be
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Figure 3.6: Categorization of read and write operationsfor PL2.

labeled as sync. Below, we formalize the notion of proper labeling based on the above categorization.

Definition 3.6: Sufficient Synchronization Ordering Chains

Given an execution, there are sufficient synchronization ordering chains if and only if for every operation u
labeled as non-competing;, and any operation v from a different processor that conflictswith u, thereis at least
one ordering chain (see Definition 3.1) either from u to v, or from v to u, such that every w; and r; in the chain
islabeled as sync;..

Definition 3.7: Properly-Labeled Execution—L evel Two (PL2)

Anexecutionisaproperly-labeled(PL2) executionif and only if all operationslabeled non-competing;, are non-
competing (i.e., non-competingz, € non-competing), enough operations are labeled syncy, to ensure sufficient
synchronization ordering chains (defined above), and the remaining operations are labeled as non-syncr..

Definition 3.8: Properly-Labeled Program—L evel Two (PL2)

A program is a properly-labeled (PL2) programif and only if al sequentially consistent executions of the

program result in properly-labeled (PL2) executions.

Figure 3.7 shows a two-processor program segment that further illustrates the use of synchronization
and non-synchronization operations. Recall that uppercase identifiers denote shared locations and lowercase
identifiers denote private locations. The program depicts part of a branch-and-bound a gorithm where each
processor attempts to update the global bound in case the locally computed bound is smdler. This type of
algorithm may be used to solve the traveling-sal esperson problem, for example, with the bound representing
the current shortest path among the cities. In thistype of an agorithm, each processor may check the global
bound many more times than it actually updates the bound. Therefore, for efficiency, each processor reads
the current global bound in an unsynchronized fashion (as a hint) and obtains mutual exclusion for updating
the bound only if the locally computed bound is smaller. The competing operations are shown in bold. In
addition, we show a set of valid labels for the memory instructions in this program. The test-and-set is
used to achieve mutual exclusion. Asin our earlier discussion, the read of the test-and-set and the write to
unset the lock are synchronization operations, while the write of the test-and-set is a non-synchronization
competing operation. The read of Bound withinthe critical section isnon-competing sincein every execution
there exists an ordering chain between it and any conflicting operations. In contrast, the read of Bound
outside the critical section and the write of Bound within the critical section are competing; however, they
are non-synchronization operations since they do not participate in any ordering chains for non-competing
operations.

The definition of the PL2 model is similar to the definition in the previous section (Definition 3.5), except
we use the new definition for PL2 programs now.

Definition 3.9: The Properly-Labeled Memory Model—L evel Two (PL 2)

A system obeysthe PL2 memory model if and only if for any PL2 program (defined above), all executions of
the program on this system are sequentially consistent.
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al: U= Bound; a2: u= Bound; Labels
b1: if (local_bound < u) { b2: if (local_bound < u) { al,a2: non-sync
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hi: } h2: }

Figure 3.7: Program segment from a branch-and-bound algorithm

Possible Optimizationsfor PL 2

The distinction between competing operations that are used for synchronization versus those that are not
enables the system to further relax the order among memory operations relative to the PL1 model. The
main optimization that is enabled by the sync/non-sync distinction is with respect to the program order
between competing and non-competing operations. The program order between a sync read (acquire) and
non-competing operationsthat follow it, and async write (release) and non-competing operationsthat precede
it ismaintained. However, the program order between competing and non-competing operations to different
locations heed not be maintained if the competing operations are non-sync operations. PL2 programs can be
ported to a model such as release consistency (RCsc) to exploit the above relaxation; competing sync read
and write operations should be mapped to acquire and release, respectively, competing non-sync operations
should be mapped to non-sync, and non-competing operations should be mapped to ordinary data operations.
Again, Chapter 4 describes a dightly more aggressive set of system requirements (relative to RCsc) that still
satisfies the PL2 modd.

Figure 3.8 provides an example to illustrate the overlap between operations. Figure 3.8(a) shows the
program order among memory operations from a single processor. Assume the only competing operations
in the sequence are the read and write of a test-and-set and the write that unsets the lock (shown in bold).
The dashed box around the test-and-set signifies the atomicity of the read and write operations. Asin our
previousexamples, assume thelabelson thetest and thewriteto unset thelock are syncy. (acquire and rel ease,
respectively), and the label on the set is non-syncy,. Figure 3.8(b) shows the sufficient program orders for
satisfying the PL2 memory model. Even though the write of the test-and-set is a competing operation, its
program order with respect to non-competing operations need not be maintained since it isidentified as a
non-sync. One of the implications is that the test-and-set can be overlapped and reordered with respect to
non-competing operationsthat precede it in program order. Notethat thisoptimizationis not necessarily safe
unlesswe know that the set of the test-and-set doesnot play aroleinthe ordering chainsamong non-competing
operations (i.e., itisnot async).
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Figure 3.8: Possible reordering and overlap for PL2 programs.

3.2.3 Properly-Labeled Model—L evel Three (PL3)

The third programmer-centric model we consider requires further information from the programmer to
identify acommon use of competing synchronization operationswhere one processor waitson alocation until
a particular value is written by another processor. The synchronization examples we have considered up to
now, including the use of a flag to synchronize producer-consumer interactions or the use of test-and-set to
implement locks, fall in this category. Below we describe the categorization of operations that allows us to
correctly identify such synchronizations and discuss the optimizationsthat are enabled by such information.

Categorization of Shared-Memory Operationsfor PL3

To motivatethe categorization described bel ow, consider the program segment shown in Figure 3.1(a). Based
on the categorieswe have aready discussed, the operationsto Flag are the only competing operationsand are
used to synchronize accesses to locations A and B. The way thissynchronizationisachieved isby P2 reading
Flag within aloop until P1 writesthe value of 1 to thislocation. We refer to such aloop as a synchronization
loop construct. Below, we formalize a simple case of a synchronization loop construct in which the loop
repeatedly executes aread or aread-modify-writeto aspecific location until it returns onein a set of specified
values?

Definition 3.10: Synchronization L oop Construct

A synchronization loop construct is a sequence of instructions in a program that satisfies the following:

(a) The construct executesaread or aread-modify-write to a specificlocation. Depending on whether the value
returned is one of certain specified values, the construct either terminates or repeats the above.

(b) If the construct executes a read-modify-write, then the writes of all but the last read-modify-write store
valuesthat are returned by the corresponding reads.

(c) The construct terminates in every SC execution.

3The definition for asynchronizationloop construct and for loop/non-loop reads and writes (Definitions 3.11 and 3.12) are similar to
those used for the PLpc model [GAGt 92, AGG 93], which will be discussedin Section 3.8.
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The above definition captures many of the common uses for such synchronization constructs. Appendix B
provides a more genera set of conditionsthat, for example, allows implementations of locks using test-and-
test-and-set [RS84] or back-off [MCS91] techniquesto al so be considered as synchronization |oop constructs.
Finally, Appendix F describes an optiona restriction of synchronizationloop constructsthat dightly simplifies
the required system conditions for supporting the PL3 model.

Given that a synchronization loop construct eventually terminates, the number of times the loop executes
or the values returned by its unsuccessful reads cannot be practically detected and should not matter to the
programmer. For example, in Figure 3.1(a), the number of time P2 reads Flag unsuccessfully, or even the
values returned by the unsuccessful reads, should not matter as long as eventually a read of Flag returnsthe
value 1 and terminates the loop. Therefore, we do not consider the unsuccessful reads of a synchronization
loop construct as part of the result or outcome for the program. In other words, we assume that replacing
the operations of a synchronization loop construct with only the last read or read-modify-write that causes
the loop to terminate leads to an equivalent execution as far as outcomes are concerned. Note that this
is a dightly relaxed interpretation of equivaence between two executions, and this relaxation alows more
aggressive labels which in turn enable more optimizations. Finally, all executions that we consider (e.g., for
deciding whether operation labels are correct) are assumed to be modified to replace every synchronization
loop construct with only the last read or read-modify-writethat causes the loop to terminate. We refer to this
as amodified execution.

Operations associated with synchronization loop constructs often exhibit a specia property that can be
exploited by the system to achieve higher performance. For example, consider thewriteand read operationsto
Flagin Figure3.1(a). In every SC execution of thisprogram, the writeto Flag by P1 must execute before P2's
final read of Flag that terminates the synchronization loop. Therefore, while a competing pair of operations
can in genera occur in any order, certain write-read pairs such as the operationsto Flag have a fixed order of
execution. We refer to such write-read pairs as loop writes and loop reads. The formal definitionsfollow. As
we will discuss shortly, the fact that the read effectively waits for the write can be exploited by the system to
safely ignore certain program orders with respect to the read and to alow the write to behave non-atomically
with respect to multiple copies.

Definition 3.11: Loop and Non-loop Reads

Given a competing read R in a modified execution, the read isaloop read if and only if

(a) itisthefinal read of a synchronization loop construct that terminates the construct,

(b) it competeswith at most one write in the modified execution,

(c) if it competes with awrite W in the modified execution, the write is necessary to make the synchronization
loop construct terminate; i.e., the read returns the value of that write and the immediately preceding conflicting
write in the execution order would not make the loop construct terminate, and

(d) let W’ be the last conflicting write (if any) before W whose value could terminate the loop construct; if
there exists any competing write W” (does not necessarily compete with R, W or W) to the same location
between W’ and W in the execution order (by definition, W” fails to terminate the loop construct), then thereis

an ordering chain from W” to R that endswith a 2=
A competing read that is not aloop read is a non-loop read.

Definition 3.12: Loop and Non-loop Writes

Given a competing write W in a modified execution, the write is aloop write if and only if

(a) it competes only with loop reads, and

(b) for any non-loop read R that conflictswith W and is after W, there is an ordering chain from W to R that
endswith a =2

A competing write that is not aloop write is anon-loop write.
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Figure 3.9: Categorization of read and write operationsfor PL3.

Appendix C motivates the need for the relatively complex conditions such as condition (d) for loop reads
and condition (b) for loop writes above. In addition, the appendix describes a simplification of the PL3 model
that forgoes some of the optimizationsthat are allowed by the more general form described here.

Figure 3.9 shows the extended categories of shared-memory operations. As shown, synchronization
operations are now distinguished into two categories, loop and non-loop.* With this distinction, the valid
labels (i.e., leaves of categorization tree) are non-loop, loop, non-sync, and non-competing. The conservative
labels are shown in boldin the figure. Aswith the previous models, the system further distinguishes between
read and write operations that are labeled as loop or non-loop. Again, since this distinction is trivia and
automatic, we do not include it explicitly in the set of labels that is visible to the programmer. We next
formalize the notion of correct 1abels.

Definition 3.13: Properly-Labeled Execution—L evel Three (PL3)

A modified execution is a properly-labeled (PL3) execution if and only if all operation labeled non-competingz,
are non-competing (i.e., non-competing;, C non-competing), all operationslabeledloop;, are either loop or non-
competing operations (loop;, € (loop U non-competing)), enough operations are labeled loop;, or non-loopz,
to ensure sufficient synchronization ordering chains (both loop and non-loop labels are considered asa syncin
Definition 3.6), and the remaining operations are labeled as non-sync;..

Definition 3.14: Properly-Labeled Program—L evel Three (PL3)

A program is a properly-labeled (PL3) program if and only if all sequentially consistent executions (i.e.,

modified executions) of the program result in properly-labeled (PL3) executions.

Figure 3.10 shows the implementation of two common synchronization primitives that we will use to
illustrate correct labels for PL3. Even though we show only two processors, the labels we discuss are till
valid if the synchronization primitives are used across a larger number of processors. Figure 3.10(a) shows
an implementation of locks using test-and-set and awrite to unset the lock. The whileloop on each processor
that contains the test-and-set qualifies as a synchronization loop construct. Therefore, al operations (i.e.,
unsuccessful test-and-sets) except for the final successful test-and-set in an execution are ignored. In any
such modified SC execution of this program, the test of a final test-and-set competes only with the write to
unset the lock that is required for the loop to terminate. Therefore, the test is aloop read.> Similarly, the
writeto unset thelock competes only with aloop read (a successful test) and there are no non-loop reads that
conflict withit; therefore, it qualifiesasaloop write. Finally, theset of thefinal test-and-set does not compete

41t is also possibleto further distinguish non-sync operations as loop and non-loop operations since the distinction between loop and
non-loop operationsis really orthogonal to whether the operation isa sync or non-sync. We chose not to do this for simplicity (and the
fact that non-sync operations are typically infrequent), but the model can betrivially generalized in this way.

5This dependson the fact that we are discarding unsuccessful test-and-sets from the execution, since the test in unsuccessful test-and-
sets do not qualify asloop reads, and the set of the unsuccessful test-and-sets would compete with the successful test thus disqualifying
it asaloop read.
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b1: if (fetch&incr(Count) == N){ b2: if (fetch&incr(Count) == N) { b,b2 (fetch): non-loop (acq)
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el: }else{ e2: }else{ d1.d2: IooE (rel)
) ) f1,f2: IooQ (acq)
f1: while (Flag !=local_flag); f2: while (Flag != local_flag);
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accesses to data accesses to data
(b)

Figure 3.10: Example program segments:. (a) critical section, (b) barrier.

with any operations (again, assuming we discard unsuccessful test-and-sets) and can therefore be labeled as
non-competing.

Figure 3.10(b) shows the implementation of a barrier [MCS91] using an atomic fetch-and-increment
operation. The while loop containing the reads of Flag forms a synchronization loop construct. Therefore,
we ignore the unsuccessful reads of Flag. The write to Count is hon-competing. In contrast, the fetch (read)
and theincrement (write) to Count and the write and the final read of Flag are competing. The read and write
to Flag qualify as loop operations, whilethe fetch and the increment on Count are non-loop operations.

The formal definition for the PL3 model follows.

Definition 3.15: The Properly-Labeled Memory M odel—L evel Three (PL 3)

A system obeys the PL3 memory model if and only if for any PL3 program (defined above), al modified
executions of the program on this system are sequentially consistent.

Possible Optimizationsfor PL3

The distinction of sync operationsinto loop and non-loop categories enables the system to relax the program
order among competing operations as compared to the previoustwo modelswe described. Specificaly, given
a competing write followed by a competing read, the program order between the write-read pair need not be
maintained if either operationisidentified with theloop label. In addition, competing writesthat areidentified
with the loop label can be non-atomic with respect to multiple copies. It is possible to map PL3 programs
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di: u=B; d2: v=A; al,a2,d1,d2: non-competing
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Figure 3.11: Example program segments with loop read and write operations.

to RCpc in order to exploit the above relaxations. Chapter 5 describes the mapping to RCpc, in addition to
presenting a more aggressive set of constraintsthat still satisfy the PL3 model.

Figure 3.11 shows a couple of program segments to provide intuition for the program reordering opti-
mization described above. The first example in Figure 3.10(a) shows two processors communicating data.
Each processor produces a value, sets aflag, waits for the other processor’s flag to be set, and consumes the
value produced by the other processor. The operationsto Flagl and Flag2 are competing and are shown in
bold. These operationsall qualify as loop operations. The optimization discussed above allows the write of
one flag and the read of the other flag to be overlapped on each processor, e.g., read of Flagl can bereordered
with respect to thewrite of Flag2 on P1. Aslong asweignore unsuccessful reads of the flag locations on each
processor, the above optimization yields sequentially consistent executions of the program.® Furthermore,
the writes to the flag locations need not be atomic with respect to multiple copies; therefore, even in scalable
systems (where it is difficult to make an update write appear atomic), it is possible to use a simple update
protocol to more efficiently communicate the modification to each flag.

Figure 3.11(b) shows a program segment that is similar to the onein Figure 3.11(a), except we uselocks
and unlocks (implemented by test-and-set and write to unset the lock) instead of flags. As shown, the test of
the test-and-set and the write to unset the lock on each processor are loop reads and writes, respectively, and
the set is a non-competing operation. Thus, the acquisition of the lock can occur fully before the rel ease of
the previous|ock on a given processor (i.e., if thelock being acquired is aready free).

Figure 3.12 provides another example to illustratethe reordering and overlap that isenabled by PL3. The
sequence of operations shown in Figure 3.12(a) is the same as thosein Figure 3.5. As before, the competing

61n a sequentially consistent execution, it is impossible for both P1 and P2 to read the value of 0 for Flag2 and Flagl, respectively.
However, this can occur with the optimization discussed above. Nevertheless, these unsuccessful reads do not need to be considered as
part of the outcome for the (modified) execution, thus allowing us to consider executions with the optimization as being sequentially
consistent.
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Figure 3.12: Possiblereordering and overlap for PL3 programs.

operations are shown in bold. Assume all competing operations that are shown are identified with the loop
label, and that blocks 1 to 3 and blocks 5 to 7 correspond to two critical sections. Compared to the overlap
shown in Figure 3.5(b), the categorization of competing operations into loop and non-loop enables further
overlap by alowing thewritein block 3 (end of first critical section) to be reordered with respect totheread in
block 5 (beginning of the second critical section). Asaresult, the two critical sections on the same processor
can be ailmost fully overlapped.

3.24 Relationship among the Properly-Labeled Models

We have presented three programmer-centric model s that successively exploit more information about mem-
ory operationstoincrease opportunitiesfor overlap and reordering. Thefirst model (PL1) requiresinformation
about operationsthat are competing (i.e., involved in arace). The second model (PL2) requiresa further dis-
tinctionamong competing operation based on whether they are used to synchronize other memory operations.
Finally, thethird model (PL3) further distinguishesacommon type of waiting synchronization construct. We
expect that the majority of programmers will opt for the PL1 model due to its simplicity and the fact that
the information required by PL1 enables by far the most important set of optimizations. The PL2 and PL3
models target a much smaller group of programmers. For example, the PL3 model may be used by system
programmers who write the code for synchronization primitives such as locks and barriers.

Since the three properly-labeled models form a hierarchy, programs written for one model can be easily
and automatically ported to another model in the group. We first consider porting a program in the direction
of amore aggressive model. The categorization tree for memory operations (e.g., Figure 3.9) can be used to
determine how to correctly transform operation labelsin one modd to labelsin another model. For example,
to port aprogram written for PL1 to PL2, any operationslabeled as competing in PL1 can be trivially treated
assyncin PL2. Of course, with some extrareasoning, the programmer may be ableto more aggressively label
some of the competing operationsin PL1 as non-syncin PL2. Porting a program to a less aggressive model
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issimilar. For example, a sync or non-sync label under PL2 must be treated as a competing label under PL1.

A subtle issue arises when porting a program from PL3 to either PL1 or PL2 because PL3 excludes
unsuccessful operations (in synchronization loop constructs) from executions when deciding whether an
operation is competing. As a result, some operations that are labeled as non-competing in PL3 may be
considered as competing in PL1 and PL2 (e.g., the set in a test-and-set used within a lock primitive).
Therefore, a simple transformation such as treating non-loop, loop, and non-sync operations in PL3 as
competing operationsin PL1 does not necessarily lead to a PL1 program. This means that the PL1 model
does not theoretically guarantee that such a program will behave correctly. One possible remedy isto extend
the PL1 and PL 2 definitionsto al so exclude unsuccessful operationsin asynchronization loop construct. This
isnot necessary in practice, however, since the memory ordering constraintsenforced by systems that support
the PL1 or PL2 models are typically a strict superset of the sufficient constraints required for supporting the
PL3 mode!.”

Section 3.5 describes practical ways for programmers to convey information about memory operations
to the system based on the proper labeling framework discussed in this section. As we will discuss, most
application programmers deal with information at the level of the PL1 model only. Therefore, only a few
system programmers or sophisticated application programmers may dea with the extrainformation required
by the PL2 and PL3 models.

3.3 Relating Programmer-Centric and System-Centric M odels

This section summarizes the memory optimizations enabled by properly-labeled models as compared to the
system-centric models described in Chapter 2. The more formal sets of sufficient conditions for supporting
the three properly-labeled models are presented in Chapter 4.

Table 3.1 summarizes the set of sufficient constraints for satisfying each of the three properly-labeled
models described in the previous section. For each model, we show the labels used by the model and the
sufficient program order and atomicity constraintsthat woul d satisfy themodel. The program order constraints
apply to operations to different locations. For simplicity, we no longer carefully distinguish an operation’s
label from the operation’sintrinsic category. Furthermore, we use the names of categories (i.e., the non-leaf
nodesin the category trees shown in Figures 3.3, 3.6, and 3.9) in addition tolabel names (i.e., theleaf nodes).
For example, the competing category covers the sync and non-sync labelsin PL2 and the non-loop, loop, and
non-synclabelsin PL3. Wewant to emphasi ze that the constraintswe describe are only sufficient constraints;
they are not necessary constraints for either supporting the given PL model or for guaranteeing sequentially
consistent results for a given program.

Consider the PL1 model. Table 3.1 shows that it is sufficient to maintain program order between a
non-competing operation followed by a competing write, a competing read followed by a non-competing
operation, and two competing operations. Similarly, multiple-copy atomicity should be maintained for
competing writes. Table 3.2 provides the complementary information to Table 3.1 by showing the operations
for which program order and multiple-copy atomicity do not need to be maintained. As before, the program
order relaxations apply to operations to different locations. For PL1, program order need not be maintai ned
between two non-competing operations, a non-competing operation followed by a competing read, and a

"This property also holdsfor the sufficient conditions presented in Chapter 4 for supporting the above three models.
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Table 3.1: Sufficient program order and atomicity conditionsfor the PL models.

ProgramOrder (sufficient) Multiple-Copy Atomicity
Model Labels first op | second op (sufficient)
competing non-competing | competing write
PL1 non-competing || competingread | non-competing competing write
competing competing
sync non-competing sync write
PL2 non-sync sync read non-competing competing write
non-competing competing competing
non-competing sync write
non-loop sync read non-competing
PL3 loop competingread | competing read non-loop write
non-sync competingread | competing write non-sync write
non-competing || competing write | competing write
non-loop or non-loop or
non-sync write non-sync read

competing write followed by a non-competing operation. Similarly, multiple-copy atomicity need not be
maintained for non-competing writes.

As shown in Tables 3.1 and 3.2, each PL model successively relaxes the program order and atomicity
congtraints of the previouslevel. Consider how program order isrelaxed. The distinction between competing
and non-competing operations in PL1 enables the most important class of optimizations by allowing for
non-competing operations to be overlapped with respect to one another. Since non-competing operations
congtitute the large mgjority of operations in most program, relaxing the ordering constraints among them
can provide substantial performance gains. The further distinction of competing operations into sync and
non-sync in PL2 can improve performance by relaxing the program order between non-competing operations
and competing operations that are categorized as non-sync. Finaly, the distinction of sync operations into
loop and non-loop in PL3 alows the system to relax the program order between a competing write and a
competing read if either oneisaloop operation. Relativeto PL1, the extra optimizationsenabled by PL2 and
PL3 are important only if the program has a frequent occurrence of competing operations.

The above discussion shows that the information conveyed through labels can be used to exploit the
same type of optimizationsthat are enabled by aggressive system-centric models. Below, we provide some
intuition for how thisinformation may be used to efficiently execute PL programs on system-centric models
while still maintaining sequential consistency. The next chapter providesa more forma set of conditionsfor
porting PL programs to system-centric models.

Webegin by considering thefirst set of system-centric model sintroduced inthe previouschapter (i.e., IBM-
370, TSO, PC) that allow reordering of awrite followed by aread in program order. Given the information
conveyed by a PL1 program, this reordering is safe if either the write or the read is non-competing. The
additiona information provided by PL 2 does not provideany additional cases. Finaly, with PL3 information,
the reordering is a so safe between a competing write and a competing read as long as at least oneisaloop
operation. The second set of system-centric models that includes PSO can further exploit the information
conveyed by labelsby allowing the reordering of two writesaswell. For example, the PL1 information makes
the reordering of two writes safe as long as the second write is non-competing.
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Table 3.2: Unnecessary program order and atomicity conditionsfor the PL models.

ProgramOrder (unnecessary) Multiple-Copy Atomicity
Model Labels first op | second op (unnecessary)
competing non-competing | non-competing
PL1 non-competing || non-competing | competing read non-competing write
competing write | non-competing
non-competing | non-competing
sync non-competing sync read
PL2 non-sync sync write non-competing non-competing write
non-competing || non-competing non-sync
non-sync non-competing
non-competing | non-competing
non-loop non-competing sync read
PL3 loop sync write non-competing non-competing write
non-sync non-competing non-sync loop write
non-competing non-sync non-competing
competing write loop read
loop write competing read

Thethird and last category of system-centric models consists of models such as WO, RCsc, RCpc, Alpha,
RMO, and PowerPC, that allow program reordering among all types of operations. Given WO, we can
exploit the information conveyed by PL1 to allow non-competing operations to be reordered with respect to
one another. The extent to which each model exploitsthe label information varies, however. For example,
while WO cannot exploit the distinction between competing read and competing write operations, the other
models (i.e,, RCsc, RCpc, Alpha, RMO, and PowerPC) can use this distinction to safely relax the program
order between certain competing and non-competing operations (e.g., between a competing write followed
by a non-competing read).

Among the system-centric models, the RCsc model best exploits the label information provided by PL1
and PL2 programs, and the RCpc model best exploits the information provided by PL3 programs. Thisis
partly because the definition of PL programs was closdly linked to the design of release consistency as the
implementation conditions for a system [GLL*90]. The next chapter provides an even more aggressive set
of conditions, as compared with RCsc and RCpc, that till lead to sequentially consistent executions of PL
programs. While the release consistency conditions are sufficiently aggressive for most practical hardware
designs, the more aggressive set of conditions provide opportunity for higher performance in designs that
support shared-memory in software (see Chapter 5).

3.4 Benefitsof Using Properly-Labeled Models

The benefits of using properly-labeled models mainly arise from programming simplicity and easy and
efficient portability among different systems. We briefly summarize some of these advantages bel ow.

The primary advantage of properly-labeled models is that they are simpler to program with and reason
with than the system-centric models. While system-centric models require the programmer to reason with
low-level reordering optimization, programmer-centric models maintain the intuitive sequential consistency
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model as the base model and simply require extrainformation to be provided about the behavior of memory
operationsin sequentially consi stent executionsof the program. By far the most important pieceof information
iswhether amemory operationisinvolved in arace (i.e., competing or non-competing). Since most parallel
programs are written with the intent of disallowing races on shared data, the programmer aready has to
analyze the program for any races. Therefore, requiring this information to be made explicit leverages the
fact that such information isaready naturally known by the programmer. The other two types of information
required by PL2 and PL3 (i.e., sync/non-sync and loop/non-loop, respectively) are also relatively intuitive,
even though the formal definitionsfor these categories may seem complex.

An important attribute of the properly-labeled models is that they allow the programmer to provide
conservative information about memory operations. This greatly simplifies the task of providing correct
information about memory operations since if the exact information about some operation is not known,
the programmer can simply provide the conservative information. For example, an operation may be safely
labeled as competing if the programmer is not sure whether the operation is involved in a race. At the
extreme, a program can be trivialy labeled by providing conservative labels for al operations; for example,
labeling al operations as competing trivially yields a PL1 program. Of course, conservative labels reduce
the opportunity for doing optimizations, and in the extreme case where al labels are conservative, system
performance degrades to the level of atypica sequentialy consistent implementation. Therefore, from a
performance perspective, it isbest to limit the use of conservative labels.

Another benefit of allowing conservative labels is that programmers can focus on providing accurate
information for the performance critical regions in a program. For example, if most of the program’s
execution timeis spent in ahandful of procedures, the programmer can concentrate on analyzing the memory
operationsin those procedures, and provide more conservative labels for the remaining memory operations.
Similarly, the more detail ed information required by PL 2 or PL3 may be provided for critical synchronization
algorithms used in a program, while the remaining parts may provide the less detailed information required
by the PL1 program. Overdl, the ability to provide conservative labels alows programmers to observe
performance benefits that are proportional to the amount of effort spent by the programmer to properly |abel
aprogram.

The information provided by properly-labeled programs aso alows automatic and efficient portability
of such programs across a wide range of systems. Contrast this to system-centric models. For example,
consider porting a program that is originally written for the Alphamodel to the RMO model. Recall that the
Alphamode inherently maintains program order among read operationsto the same location whilethe RMO
model does not maintain thisorder. Thissubtle difference makesit difficult to efficiently port aprogramfrom
Alphato RMO because we must conservatively assume that the program orders between al pairs of reads
to the same location are pertinent for correctness. In contrast, the labelsin a PL program convey alot more
information about the operations, allowing us to efficiently match the orders required by the program to the
orders provided by a given system.

Finally, aside benefit of operation labelsisthat they can serve asaform of documentation for the program
by conveying information such as the set of memory operations that are involved in races or the set of
operations that are used for synchronization. Thistype of information simplifiesthe task of understanding a
program and can therefore enhance the maintainability of parallel programs.

Overdl, the PL models provide programmers with a uniform programming strategy across a wide range
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of systems without sacrificing ease of use, efficiency, and portability.

3.5 How to Obtain Information about Memory Operations

The previous sections introduced the notion of operation labels as an abstraction for conveying information
about memory operations. This section describes practical ways of obtaining such information. The program-
ming interface between the programmer and the system plays a key role in determining who is responsible
for conveying the labels and how the labels are conveyed. We begin by describing a number of possible
interfaces between the programmer and the system, and discuss the responsibilitiesof the programmer at each
interface. We next describe mechanisms that allow programmers to convey any required information at the
language level. The actua mechanisms for conveying such information to the underlying hardware will be
discussed in Chapter 5.

3.5.1 Who Providesthe Information

The degree to which the programmer is exposed to the underlying relaxed memory model in asystemissolely
determined by thetype of programming languageinterface. We will consider three broad classes of languages
below: sequentia languages with compiler-generated paralelism, explicitly paralel languages with implicit
synchronization to ensure lack of races, and explicitly parallel languages with explicit synchronization under
programmer control. For the first two classes of languages, the underlying memory model is transparent to
the programmer. For the third class of languages, however, the programmer observes the relaxed memory
model and may also be required to provide explicit information about memory operations to ensure correct
program behavior.

Even though a language may not expose the underlying relaxed model to the application programmer,
it is still beneficial to exploit relaxed models for achieving higher performance implementations of the
language. This requires exposing the compiler and system programmers who implement the language and
associated software libraries to the underlying relaxed model. Whether the operation labels are provided by
the application programmer or the language library and compiler programmers, the proper labeling approach
can be used to simplify the task of the programmer who is exposed to the underlying relaxed model.

Sequential L anguages

The first category of languages we consider is traditional sequentia languages. To exploit parallelism in
such languages, the compiler is responsible for automatically parallelizing the program and coordinating the
communication and synchronization among the parallel threads that it generates. Since the programmer’s
logical view of the system is that of a uniprocessor, all multiprocessor aspects including the multiprocessor
memory model are transparent to the programmer.

To exploit the underlying relaxed memory model in a system, the compiler is responsible for properly
labeling the memory operations in the parallel program that it generates. Since the compiler generates
sufficient synchronization to ensure accesses to the origina program’s data structures are race-free, memory
operationsto these data structureswill inherently be non-competing. The remaining operationsin the parallel
program are generated by the compiler to coordinate and synchronize the parallel tasks. The compiler must
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convey appropriate labels for these latter operations as well. For example, consider the lock and barrier
synchronization primitivesin Figure 3.10 with the corresponding labels. The effort in aggressively labeling
such synchronization code iswell worth it since the code is reused across multiple applications.

In summary, sequential languages can exploit relaxed memory models without increasing programming
complexity for the application programmer.

Explicitly Parallel Languageswith Implicit Synchronization

The languages in the second category are similar to sequential languages in that the programmer is allowed
to reason with the traditional uniprocessor memory model. The only difference from a sequential language
isthat the programmer is required to provide information that allow the compiler to more effectively extract
the paralelism in the program. With the parallelism exposed, the compiler is responsible for generating the
paralel threads and imposing sufficient synchronization to ensure accesses to the original program'’s data
structures are race-free (i.e., non-competing). Therefore, similar to sequentia languages, the compiler is
responsiblefor properly labeling the output program that it generates in order to exploit an underlying relaxed
memory model.

Jade [RSL93] and FX-87 [JG88] are examples of languages designed to express parallel execution while
preserving the serial semanticsof the corresponding sequential program. 1n Jade, for example, the programmer
identifies tasks that are useful to execute concurrently and specifies the data usage information for each task.
This data usage information allows the compiler and run time system to execute tasks concurrently while
preserving the data dependences between tasks; the system ensures this seria semantics by automatically
inserting appropriate synchronization among the tasks. High Performance Fortran (HPF) [Lov93] is another
example of alanguagein thiscategory. In HPF, the programmer writesaserial program and annotatesit with
data distribution specifications. HPF a so provides primitivesto identify concurrent computation, such as an
intrinsic data-parallel array operation or an explicit forall statement that identifies aloop as fully parallel 8

Explicitly Parallel Languageswith Explicit Synchronization

The third category of languages we consider requirethe programmer to explicitly identify the parallelism and
to coordinate the parallel tasks through explicit synchronization. Therefore, unlike the previous categories,
the programmer is exposed to the multiprocessor semantics. The various optionsin thiscategory trade off the
level of control versus ease-of-use provided to the programmer.

The first optionisto provide a set of predefined synchronization constructs and to require the program-
mer to use these constructs appropriately to ensure al memory operations are race-free or non-competing.
These predefined synchronization constructs may either be part of the language or provided through parallel
runtime libraries. For example, monitor-based languages such as Concurrent Pascal [Han77], Mesa[LR80],
and Modula [Wir77] provide language-based synchronization constructs, while environments such as C-
threads [CD88], Presto [BLL88], and the ANL [BBD*87]/Parmacs [Bec90] macros extend conventiona
sequentia languages through parallel runtime libraries.

Aswementioned above, the application programmer isresponsiblefor ensuring that all memory operations
are non-competing by using sufficient synchronization. To achieve this, the programmer needs a high-level

8These constructs have parallel copy-in/copy-out semantics.
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semantic description of the synchronization constructs and a definition of non-competing based on these
high-level constructs. Providing thistype of description isrelatively straightforward. For example, consider
lock and unlock operations as part of the synchronization constructs. To define the notion of non-competing
with lock and unlock constructs, one can simply adapt Definition 3.1 to describe a chain of unlock-lock pairs
ordering conflicting operations. Given that the programmer is responsible for guaranteeing that all memory
instructions that access program data structures are race-free, the compiler can automatically label such
instructionsas non-competing. Furthermore, as in the case of sequentia languages, the memory instructions
that comprise the predefined synchronization constructs are assumed to be labeled by the programmers who
implement them and such labels can be passed along in the compiled code. Therefore, even though the
application programmer is exposed to the multi processor semantics, no explicit operation labelsare provided
by the programmer.

The option described above may be limiting for some programmers sinceit disallowsthe use of synchro-
nization primitives that are customized by the programmer and disallows the use of competing operations
(e.g., refer back to the branch-and-bound algorithm of Figure 3.7 with the unsynchronized access to the bound
variable). We can provide the programmer with more control at the cost of requiring the programmer to
supply explicit labels for the memory operationsin the program.

In summary, for languages with explicit synchronization, the programmer is responsible for providing
extrainformation that helps the compiler in generating operation labels, ranging from guaranteeing that all
memory operationsare race-free by using predefined synchronization primitivesto explicitly providinglabels
for al operations. Section 3.8.4 describes some programming environment tools and architectural features
that can help the programmer provide correct information in the form of operation labels, while Section 3.6
further discusses the trade-offs in applying the proper labeling approach to programs with unsynchronized
accesses.

3.5.2 Mechanismsfor Conveying Operation Labels

As we discussed in the previous part, memory operation labels are provided either by language library and
compiler programmers or by application programmers, depending on the language interface that is chosen.
In this section, we describe language-level mechanisms that can be used by the programmer to convey the
required information. The actual mechanisms for further conveying such information to the underlying
hardware will be discussed in Chapter 5.

Operation labels as described in Section 3.2 are attributes for memory operations that appear in the
dynamic memory reference stream corresponding to the parallel execution of a program. However, practical
techniques for providing thisinformation at the language level need to work within the context of the static
program text. We describe two reasonable approaches for expressing operation labels. The first approach
is to express the category information as an attribute of shared variables or memory locations. This can be
achieved by either providingtheinformation as part of the declaration for each program variable or specifying
the information based on address ranges for memory locations; every operation in the dynamic execution
that accesses the given variable or memory location inherits this information as a label. We refer to thisas
the variable or address-based approach. The second approach is to provide the appropriate information for
each static memory instruction that may access a shared-memory location.® Analogous to the address-based

SInstructions that specify more than a single memory operation, such as read-modify-write operations, may conceptually require a
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approach, the execution of a memory instruction leads to a dynamic instance of a memory operation that
inheritsthisinformation as alabel. We refer to this as the instruction-based approach.

Providing labels in the above two approaches may be done on a per address or per instruction basis, or
it may be based on regions of addresses or instructions. The mechanisms through which thisis achieved are
naturally language dependent. For example, the address-based approach may be supported by associating the
appropriate label to operations that access specific pages. Similarly, the instruction-based approach may be
supported by providing multipleflavors of memory instructions, e.g., either through extra opcodes or through
extrabitsin the address (i.e., address shadowing) to achieve a similar functionality to extraopcodes. Or else,
regions of instructionsmay be associated with a given label through specia delimiter instructions.

In what follows, we discuss the rel ative merits of the address-based and instruction-based approaches for
labeling operations.

Expressive Power

The address-based and instruction-based approaches are inherently different in their level of expressiveness.
With the address-based technique, dynamic operations to different memory locations can inherit different
operation labels. However, accesses to the same memory location inherit the same label. On the other hand,
the instruction-based approach alows different memory instructions that possibly access the same memory
location to inherit different labels, but invocations of the same memory instruction always inherit the same
label even if the accesses are to different memory locations.

Both methods are theoretically less expressive than the conceptual approach of individually labeling
every dynamic memory operation in agiven execution, which would alow using adifferent 1abel for different
invocations of the same memory instruction or different accesses to the same memory location. For example,
consider the execution of a single instruction that leads to two dynamic accesses to memory location A.
Assume that individually labeling the operations in an execution would lead to the first operation being
non-competing and the second operation being competing. To ensure correct labels, we would have to declare
location A as competing or the instruction as competing depending on whether we use the address-based or
instruction-based approach, respectively. In either case, the resulting execution of the program would lead to
both memory operations being labeled as competing, which is more conservative than conceptually labeling
the operationsin an execution.

In practice, the instruction-based approach may be more appropriate than the address-based approach
since it is often the case that operations generated by the same instruction require the same label, while
different operationsto the same location may require different labels.*°

Default L abels

Default operations labels can be used to simplify the task of labeling a program or to reduce the chance of
incorrect labels resulting from programmer error.!! These two goals may often be conflicting. To achieve
the latter goal, the conservative labels would be chosen as the default. For the PL1 model, for example, we

label per operation that they generate.

10For example, consider thetest and set operationsin Figure 3.7 (or Figure 3.10(a)) which accessthe samelocation but require different
labels.

11| deally, the mechanism that is chosen should allow the programmer to override a default label. Otherwise, it will not be possiblein
general to make a program properly labeled by simply providing correct labels.
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would assume every operation is competing by default. Therefore, reordering optimizationswould only be
allowed if the programmer explicitly identifies an operation as non-competing. This can reduce the chances
of incorrect behavior that may be caused if weimplicitly assume an operation is non-competing.

To simplify the task of providing operation labels, an aternative approach would be to choose the more
frequent label sasthedefault. Given PL1 programs, for example, the non-competing label isempirically more
frequent than the competing label in most programs. Therefore, by assuming the non-competing label by
default, we reduce the number of instructionsor variables that must be explicitly labeled (i.e., as competing)
by the programmer.'> A related technique that is relevant to the instruction-based labeling scheme is to
choose the default on a per instruction basis depending on thelabel that is most frequently used for the given
instructiontype. AssumethePL1 model again. Specia instructionssuch as test-and-set or compare-and-swap
arefrequently associated with competing operations. Therefore, such instructionscan belabel ed as competing
by default. On the other hand, ordinary load and store instructionswould be labeled as non-competing since
it is the more frequent label for such instructions. Again, these default choices can reduce the number of
explicit labelsthat must be provided by the programmer.

Another interesting approach is to alow the programmer to choose potentially different default labels
for different regions of code. For example, consider a scenario where the programmer focuses on providing
accurate labels (i.e., in contrast to conservative labels) for only the performance critical regionsin a program.
Inthiscase, it may bebeneficial to choose thefrequent label s asthe default in the performance critical regions
and choose the conservative labels as the default for the remaining sections of code. The above idea may not
work well with the address-based approach for conveying labels since the same data structure may be used in
both critical and non-critical regions of code.

In summary, providing flexible mechanisms for specifying default l1abels can be extremely effective in
simplifying the task of properly labeling a program.

Implementation | ssues

The information conveyed in the form of labelsis used by the underlying system to enable variousreordering
optimizations. The instruction-based |abeling approach has an advantage over the address-based approach in
this respect since it provides the required information to the underlying system in a more direct and usable
form.

Consider compiling aparalel programwith explicit synchronizations, for example. To determinewhether
agiven set of memory instructions may be safely reordered, the compiler must ultimately deduce the labels
on individua instructions based on the static information provided by the program text. Thisinformationis
directly provided by theinstruction-based approach. On the other hand, the address-based approach provides
labels as an attribute of a given memory address. Since the memory address accessed by an instruction may
be dynamic (e.g., due to indirect addressing), it can be difficult to statically determine the appropriate |abel
for a given instruction based on information provided by the address-based approach. Thisis especialy true
in languages such as C that are not strongly-typed. Therefore, the compiler may end up with conservative
information in trying to transform labels on memory addresses to labels on memory instructions.

Unlike the compiler, the hardware has access to the dynamic execution of the program, alowing it

12For the other PL models, the synclabel is empirically more frequent than the non-synclabel and the loop label is more frequent than
the non-loop label in most programs.
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to accurately transform memory address labels to instruction labels. Nevertheless, the instruction-based
approach still provides an advantage over the address-based approach simply because it directly notifiesthe
hardware of the instruction label even before the instruction’s effective address is computed. Assume an
implementation of the PL1 model, for example. Consider a read instruction with a yet unresolved memory
address that depends on a long series of previous computations. With the instruction-based approach, the
hardware knows whether the read is competing or non-competing as soon as the instruction is fetched.
In the case of a non-competing read, an aggressive hardware can safely service operations past the read
potentially before the read address is computed. With the address-based approach, however, the hardware
must conservatively assume that the read is competing until its effective address is resolved, thuslosing the
opportunity to overlap the time to compute the read’s address with the servicing of operationsthat follow the
read.

The above issues regarding implementation efficiency are by far the most important in comparing the
address-based and instruction-based approaches, making the | atter approach more desirable.

3.6 Programswith Unsynchronized Memory Operations

The mgjority of parallel programs are written with sufficient synchronization to ensure memory operationsto
data structures are race-free (i.e., non-competing). However, programmers sometimes avoid synchronization
operationsto achieve higher efficiency and performance. Weloosely refer to such programsas unsynchronized
programs and refer to memory operations that are not protected by synchronization as unsynchronized
operations (similar to competing operations).

This section discusses the appropriateness of properly-label ed model sfor reasoning about unsynchronized
programs. The section begins by further describing the incentive for writing unsynchronized programs. We
next consider thetrade-off of properly labeling unsynchronized programs, ascompared to using system-centric
models, from both a performance and an ease-of -use perspective.

3.6.1 Why Programmers Use Unsynchronized Operations

For most programs, eliminating races on program data structures is necessary for correctness even when
we use a conservative memory model such as sequential consistency (e.g., refer back to Section 2.1.4).
Furthermore, the presence of data races complicates the task of reasoning about program correctness since
races often lead to a larger set of program behaviors that must be analyzed. Therefore, most programs use
synchronizations to avoid races and the lack of sufficient synchronization to protect data structure is often
considered a programming mistake.

There are some agorithms that can tolerate data races, however, and removing synchronization in such
agorithms can potentially lead to higher performance and efficiency.’® The main performance gains from
removing synchronization arise from eliminating the serialization among tasks (e.g., one task waiting for
another task to release alock or reach a barrier) and eliminating the cost of synchronization (e.g., acquiring
afree lock). In addition, since fine grain synchronization can sometimes incur a large memory overhead,

13The option of removing synchronization is only available if the programmer uses an explicitly parallel language with explicit
synchronization, since a parallel program generated from a sequential language or a language with implicit synchronization will
inherently have sufficient synchronization (refer back to the discussion Section 3.5.1).
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eliminating such synchronization can lead to a more efficient use of the available memory space.

A common class of algorithmsthat can tolerate unsynchronized operations are iterative algorithms based
on chaotic relaxation. An example is the parale successive-over-relaxation (SOR) method for solving
differential equations which leads to a nearest-neighbor computation among processors and is relaxed to
tolerate old vaues from neighboring processors within each phase of the computation. Eliminating the
synchronizationin thisalgorithmis essential for exploiting parallelism even though it changes the semantics
compared to the sequential SOR method. Sincethe algorithmiteratesto convergence, old values are tolerated
robustly and do not affect the correctness of the result. Many other iterative techniques based on chaotic
relaxation work on asimilar principle and can robustly tol erate unsynchronized memory operations.

In addition to the iterative algorithms described above, there are other types of algorithmsthat function
correctly with unsynchronized memory operations. Refer back to the branch-and-bound a gorithm shown
in Figure 3.7, for example. Aswe mentioned in Section 3.2.2, each processor computes a new bound and
compares it to the global bound to see whether the new bound isthe lowest bound computed up to that point.
Thetypica behavior isthat the globa boundisread frequently but is seldom written to. Therefore, acquiring
asynchronization for every read can needlessly serialize the computation when severa processors attempt to
read the bound. This serialization can be alleviated if the global bound isread in an unsynchronized manner.
The lock protecting the globa bound is acquired only if a processor’s computed bound is smaller than the
global bound. This agorithmis sufficiently robust to tolerate the unsynchronized read of the globa bound;
the global bound monotonically decreases during the course of the computation and reading an old value
simply implies that some processors will do extra work but does not affect the overall correctness of the
results.

Finally, efficient high-level synchronization primitives such as the barrier synchronization shown in
Figure 3.10(b) often require the use of unsynchronized operations. However, properly 1abeling such synchro-
nization algorithmstypically leadsto efficient primitives, as is the case with the barrier example.

In summary, reasoning about the correctness of programs with unsynchronized accesses is a non-trivial
task regardless of whether we assume a strict model such as sequential consistency or a relaxed memory
model. Nevertheless, eliminating the synchronization can potentially provide a large enough performance
advantage to warrant the use of unsynchronized memory operations in some programs. The next section
describes the appropriateness of the properly-labeled models for reasoning about unsynchronized programs.

3.6.2 Trade-offsin Properly Labeling Programs with Unsynchronized Operations

Compared to the system-centric models, the properly-labeled (PL) models offer an advantage in ease of
use, and for the majority of programs, provide a comparable or higher performance potential. The main
performance gain from PL models arises from the ability to reorder and overlap memory operationsthat are
non-competing. Therefore, PL models are especially well suited for programs that exhibit a high frequency
of non-competing operations due to use of sufficient synchronization. Conversely, PL models are not well
suited for programsthat exhibit ahigh frequency of unsynchronized (i.e., competing) operations; even though
the PL models till provide an advantage in ease of programming compared to system-centric models, using
system-centric models may lead to a higher performance potential for such programs.

There are two optionsfor programs with a high frequency of competing operations: (i) use the PL models
at a possibleloss in performance, or (ii) use system-centric models to possibly achieve higher performance
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at the cost of higher programming complexity. Before considering these two optionsin more detail, we first
discuss some possi ble misconceptions regarding the frequency of competing operationsin typical programs.

Possible Misconceptions about Unsynchronized Operations

Regardless of whether the programmer uses sequentia consistency or a more relaxed memory model, most
programs typically require sufficient synchronization in order to function correctly. The mgjority of programs
have arelatively low frequency of competing memory operations, with races typically confined to only afew
operations. The frequency of competing or unsynchronized operations may sometimes be over-estimated
simply because of amisconception about what a competing operationis. Below, we present afew illustrative
examplesto clarify some of the common misconceptions about competing operations.

One potentia source of confusion is that non-determinism in the order in which operations are executed
may be mistaken as an indication of competing operations. Consider the example in Figure 3.4(b). The order
in which thewrites on P1 occur with respect to the reads on P2 to locations A and B is non-deterministic and
depends on the order in which the two processors enter the critical section. However, this non-determinism
does not constitute a race on locations A and B. In every execution, conflicting operations to these locations
areordered throughan ordering chain consisting of awriteto unset thelock on one processor and atest-and-set
on the other processor. Thus, operationsto locations A and B are actually non-competing.

Another source of confusion may arise from the use of ordinary reads and writes to achieve synchro-
nization. Consider the program segment from Figure 3.1(a). Event synchronization is achieved with one
processor writing to the Flag location while the other waits for the new value. Since this example does not
use a conventional critica section (e.g., locks), some programmers may consider operation to locations A
and B as competing. However, these operations are in fact non-competing since they are ordered in every
execution by the competing operationsto Flag.

Finally, theexamplein Figure 3.13 showsamore subtleinteraction between two processorswith no explicit
synchronization. Assume Head_Ptr, RecO_Ptr, and Rec1_Ptr are record pointers. The program segment shows
Pl insertinganew record at the head of alinkedlist while P2 asynchronoudy reads therecord at thehead. The
record at the head isinitially the one pointed to by RecO_Ptr, with P1 later inserting a different record pointed
to by Recl_Ptr at the head. The read of the head record by P2 can occur either before or after the insertion
of the new record by P1. This type of optimized code may for example be used to add and look up records
in alist with no deletions. The lack of any form of explicit synchronization in this example may lead to the
conclusion that all the memory operations are competing. However, the only competing operations are the
write on P1 and the read on P2 to the Head_Ptr. Consider the two possible sequentially consistent outcomes.
In the first outcome, P2 reads the original record before P1 inserts the new record. Therefore, except for the
writeand read operationsto the Head_Ptr, the remaining operationson P1 and P2 are to fields of two different
records and cannot compete. In the second outcome, P2 reads the newly inserted record. The operationson
P1 and P2 are now to fields of the same record. However, these operations remain non-competing because
they are ordered through the ordering chain comprising of the write on P1 and the read on P2 to the Head_Ptr.
Therefore, even though there is no explicit synchronization between the two processors, the operationsto the
record fields are in fact non-competing.

In summary, intuitiveinspection of aprogram may often|ead to an over-estimation of the actual frequency
of competing operationsthat is revealed by a more careful anaysis.
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Initially Head_Ptr = RecO_Ptr

L P2
al: Recl Ptr—>fieldl = 1; a2: ptr = Head_Ptr;
b1: Recl_Ptr—>field2 = 2; b2: rl = ptr—>fieldl,;
c1: Recl_Ptr—>next = Head_Ptr; c2: r2 = ptr—>field2;
d1; Head_Ptr = Recl Ptr; d2: r3 = ptr—>next;

Figure 3.13: Example with no explicit synchronization.

Properly Labeling Unsynchronized Operations

Compared to a program written for relaxed system-centric models, the performance using the PL approach is
often comparable or better when competing operations are infrequent. On the other hand, programs written
for system-centric models may potentially perform better if competing operations are frequent. Of course,
the system-centric approach may not provide an advantage if many of the conservative orders maintained (by
the PL approach) among competing operations are actually necessary for the correctness of a given program
and must therefore also be maintained by the system-centric model .24

We want to emphasi ze that the PL model s may be used to reason about any program, regardl ess of whether
the program has sufficient synchronization. The only requirement for properly labelingaprogramisto provide
correct labelsfor al memory operations. For example, given the PL1 model, theonly requirement isfor every
memory operationthat iscompeting (i.e., unsynchronized) to beidentified ascompetingy, . Therefore, properly
labeling an unsynchronized program is conceptually no more difficult than properly labeling a program with
sufficient synchronization. It isimportant to notethat properly labeling an unsynchronized program does not
require adding any extra synchronization to the program. In fact, it is likely that the programmer made a
conscious decision to eliminate synchronizationsto achieve higher performance; reinserting synchronization
to eliminate the unsynchronized operations could therefore be the wrong choice (e.g., consider the chaotic
relaxation or branch-and-bound a gorithm described in Section 3.6.1).

Using System-Centric Modelsto Reason about Unsynchronized Operations

Algorithms that are consciously designed with insufficient synchronization are robust enough to tolerate
the memory behavior caused by unsynchronized operations. Typically, the same robustness characteristics
make many such algorithms immune to the reordering of memory operations that results from relaxing the
memory modedl. As a result, many unsynchronized algorithms do not depend on sequential consistency
for correctness. For example, the results of a chaotic over-relaxation algorithm may be considered correct
if they satisfy specific convergence criteria, even though some of these results would not be possible on
a sequentially consistent system. The above characteristics make unsynchronized algorithms suitable for
systems with relaxed memory models since the system can achieve reordering and overlap optimizationsthat
would not be possible if the results were required to be sequentially consistent.

For algorithmsthat do not depend on sequential consistency for correctness, there may be a performance

14 For iterative algorithms, it is also important to consider the effect of relaxing the memory model on the number of iterations that are
required for convergence.
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advantage in using the system-centric approach instead of the properly-labeled approach because the latter
can limit performance by guaranteeing sequentially consistent executions.!®> Of course, the correctness of
unsynchronized programs still depends on maintaining certain ordering constraints. For example, thefact that
an unsynchronized program functions correctly on a sequentially consistent system does not automatically
imply that it will function correctly with any relaxed memory model. Therefore, the programmer must
still ensure that the low-level reordering optimizations enabled by a given relaxed model do not affect the
correctness of the program. The above can be a non-trivial task from an ease of programming perspective.

3.6.3 Summary for Programs with Unsynchronized Operations

Most programs use sufficient synchronization since this simplifies reasoning about the program. The proper
labeling approach iswell suited for such programs since it provides higher ease of programming and compa-
rable or higher performance than the system-centric approach. However, there are a small class of programs
that eliminate some synchronization operationsin order to achieve higher performance. The system-centric
approach may exhibit a performance advantage for such programs over the PL approach. Nevertheless, this
performance advantage is accompanied with alarge increase in programming complexity since the program-
mer hasto reason about the correctness of the program given both thelack of synchronizationinthe agorithm
and the low-level reordering that is exposed by a system-centric model.

3.7 Possible Extensionsto Properly-Labeled M odels

This section describes a number of possible extensions to the programmer-centric models we have presented
in this chapter.

3.7.1 Requiring Alternate I nformation from the Programmer

Section 3.2 presented the three properly-labeled models along with the types of information about memory
operationsthat is exploited by each model to achieve higher performance. Although we only described three
specific types of information, our general framework may be extended to allow other types of information to
be expressed by the programmer.

In ng the utility of anew type of information, it is important to consider the trade-off between the
extraperformance that resultsfrom expl oiting thisinformation versusthe extracomplexity for the programmer
to provide the information. As discussed in Section 3.3, among the three types of information used by the
PL models, the first type of information that distinguishesbetween competing and non-competing operations
allowsthe system to achieve most of the performance gain possiblefrom exploiting relaxed memory models;
in most cases, the further distinction of competing operationsinto sync/non-sync and loop/non-loop does not
lead to substantial gains in performance. Therefore, it is important to consider the diminishing returns in
performance when proposing new types of information and to bal ance thiswith the extra burden imposed on
the programmer for providing such information.

15The programmer has the option of not properly labeling a program in order to allow non-SC outcomes. Even though the memory
behavior for non-PL programsis theoretically unspecified under a PL model, any practical implementation will obey a set of sufficient
conditions (similar to those specified by a system-centric model) that inherently specifiesthe memory behavior for all programs. These
conditions can be used in asimilar way to a system-centric model to reason about the behavior of anon-PL program.
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The explicit relationship between data and synchronization operationsin a program is an example of a
typeof information that isnot captured by the label swe have presented thusfar. Inherently, asynchronization
operation protects a specific set of memory operations from competing with conflicting operations on other
processors. For example, referring back to the program segment in Figure 3.1(a), the writeto Flag on P1 and
the read of Flag on P2 act as a synchronization to protect operationsto locations A and B from competing.
It is relatively straightforward to extend the programmer-centric models presented in this chapter to also
requirethe relationship between data and synchronization to be expressed as part of thelabeling process. This
extrainformation can be exploited by the system to order synchronization operations only with respect to the
memory operations that they protect as opposed to conservatively ordering them with respect to unrelated
operations.

As discussed in Section 2.5, identifying the environment and the types of architectures that a modd is
intended for is an important factor in ng the performance gains from exploiting a specific information.
For example, consider the extra information discussed above for relating synchronization to the data they
protect. Exploiting thisinformationin atypical shared-memory hardware architecture can be quite difficult
and may not yield enough of a performance gain to make it worthwhile. However, in the domain of software
distributed-shared-memory (DSM) systems where more of the coherence protocol is managed in software,
exploiting this type of information can enable important optimizationsthat would not be possible otherwise.
Infact, Midway [BZ91] isan example software DSM system that successfully exploitsthistypeof information
(see Chapter 5).

3.7.2 Choosing a Different Base M odel

The PL framework presented in this chapter uses sequentia consistency as its base model. Therefore,
programmers can simply reason with SC and are guaranteed that the result of their programs satisfy SC as
long as they provide the correct information about the memory operations. The reason for choosing SC as
the base model is not so much based on the fact that most programmers depend on this model, but because
SC maintains sufficient orders among memory operations to eliminate any “unexpected” behavior that may
arise due to overlap and reordering of memory operations. This relieves the programmer from considering
the effect of low-level reordering optimizationson the correctness of a program.

However, the modd that is implicitly assumed by most programmers is likely to be less strict than
sequential consistency. For example, many programmers may simply expect some notion of causality to
be upheld. Therefore, a model such as TSO which maintains causality may be sufficiently strict for such
programmers. This suggests that extending the basic programmer-centric framework to explore the use of
non-SC model s as the base model may be aplausibleoption. Consider the effect of using an aternative model
such as TSO as the base model. First, programmers would now reason with TSO instead of SC, and the
system would guarantee that executions of the program would satisfy TSO. Second, some of the information
required from the programmer to achieve certain optimizations with SC as the base model may no longer
be required if the optimizations are already alowed by the aternative base model. For example, since the
TSO mode aready alows reads to execute out of program order with respect to preceding writes, we no
longer need the loop/non-loop information (as required by the PL3 model) to exploit this reordering between
competing memory operations (i.e., competing write followed in program order by a competing read). Of
course, the programmer is now exposed to the write-to-read reordering through TSO.
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The programmer-centric framework can alternatively be thought of as away of providing an equivaence
between two different memory models; the programmer is presented with the more conservative model
while the system achieves the performance associated with the more aggressive model. As an example, we
can choose two system-centric models such as TSO and RMO. The programmer may be alowed to reason
with TSO and is required to provide certain information about the behavior of memory operationsin TSO
executions of the program. The system can in turn use this information to exploit the optimizations possible
under RMO while maintaining correctness according to TSO. The type of information required from the
programmer will obviously be a function of the two models chosen.

3.7.3 Other Possible Extensions

The framework presented in this chapter may be extended in severa other areas, afew of which are described
below. One possible area is to explore extensions to the programmer-centric approach to provide better
performance for unsynchronized programs that exhibit a high frequency of competing operations while till
maintaining programming simplicity. This will likely require a deeper understanding of the behavior of
such programs. Other possible areas to explore include extending programmer-centric models to deal with
multiple granularity operations (e.g., operations at byte and word granularity), writesto the instruction space,
and operations to 1/0 devices; the system specification and implementation issues related to the above are
discussed in more detail in Chapters4 and 5.

3.8 Reated Work

This section provides an overview of the related research on programmer-centric models. The two seminal
programmer-centric frameworks were independently developed by our group at Stanford (proper labeling
(PL) framework [GLL*90]) and Adve and Hill at Wisconsin (data-race-free (DRF) framework [AH90b])
(both papers were published in the same conference). Even though some of the ideas that led to these two
frameworks aready existed, the PL and DRF work were the first to formally define the exact conditions
on programs (e.g., formally defining the notion of correct labels) and to precisely define the set of possible
executions for programs that satisfy these conditions (e.g., guaranteeing SC executions). The hierarchy of
programmer-centric models described in this chapter is an extension of our origina work on PL [GLL*90]
and our joint work with Adve and Hill on PLpc [GAGT92]. We begin by relating the PL hierarchy presented
here to the previous work on the PL and DRF frameworks, in addition to discussing other related work
on programmer-centric models. The latter part of this section describes related research on programming
environments and toolsthat can simplify the task of using programmer-centric models.

In what follows, we mainly focus on the specification of the various programmer-centric memory models.
The related work on specifying sufficient implementation rules and efficient implementation techniques for
supporting programmer-centric models are covered in Chapters 4 and 5.

3.8.1 Relation to Past Work on Properly-Labeled Programs

The proper labeling (PL) framework [GLL T 90] was originally introduced to simplify the task of programming
for system-centric models such as release consistency (i.e., RCsc). This framework categorizes operations
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into competing and non-competing, and further categorizes competing operations based on whether they are
used for synchronization, in addition to distinguishing between synchronization read and write operations.
We later extended the PL framework to further distinguish synchronization operations into loop and non-
loop operations which captures the extra optimizations enabled by a model such as RCpc. This latter
framework was devel oped jointly with Wisconsin and led to the PLpc model [GAG™92]. Finally, Gibbons et
al. [GMG91, GM92] have a so introduced variations of the original PL framework. Below, we compare the
above definitionswith the hierarchy of PL programs presented in this chapter.

The origina definition of a PL program [GLL*90] most closdly matches the requirements for PL2
programs in the hierarchy of PL programs presented in this chapter.'® There are a few subtle differences
between the two definitions, however. For example, the definition of PL2 makes the notion of an ordering
chain explicit while this notion is only implicitly present in the origina description of PL programs. This
leads to some minor semantic differences between thetwo definitions.Y” Therefore, it isconceptually possible
for a program with a given set of labels to be considered a PL program according to the original definition,
but not satisfy the requirements for PL2 programs. Nevertheless, the differences between the two definitions
is not expected to show through for most realistic programs and labelings.

The PLpc model [GAGT92] most closdly matches the PL3 model among the hierarchy of program-
centric models presented in this thesis (a later technical report [AGGT 93] provides some minor fixes to the
definitions in the original paper [GAG192]). Aside from differences in the definition style® the major
difference between the two isthat the PLpc model did not distinguish between sync and hon-sync operations.
Making thisdistinctionin PL3 is mainly motivated by the desireto provideaclean hierarchy among the three
different models we propose (i.e., since PL2 makes the distinction).

Finally, Gibbons et al. have proposed two variations of the original PL framework. Thefirst oneisthe
PL;,. framework (“br” stands for blocking reads) [GMG91]. The PL;, framework is more restrictive than
the original PL framework because it assumes that reads are blocking (i.e., processor stalls on reads). This
removes the need for distinguishing between sync and non-syncreads. Furthermore, due to the blocking read
restriction, PL;, does not alow optimizations involving the overlap of a read with operations that follow
it in program order. Gibbons and Merritt later proposed the PL,,,. (“nr” stands for non-blocking reads)
framework that removes the restriction of blocking reads [GM92]. PL,,,. aso extends the PL;, work by
relating synchronization operations to the data operations that they protect. The notion of a release set is
used to identify the memory operations preceding the release operation in program order that are protected
by therelease. The aboveideaisaso used to merge the notions of sync and non-sync operations; a non-sync
operation is a degenerate form of a sync operation with a null release set. There is no corresponding notion
of an acquire set, however, which is somewhat asymmetric. PL,,,. also generalizes the notion of sequential
consistency by allowing the program order on each processor to be a partia as opposed to atotal order; the
paper does not describe how thisextrainformation can be conveyed by the programmer, however. Among the
PL models proposed in this chapter, PL,,,. isclosest to the PL2 model except for the release set and program

16The non-synclabel was referred to as nsync in the original definition.

170ne superficial difference between the original PL definition and the PL2 definition is that the former requires synchronization
operations (i.e., sync) to be explicitly distinguished as either an acquire or arelease. PL2 does not make this categorization explicit to
the programmer simply becauseit istrivial for the system to automatically generate the relevant information; a read synchronizationis
labeled as an acquire while awrite synchronizationis labeled asarelease. The above does not lead to a semantic difference between the
PL and PL2 definitions.

18The original definition of PLpc refers to the same operation across different executions. Since thisis difficult to formalize, we use a
different way of defining PL programs here.
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order extensions that are described above.

3.8.2 Comparison with the Data-Race-Free M odels

The data-race-free (DRF) framework [AH90b] was introduced by Adve and Hill at the same time that we
introduced the proper labeling (PL) framework [GLL*90]. The origina paper by Adve and Hill [AH90b]
described the Data-Race-Free-0 (DRF0) model. The datarace-free-1 (DRF1) model [AH93] was later
introduced as an extension.

The data-race-free-0 (DRFO) framework [AH90b] requires the programmer to distinguish data and syn-
chronization operations. Similar to the proper labeling framework, appropriate conditions are given for
determining whether a program is data-race-free.!® Specifically, the program order and the synchronization
order (order between synchronization operationsto the same address) are used to define an ordering relation
among memory operation. Thisrelation, called happens-before, is defined as thetransitive closure of program
order and synchronizations order. A program is considered to be data-race-free-0 if and only if (i) for any
sequentially consistent execution, al conflicting accesses are ordered by the happens-beforerelation, and (i)
all synchronization operation in the program are recognizable by the hardware and each accesses exactly a
single memory location.

Among the hierarchy of properly-labeled models described in this chapter, the data-race-free-0 model is
most similar to the PL1 model. Intuitively, the notion of synchronization and data operations in DRFO is
similar to the notion of competing and non-competing operationsin PL1. The way the notion of araceis
defined in DRFO is different from the way a competing operation is defined in PL1. For example, while the
interprocessor conflict ordersin an ordering chain for PL1 comprise solely of writeto read pairs, the DRFO
model also alows aread after a read, aread after a write, or a write after a write synchronization order to
appear in the happens-before relation. Therefore, given an SC execution, the operations that are considered
competing under PL1 are a superset of those considered as a race under DRFO. This difference originaly
led to a stricter set of constraints for supporting DRFO [AH90b] whereby the distinction between read and
write synchronizations was not fully exploited as in PL1 implementations (e.g., reordering a data write with
afollowing synchronization read). However, Advelater observed that such optimizationsare actually safe to
exploit in DRFO programs [Adv93].

Adve and Hill later extended the data-race-free framework to capture similar ideas to those introduced
by the origina PL framework [GLL*90]. This extended mode is called the data-race-free-1 (DRF1)
model [AH92b, AH93]. Similar to DRFO, the DRF1 model distinguishes between data and synchronization
operations. Synchronization operations are further categorized into paired and unpaired operations; pairable
synchronization operations comprise of awrite synchronization (rel ease) and aread synchronization (acquire)
to the same location that returns the value of the write. The happens-before is then defined as the union of
program order and synchronization order among paired operations. Compared to the categorization in
the original PL framework (or the PL2 model), the distinction of data and synchronization operations in
DRF1 roughly corresponds to the non-competing and competing categories and the pairable and unpairable
synchronizations roughly correspond to sync and non-sync operations. Furthermore, similar to PL, DRF1

19The name “ data-race-free” is non-ideal since it may be interpreted as saying that enough synchronization primitives must be used to
avoid al races, whilein fact it is perfectly fine to have unsynchronized operations as long as they are identified with the synchronization
label.
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exploitsthedistinction between pairable read and write synchronizations. Overall, the achievable performance
potential for DRF1 programsis comparable to that of PL (or PL2) programs.

3.8.3 Other Related Work on Programmer-Centric Models

This section provides a brief overview of other efforts aimed at enhancing the programmability of relaxed
models. The common technique used in many of the approaches described below is to identify a specific
class of “good” programs that provide “correct” behavior on a given system. Aswe will see, the notions of
“good” programs and “correct” behavior are often informal and sometimes lead to ambiguous definitions.

The memory model adopted for the VAX architecture requires that accesses to shared writable data be
synchronized and provides several interlocked instructionsthat may be used to access memory for the purpose
of synchronization [DEC81]: “Accesses to explicitly shared data that may be written must be synchronized.
Before accessing shared writable data, the programmer must acquire control of the data structures.” Similar
to the programmer-centric framework presented in this chapter, the outcome of programs that do not comply
to the model’s specification are unspecified.

The requirement of ensuring multiple-reader single-writer mutual exclusion among accesses to shared
data has been used in several other frameworks. The weak ordering model [DSB86, DS90b, Sch89] suggests
using such a programming style (based on hardware-recognizable synchronization operations) to achieve
“correct” results. Unlike the VAX description however, the behavior of the model is well defined for
all programs (see Section 2.4.5), including programs that do not obey the mutua exclusion constraint.
Similar to wesk ordering, numerous other hardware-centric models, including Sun TSO, PSO, and RMO
models [SUN91], the Digital Alpha model [Sit92], and the IBM PowerPC model [MSSW94], recommend
protecting shared data through mutual exclusion for achieving correctness and portability. In addition to
promoting the use of sufficient synchronization, the description of these hardware-centric models is often
accompanied by recommended implementations of common synchronization constructs (e.g., locks) for the
given model [SUN91, Sit92, MSSW9].

Although the model sdiscussed above specify particular programming stylesto enhance programmability,
the informal nature of the specifications often lead to ambiguities and possible correctness problems. For
exampl e, the notion of accesses to shared databeing synchronized lacksaformal definition. Furthermore, itis
often not clear what memory model should be assumed when determining whether accesses are synchronized.
Similarly, thebehavior of programsthat comply with the synchronization requirement isnot formally specified.

Eventhough these efforts suffer from ambiguities, they provided val uableintuition for the ensuing research
on programming-centric approaches such as the PL framework. The PL framework presented in this chapter
attempts to alleviate ambiguities associated with previous approaches by formally specifying the criteriafor
programs through imposing well-defined constraints on sequentially consistent executions of the program.
In addition, the behavior of programs that satisfy this criteriais explicitly specified to be the same as that
of a sequentially consistent system. Another unique aspect of the PL framework is that any program can be
transformed to a PL program by simply providing the appropriate |abel s that convey extra information about
memory instructions. In contrast, ensuring that a program’s memory operations obey mutual exclusion, asis
required by the techniques discussed above, may sometimes require adding extra synchronization operations
and changing the overall structure of the program. Overall, the PL framework has the advantage of aformal
and unambiguous specification and is applicable across a larger range of programs and programming styles.
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More recently, Hagit et a. [ACFW93] have suggested a few alternativetechniques for enhancing the pro-
grammability of relaxed memory models by ensuring sequentially consistent resultsfor certain programming
styles. Thiswork isin the context of hybrid consistency model [AF92, ACFW93], a system-centric model
that has similaritiesto weak ordering with strong memory operations roughly corresponding to synchroniza
tion operations and weak operations roughly corresponding to data operationsin weak ordering. One of the
techniques they suggest is virtually the same as the data-race-free-0 (DRF0) model, so we do not discuss it
further. They suggest two other alternative techniques. The first aternative requires all write operationsin a
program to be identified as strong. Even though it is simple to automatically label all writesin a program as
strong, ensuring sequentia consistency for such programs unduly restricts the use of important optimizations
in hybrid consistency as compared to relaxed models such as wesk ordering. For example, hybrid consis-
tency constrains the reordering of weak reads with respect to each other, while such reordering is perfectly
allowable in models such as weak ordering. The second technique is a dua of the above, requiring al read
operations to be identified as strong. To ensure sequentially consistent results in this case, the programmer
has to also guarantee that (i) every value written to the same location is unique, and (ii) every value written
is returned by some read. These latter requirements are obviously overconstraining and can gresatly limit
the applicability of thistechnique to real programs. Furthermore, analogous to the case with strong writes,
ensuring sequential consistency for programs with strong reads unduly constrains the reordering of weak
writesin hybrid consi stency.

3.84 Related Work on Programming Environments

Programmer-centric model s place the burden of providing correct operation labels on either the programmer
or compiler. While labels can be generated automatically for certain languages, languages that provide
explicit synchronization often require the programmer to provide this information (see Section 3.5.1). We
briefly describe programming environment tools and architectural features that have been proposed to help
the programmer with thistask. Appendix D presents these techniquesin greater detail.

Appendix D primarily discusses two distinct options for helping programmers use programmer-centric
models. The first option involves an extension to the debugging environment (based on data race detection
work [AP87, DS90a, HKMC90, NM89, NM91]) that helps the programmer identify incorrect labels (e.g.,
whether a program is properly labeled according to Definition 3.4 for PL1). While this technique is useful
during the debugging phase, it failsto protect the programmer from incorrect labels during normal program
runs. On the other hand, the second option provides programmers with a mechanism to directly determine
whether aprogram can lead to sequentially inconsi stent executionson agiven system. Thisisachieved through
a simple hardware mechanism that can efficiently monitor normal executions of the program and notify the
programmer if sequential consistency may be compromised due to the presence of incorrect labels [GG91].
This latter option is motivated by the observation that programmers ultimately care about achieving correct
(i.e., sequentially consistent) results and ensuring correct labelsisonly a means to this end. Even though the
above two options are related, there is a subtle but important difference between the two. A program that
provides correct |abels according to a programmer-centric model is indeed guaranteed to yield sequentially
consistent executions on systems that support that model. However, correct labels are not a necessity for
a given program to yield sequentially consistent executions on that system. This subtle distinction leads
to different techniques for detecting violations of sequential consistency as compared to detecting incorrect
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labels, allowing the former to be used during normal execution while the latter is confined to executions
during the debugging phase.

Techniques such as those described above are critical for enhancing the usability of programmer-centric
models. However, work in this area is still in its infancy. In a more general context, there are various
opportunitiesin providing a more supportive programming and debugging environment for relaxed models
by exploring enhancements to the language, compiler, runtime environment, and even the architecture.

3.9 Summary

Programmer-centric models provide an aternative approach to system-centric models for specifying the
memory behavior of a system to the programmer. The primary goa of programmer-centric models is to
achieve high performance while maintaining the programming ease associated with a simple and intuitive
model such as sequentia consistency. To achieve this, the programmer is required to provide program-level
information about the behavior of shared memory operations in sequentially consistent executions of the
program. Thisinformationisin turn used to enable safe ordering optimization; as long as the information
provided by the programmer is correct, the system guarantees sequentially consistent results.

We defined a set of three programmer-centric models, referred to as properly-labeled (or PL) models. The
three PL models form a hierarchy, with each model exploiting an additional piece of information to achieve
higher performance. We demonstrated that with only afew types of information supplied by the programmer,
one can exploit the full range of optimizations captured by the aggressive system-centric models and yet
maintain sequential consistency. Providing the type of information that is required by these programmer-
centric models is easier and more natural for the programmer than reasoning with system-centric models
directly and allowsfor simpleand efficient portability of programs across awiderange of systems. Therefore,
the above approach unifiesthe memory ordering optimizationscaptured by many of the system-centric models
without sacrificing ease of use and portability.

The next chapter presents the sufficient requirements that a system must obey to support the PL models,
and also describes how PL programs can be correctly ported to various system-centric models.
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Chapter 4

Specification of System Reguirements

To correctly and efficiently implement a memory model, a system designer must first identify the memory
ordering optimizations that are safely alowed by the model. The specification of system requirements
simplifies thistask by directly defining such ordering constraints for a given model. System-centric models
inherently providethese requirements by the nature of their specification. In contrast, it isdifficult to directly
deduce such requirements from the specification of programmer-centric models. Consequently, these models
are also typically accompanied by a set of system requirements that are proven sufficient for correctness.

For both classes of models, the low-level system specification plays a key role by directly influencing
hardware and system softwareimplementations. Therefore, it isimportant for such system specificationsto be
unambiguous and relatively straightforward to convert into efficient implementations. This chapter presents
aframework for specifying system requirements that satisfies the above goals.

Section 4.1 presents our framework for specifying system requirements. Section 4.2 uses thisframework
to express the sufficient requirements for supporting the properly-label ed programs presented in the previous
chapter. Section 4.3 uses the same framework to express the system-centric models described in Chapter 2.
Conditions for correctly and efficiently porting programs between programmer-centric and system-centric
models are presented in Section 4.4. Section 4.5 considers a number of extensions to our specification
framework. Finaly, Section 4.6 providesa comparison with other related work. Techniques for transforming
the system requirement specifications into efficient implementations are covered in Chapter 5.

4.1 Framework for Specifying System Requirements

Given the relative importance of system specifications in helping the designer determine optimizations
that may be safely exploited under a specific model, there are a number of desirable properties for such
specifications. First, the specification should be precise and complete. Any ambiguity arising from the
specification is undesirable and can lead to incorrect implementations. Second, the specification should be
general, allowing a wide range of system designs and optimizations. To achieve this goal, the specification
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should impose as few constraints as necessary to maintain the semantics of the model. Third, it should be
relatively straightforwardto convert the conditionsinto efficient implementations, and conversely, to verify if
an implementation obeys the conditions. Aswill be further discussed in Section 4.6, many of the previously
proposed specifications fall short of meeting these goals by being either overly restrictive or ambiguous.

This section presents a framework for specifying system reguirements that meets the above criteria. Our
abstraction extends previouswork [Col 92, SFC91, AH923] by adequately modeling essential characteristicsof
ashared-memory system, such asreplication of dataand the non-atomicity of memory operations. In addition,
a key attribute of our specification methodology is the exclusion of ordering constraints among operations
to different locations by observing that such constraints are unnecessary for maintaining the semantics of a
model. The above characteristics allow us to easily expose the inherent optimizations alowed by a given
model. We begin by describing some terminology and assumptions. We next present our abstraction of a
shared-memory system that forms the basis for the framework, and describe our methodol ogy for specifying
system requirements based on this abstraction. The framework presented here is an extension of our earlier
work inthisarea [GAGt93].

411 Terminology and Assumptionsfor Specifying System Requirements

This section presents the terminology and assumptions used in our framework for specifying system require-
ments. We describe the notions of a shared-memory system and a shared-memory program, along with our
assumptions about executions on canonical uniprocessorsthat comprise the multiprocessor system. In addi-
tion, we describe the notion of aresult of an execution and discuss theimplicationsof different interpretations
of thisnotion. Finally we discuss some of the simplifying assumptionsin our abstraction of ashared-memory
system; we will later revisit these assumptionsin Section 4.5.

A typical shared-memory system consists of a set of processes,’ a set of private locations per process
representing its private state (e.g., registers) and private memory, a set of shared-memory locations, a set
of external 1/O devices (e.g., disk, network, terminal) which we refer to as external devices, and a set of
special 1/0 locationsfor communicating with the external devices. Definition 4.1 below describes our model
for the system. While we model access to private process state and externa 1/0O through read and write
operations, the semantics of such operations may be substantially different from that of simple reads and
writes to shared-memory locations. For example, a write to an externa output state associated with a disk
controller may have the complex semantics of initiating the transfer of data from the disk to memory.

Definition 4.1: Abstraction for a Shared-Memory System

A shared-memory system consists of a set of processesand a set of external devices. Processes communicate
through read and write operations to a set of shared-memory locations. Each process also has access to a
set of private locations representing its private state. Communication between processes and external devices
occursthrough operationsto special locations associated with external input state and external output state. An
external input (output) is written (read) by an external device and read (written) by aprocess. External devices
are also allowed to perform read and write operations to the shared-memory locations. The semantics of read
and write operationsto the private state of each processand to external input and output states may be different
(e.g., dueto side-effects) from the simple memory-like behavior of operationsto shared-memory locations.

Definition 4.2 describes our model for a shared-memory program and its constituent instructions. Each
gtatic instruction may specify a set of read and write operationsto its process  private state, shared memory,

1For specification purposes, we assume a canonical system with avirtual processor per process. Therefore, we will use processor and
processinterchangeably. Chapter 5 describesimplementation issues that arise in executing multiple processes per physical processor.
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or external input and output states, along with partial ordering and atomicity relations (e.g., to specify an
atomic read-modify-write) among these operations; the instruction fetch can be modeled as simply one such
read operation. A dynamic instance of an instruction further specifies the actual locations and values that are
read and written by the constituent operations. Each static instruction also specifies a set of possible next
instructions within its process, which trandates to a unique next instruction for a dynamic instance of the
instruction (e.g., consider a conditiona branch). This partial order among dynamic instructions from each
process |eads to the concept of program order, which is described in Definition 4.3. We have chosen to use
the conventional definition of program order which imposes a total order on instruction instances from the
same process [SS88], though our framework can be trivialy extended to deal with a definition of program
order that only imposes a partial order among instructions from the same process [GM92]. Definition 4.4
extends the notion of program order from instructionsto memory operations.

Definition 4.2: Abstraction for a Shared-Memory Program

A shared-memory program specifies the following: (a) a sequence of static instructions for each process, and

(b) the initial state for the system, including the per process private state, the state of shared-memory locations,

and external input and output states. Each static instruction may specify the following: (i) read and write

operationsto its process' private state, shared memory, or external input and output states, (ii) apartial ordering

among its read and write operations (we assumethat at least the order of any conflicting operationsis specified),

and (iii) atomicity relations among its read and write operations. In addition, each instruction specifies (either

implicitly or explicitly) a set of possible next instructions from the same process; the choice of a unique next

instruction within this set is made dynamically in each run of the program based on the values returned by the

read operations within the given process. A dynamic instance of an instruction provides further information

regarding the dynamic locations and values for the read and write operations generated by executing the static
instruction, in addition to specifying the next dynamic instruction instance within its process.

Definition 4.3: Program Order among I nstruction I nstances

The program order, denoted by 22+, is a partial order on the dynamic instruction instances in a run of the
program. The program order is a total order among instruction instances from the same process, reflecting the
order specified by the “next instruction relation” described in Definition 4.2. Dynamic instruction instances
from different processes are not comparable by program order.

Definition 4.4: Program Order among Memory Oper ations

Two memory operations, ol and 02, are ordered by program order (01 22+ 02) if either (a) their corresponding
instruction instances, i1 and i2, respectively, are ordered by 22 (i1 22 i2) as specified by Definition 4.3, or
(b) they both belong to the same instruction instance and o1 is partially ordered before 02 by the instruction
instance (as specified by Definition 4.2(ii)). In contrast to program order among instruction instances, the
program order among memory operations from the same process is not necessarily a total order (because an
instruction instance does not necessarily impose a total order among its own memory operations).

In specifying multiprocessor executions, we assume that the execution on each process at least obeys
the semantics of a canonical uniprocessor by executing the instructions for the process correctly. Since our
focus is on specifying multiprocessor behavior however, we do not attempt to formalize the notion of a
canonical uniprocessor and rely instead on the intuitive notion. Condition 4.1 specifies what we refer to as
the uniprocessor correctness condition. Intuitively, the condition reguires the instruction instances from any
process in a multiprocessor execution of a program to be the same asthe instruction instances of a conceptual
execution of the program for that process on a canonical uniprocessor, given that read operations to shared
memory and external input state are made to return the same vaues as those in the origina multiprocessor
execution. Note that even though this condition imposes constraints on the set of possible executions, it
does not constrain the behavior of operations to shared memory (which is the primary function served by a
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memory consistency model). Our methodology for constraining shared memory behavior is presented in the
next section.

Condition 4.1: Uniprocessor Correctness Condition

The instructions specified by the program for each process are executed in the same way as by a canonical
uniprocessor, with return values for read operations to shared memory and external input state assumed to
be externally supplied. Thisimplies that (a) the semantics for each instruction and its constituent operations
are upheld, including the correct choice for the next instruction instance from the process, (b) the dynamic
instruction sequence is solely a function of the values returned by read operations to private state, shared
memory, and external input state, and (c) read operations to the process’ private state return the semantically
correct value based on previous operations to private state that appear in program order (for operations with
memory-like behavior, the requirement is that a read should return the value of the previous write in program
order that modified that location, or theinitial valueif there is ho such write). One important implication of the
above constraintsis that the number of instruction instancesthat arein program order before agiven instruction
instance s required to be finite.

The remaining concept we need to defineistheresult of an execution of a program. The result intuitively
comprises of the set of states that are considered “ observable” during or after a run of the program. For
example, the sequence of changes to external output state (e.g., messages printed on a terminal) may be
considered as part of the result. Or the state of portions of the shared memory may be considered as
observable during different stages of the execution and may therefore be considered part of theresult. At the
extreme, every state in the system may be considered observablein real time.

The notion of result plays a key role in comparing different memory model specifications or different
implementations. Definition 4.5 describes how two specifications or implementations may be compared
based on theresultsthey allow (same terminology asin Section 2.1.5). Because the equival ence between two
specificationsis strongly dependent on the definition of result, it ispossibleto have two specificationsthat are
equivalent under one interpretation of result and not equivalent under a different interpretation. Therefore,
we need aclear definition for result.

Definition 4.5: Comparison of Memory Model Specificationsor | mplementations Based on Result

Given a formal definition of result, two memory model specifications or implementations S1 and 2 are
equivalent iff for any run of any program, the result in S1 is possible in S2 and vice versa. Sl is considered
to be stricter than 2, and S2 is considered more relaxed than S1, iff for any run of any program, the result in
Sl ispossible in S but not vice versa. Sl and S2 are distinguishableif they are not equivalent. S1 and 2 are
incomparableiff they are distinguishable and neither is stricter than the other.

A definition of result that allows too much state to be observable is undesirable because it may limit
various optimizations that would otherwise be possible. To better understand this, consider the example of
a uniprocessor system with two different notions for result. Assume the first definition for result consists of
the final state of memory when the program compl etes its execution, while the second definition also makes
the real-time order in which memory operations are performed observable. With the second definition of
result, a system that employs typical uniprocessor optimizationsthat change the order of memory operations
will be considered distinguishablefrom a canonical uniprocessor that issues its memory operationsin order.
Meanwhile, the first definition considers the two systems to be indistinguishable as long as the final state of
memory isthe same, thus allowing alot more optimizations.

Since the main focus of our specification framework is to define the behavior of operations to shared
memory, we will make the simplifying assumption of excluding external devices from the our definition of
the system. Therefore, we assume read and write operationsare only to private state and shared memory, and
all such operationsare initiated by the processes (in effect ignoring communication between external devices
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and processes through external input/output state and shared memory). Based on the above assumption, we
have adopted a simple notion of result, specified by Definition 4.6, that consists of the set of values returned
by read operations in an execution, which uniquely determine the dynamic instruction instances for each
process in arun of the program (by Condition 4.1).

Definition 4.6: Simple Notion for Result of an Execution

We assume the result of an execution of a shared-memory program consists of the set of values returned by

read operationsto private state and shared memory. Since we require that all executions obey the uniprocessor

correctness condition (Condition 4.1), the above set of values uniquely determines the dynamic instruction

instancesfor each process.

Even though the above definition for result is not adequate for modeling real systems dueto the exclusion
of external devices, it is extremely useful for isolating and specifying the behavior of shared memory. For
this reason, many of the previous efforts in specifying memory models have either implicitly or explicitly
assumed a similar notion of result. Section 4.5 considers extensionsto our framework to encompass a more
realistic notion of result. Aswe will see, many of the complexities that arise, such as the modeling of 1/0O
devices, are aso present for uniprocessors and are thus not unique to multiprocessors.

In addition to excluding external devices, we make afew other simplifying assumptionsthat are described
below. The first assumption is a restriction on the possible atomicity relations among read and write
operations generated by an instruction (Definition 4.2(iii)) and the granularity of data atomically accessed by
these operations. We assume three atomic operations: read, write, and read-modify-write, al with the same
granularity of access to data (e.g., aword). For an atomic read-modify-write, the read and write are assumed
to be to the same location and the read is assumed to occur before the write in program order. The second
assumption is regarding the locations or addresses dynamically generated by the read and write operations.
We assume all locations are specified in terms of logical addresses to simplify identifying operations to the
same location.? The third assumption is that the instruction space is read only. Therefore, we will initially
not concern ourselves with instruction fetches being affected by the behavior of shared memory. Section 4.5
describes how each of the above assumptions may be relaxed.

4.1.2 SimpleAbstraction for Memory Operations

This section introduces a simple abstraction for memory operations along with a description of how the
behavior of shared-memory operationsmay be constrained to specify amodel such as sequentia consistency.
The main purposefor thissection isto build intuitionfor the more general abstraction that we will present in
the next section.

The simple abstraction presented below isinspired by the conceptual model for shared memory depicted
in Figure 4.1. As shown, there is conceptually a single copy of memory and each processor accesses this
memory through either aread operation, denoted by R, that returnsthe value of a specific location, or awrite
operation, denoted by W, that modifies the value of the location.

An execution of a program (specified in Definition 4.7) consists of a set of dynamic instruction instances,
aset of memory operations specified by the instruction instances, a partial order (i.e., program order) on the
instructionsand the memory operations, and atotal order (called execution order) on all memory operations.

2\Wedid not choosevirtual addressessincethey may have synonymsand wedid not choose physical addressessincethe correspondence
for agiven virtual addressmay vary during an execution.
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Definition 4.7: Componentsof an Execution

An execution of a multiprocessor program consists of the following components.

(@) A (possibly infinite) set, I, of dynamic instruction instances from the run of the program that obeys the
uniprocessor correctness condition (Condition 4.1).

(b) A set, O, of memory operations specified by the instruction instancesin I. For every instruction instance i
in | that reads (writes) amemory location, the set O contains a corresponding read (write) memory operation.
(c) A partial order, called the programorder (denoted by £2+), on the instruction instancesin | (Definition 4.3)
and on the memory operationsin O (Definition 4.4).

(d) A total order, called the execution order (denoted by =), on the memory operations in O. The number of
memory operations ordered before any given memory operation by the execution order (—=) is finite.

To specify the behavior of a system, we will need to place various constraints on the execution order
component. We first describe a couple of general conditionson the execution order. Condition4.2 definesthe
congtraint on the return values for read operations. This condition formalizes the intuitive notion that a read
should return the latest value of agiven memory location, asimplied by Figure4.1. Similarly, Condition 4.3
describes the notion of atomicity for atomic read-modify-write operations.

Condition 4.2: Return Value for Read Operations
A read memory operation returns the value of the last write operation to the same location that is ordered before

the read by the execution order (=2+). If there is no such write ordered before the read, the initial value of the
location is returned.

Condition 4.3: Atomicity of Read-Modify-Write Operations
If Rand W are the constituent read and write operationsfor an atomic read-modify-write to agiven location (R
22 W by definition), then there is no write operation W' to the samelocation such that R =2 W' =22 W,

We can specify various consistency models by further constraining the execution order. To illustrate
this, Figure 4.2 specifies the conditions for sequential consistency. In addition to obeying the general
conditions specified above, the execution order anong memory operationsis required to be consistent with
program order. These requirements trivially (and conservatively) satisfy Scheurich and Dubois' conditions
for sequentia consistency (Condition 2.2 in Chapter 2).

We define a valid execution order as one that satisfies the constraints specified by a memory model. A
valid execution is then an execution for which a corresponding valid execution order may be constructed.®

30ur framework coversinfinite executionssince an execution can compriseof aninfinite set of dynamicinstructionsandthe conditions
for a model are specified as a restriction on the execution order among these instructions. In practice, one may want to test whether a
partial execution (potentially leading to an infinite execution) generatesa valid outcome. For this, we can define a partial executionasa
set |’ of instructions, aset O’ of memory operations, and a program order and an execution order relation that represent the instructions

Section4.1  Framework for Specifying System Requirements 87



Conditionson =2
(a) thefollowing conditions must be obeyed:
Condition 4.2: return value for read operations.
Condition 4.3: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X 2% Y, then X =2 Y.

Figure 4.2: Conditionsfor SC using simple abstraction of shared memory.

A system correctly implements a model if the result of every execution is the same as the result of a valid
execution.

Definition 4.8: Valid Execution Order
An execution order is valid for a memory model iff it satisfies the conditions (i.e., restrictions on execution
orders) specified for that model.

Definition 4.9: Valid Execution
An executionisavalid execution under amemory model iff at least onevalid execution order can be constructed
for the execution.

Definition 4.10: Correct | mplementation of a Memory Model
A system correctly implements a memory model iff for every execution allowed by the system, the result isthe
same as aresult of avalid execution (as specified by Definition 4.9).

A typical implementation of a model obeys the constraints on execution order directly (and usualy
conservatively); i.e., constraints on the execution order are enforced in rea time. A system designer isfree
to violate these constraints as long as the resulting executions appear to obey the constraints by generating
the same results (Definition 4.10).* However, in practice it is difficult for a designer to come up with less
restrictive constraints and yet guarantee that the allowable executions will produce the same results as with
the original constraints. Therefore, it isimportant to initially provide the designer with as minimal a set of
congtraints as possible.

The next section presents a more general abstraction for memory operations that is better suited for
providing aggressive specifications that further expose the optimizations allowed by a model, thus making
it easier to come up with more efficient implementations. This generality also enables the specification of a
much larger set of relaxed models.

4.1.3 A MoreGeneral Abstraction for Memory Operations

Figure 4.3 depicts the conceptual model for memory that inspires our general abstraction. The abstraction
consists of n processors, Py,. . . ,P,,, each with a complete copy of the shared (writable) memory, denoted as
M; for P;. Each processing node also has a conceptually infinite memory buffer between the processor and
memory on that node. Asbefore, processorsaccess memory using read and write operations. However, dueto
the presence of multiple copies, weintroducethe notion of sub-operationsfor each memory operation. A read
operation R by P; is comprised of two atomic sub-operations: an initial sub-operation R;,,;:(i) and a single

and operations that have been generated so far in the system. The partial execution generates a valid outcome or is valid if it could
possibly lead to a valid complete execution; i.e., a partial execution is valid if its sets I’ and O’ are respectively subset of sets | and
O of the instructions and operations of some valid execution. Note here that in forming I’ and O’, we should not include speculative
instructions or operations that may have been generated but are not yet committed in the system.

4This would not be possible for models such as linearizability (see Section 2.6 in Chapter 2) where correctness depends on the
real time when events occur. In contrast, for the models discussed here, we have assumed that the real time occurrence of eventsis
unobservableto the programmer and is therefore not part of the correctness criteria (e.g., see Definition 4.6).
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Figure4.3: Genera mode for shared memory.

read sub-operation R(i). A write operation W by P; is comprised of at most (n+1) atomic sub-operations:
an initial write sub-operation W;,,;;(i) and at most n sub-operations W(1),. . . ,\W(n). A read operation on P,
results in the read sub-operation R(i) being placed into P;'s memory buffer. Similarly, a write operation
on P; results in write sub-operations W(1),. .. ,W(n) being placed in its processor’s memory buffer. The
initial sub-operations R;,,;:(i) and W;,,;+(i) are mainly used to capture the program order among conflicting
operations. Conceptualy, R;,,;:(i) for aread corresponds to the initia event of placing R(i) into a memory
buffer and W;,,;¢(i) for a write corresponds to the initial event of placing W(2),. . .,W(n) into the memory
buffer.

The sub-operations placed in the buffer are later issued to the memory system (not necessarily in first-in-
first-out order). A write sub-operation W(j) by P; executes when it isissued from the buffer to the memory
system and atomically updates its destination location inthe memory copy M; of P; to the specified value. A
read sub-operation R(i) by P; executes when its corresponding read operation isissued to the memory system
and returns a value. If there are any write sub-operations W(i) in P;’s memory buffer that are to the same
location as R(i), then R(i) returns the value of the last such W(i) that was placed in the buffer (and is ill in
thebuffer). Otherwise, R(i) returnsthe value of thelast write sub-operation W(i) that executed in the memory
copy M; of P;, or returnstheinitial value of thelocation if there is no such write.

The above abstraction is a conceptual model that captures the important properties of a shared-memory
system that are relevant to specifying system requirements for memory models. Below, we describe the
significance of the following features that are modeled by the abstraction: a complete copy of memory for
each processor, severa atomic sub-operationsfor awrite, and buffering operations before issue to memory.

Providing each processor with a copy of memory serves to model the multiple copies that are present in
real systems due to the replication and caching of shared data. For example, the copy of memory modeled
for aprocessor may inreality represent aunion of the state of the processor’s cache, and blocks belonging to
memory or other caches that are not present in this processor’s cache.

The multiple sub-operations attributed to each write operation model the fact that updating multiple
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copies of alocation may be non-atomic. Adve and Hill [AH923a] explain the correspondenceto rea systems
as follows (paraphrased). “While there may be no distinct physical entity in area system that corresponds
to a certain sub-operation, a logically distinct sub-operation may be associated with every operation and a
memory copy. For example, updating the main memory on a write corresponds to the sub-operations of the
write in memory copies of processors that do not have the block in their cache. Also, while sub-operations
may not actually execute atomically in real systems, one can identify a single instant in time a which the
sub-operationtakes effect such that other sub-operationsappear to take effect either before or after thistime.”

Notethat inreality, write operationsmay actually invalidateaprocessor’scopy instead of updatingit with new
data. Nevertheless, the event can be modeled as an update of the logical copy of memory for that processor.

Thethirdfeature, i.e., the memory buffer, seems necessary to capture the behavior of many multiprocessor
system designs where a processor reads the value of its own write before any of the write’'s sub-operations
take effect in memory. We refer to thisfeature as read forwarding. Aswith the other features, there may be
no physica entity corresponding to this buffer in areal system. For example, this scenario can occur in a
cache-coherent multiprocessor if a processor does awrite to alocation that requires exclusive ownership to
be requested and all ows a subsequent conflicting read (from the same processor) to return the new value from
the cache while the ownership request is pending.

The conceptual model presented above providestheintuitionfor the formalism we present bel ow. Defini-
tion 4.11 describes the components of an execution based on the general abstraction for memory operations.
Compared to Definition 4.7, the only differences are the presence of memory sub-operationsand the fact that
the execution order is defined among these sub-operations as opposed to among memory operations.

Definition 4.11: Componentsof an Execution with the General Abstraction for Memory Operations

An execution of a multiprocessor program consists of the following components.

(@) A (possibly infinite) set, I, of dynamic instruction instances from the run of the program that obeys the
uniprocessor correctness condition (Condition 4.1).

(b) A set, O, of memory operations specified by the instruction instancesin I. For every instruction instance i
in | that reads (writes) amemory location, the set O contains a corresponding read (write) memory operation.
(c) A set, O..5, Of memory sub-operations for the operations in O. For every read operation, R, in O by P;,
the set O, contains a corresponding initial sub-operation R;:+(i) plus aread sub-operation R(i) that denotes
the read from the processor’s memory copy. For every write operation, W, in O by process P;, the set O,
contains a corresponding initial write sub-operation, W;,;: (i), plus zero or more corresponding write memory
sub-operations W(1),. . . ,W(n) denoting writes to different memory copies. Memory sub-operations have the
samelocation and value as their parent memory operations.

(d) A partial order, called the programorder (denoted by 22+), on the instruction instancesin | (Definition 4.3)
and on the memory operationsin O (Definition 4.4).

(e) A total order, called the execution order (denoted by —==+), on the sub-operationsin O..;. The number of
memory sub-operationsordered before any given memory sub-operation by the execution order (—-) isfinite.

We will be using the following notation in the specifications that follow. We use R and W to denote any
read and write memory operations, respectively, and RW to denote either aread or awrite. Weuse X and Y
for either read or write memory operations, and X (i) or Y (i) denote either aread sub-operation R(i) or awrite
sub-operation W(i), excluding theinitial read or write sub-operations which are always denoted explicitly. A
conditionlike“X(i) == Y(j) for all i,j” implicitly refers to pairs of valuesfor i and j for which both X (i) and
Y (j) are defined; if such an order isimposed by any of the conditionsin the specification, we also implicitly
assume that X(i) and Y(j) appear in the execution for all such pairs. For example, given R isissued by Py,
“W(i) == R(j) for al i,j” reduces to “W(i) == R(k) for al i” because R(j) is not defined for any value
other than k. Finaly, we define the conflict order relation. Two memory operations, or two sub-operations
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from different memory operations, conflict if they are to the same location and at least one is awrite. The
conflict order relation (denoted by =) isdefined as follows. For an execution order = and two conflicting
memory operationsX and Y, X — Y iff X(i) == Y (i) holdsforanyi. If X and Y are on different processors
and X =% Y, then X and Y are aso ordered by the interprocessor conflict order X <2 Y. Note that neither
=% nor =2 are partial orders; for example, R — W and W —- R’ do not together imply R =% R’.

We begin by describing a number of general constraints on the execution order that are assumed to be
common among the specifications we present. The first two general conditions relate to the initiation of
read and write operations and the termination of write operations. Condition 4.4 is a restriction on the
execution order of initial read and write sub-operationswith respect to oneanother. This condition effectively
captures the program order among read and write operationsto the same location. Meanwhile, Condition 4.5
intuitively requiresthat certain write sub-operationstake effect in finite“time”’; amemory model may restrict
this requirement to a subset of all write sub-operations. As mentioned in the previous paragraph, a write
sub-operation is aso required to appear in the execution if any of the conditionsin the specification impose
an execution order on the given write sub-operation with respect to other sub-operations. We will shortly
provide examples that illustrate the need for these two conditions for precisely specifying memory models.
Appendix H presents a more aggressive form of the termination condition for the properly-labeled models.

Condition 4.4: Initiation Condition for Readsand Writes

Given memory operations by P; to the same location, the following conditions hold: If R 22 W, then
Rinit()) == Winie (). f W25 R, then Winie () == Rinie(). FW 22 W', then Winie () == W it ().

Condition 4.5: Termination Condition for Writes

Suppose a write sub-operation W+ (i) (corresponding to operation W) by P; appearsin the execution. The
termination condition requires the other n corresponding sub-operations, W(1),. . . W(n), to also appear in the
execution. A memory model may restrict this condition to a subset of all write sub-operations.

The next two conditions are similar to Conditions 4.2 and 4.3 from the previous section, except they
are extended to deal with multiple write sub-operations. Condition 4.6 formally captures the semantics of
return valuesfor reads that was presented in theintuitive description of our abstraction. Appendix E presents
an alternative value condition that alleviates the need for the R;,;¢(i) and W;,,;.(i) sub-operations in the
abstraction. Condition4.7 simply states the atomicity of read-modify-write operations with respect to other
writes to the same location.®

Condition 4.6: Return Value for Read Sub-Operations

A read sub-operation R(i) by P; returnsavaluethat satisfiesthe following conditions. If thereisawrite operation
W by P; to the same location as R(i) such that Wip;: (i) — Rinis (i) and R(i) == W(i), then R(i) returnsthe
value of the last such Wi,.;: (i) in —. Otherwise, R(i) returns the value of W' (i) (from any processor) such
that W’ (i) is the last write sub-operation to the same location that is ordered before R(i) by —. If there are no
writes that satisfy either of the abovetwo categories, then R(i) returns the initial value of the location.

Condition 4.7: Atomicity of Read-M odify-Write Operations

If Rand W arethe constituent read and write operations for an atomic read-modify-write (R 2= W by definition)
on P;, then for every conflicting write operation W’ from a different processor Py, either W’ (i) == R(i) and
W (i) == W) for all i or R(i) == W’ (i) and W(i) == W' (i) for all i.

The above abstraction is extremely general and allows us to specify the behavior for a wide range
of memory models and implementations. In addition, it is trivia to “emulate” simpler abstractions. For

5This condition can be trivially extended to deal with operations such as the load-locked and store-conditional of the Alpha[Sit92];
the requirement would be to disallow conflicting writes from other processors between a load-locked and a correspondingsuccessful
store-conditional. See Section 5.3.7 for more details on such operations.
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Conditionson =2

(a) if R isread operation with constituent sub-operationsR; .+ (i) and R(i),
no other sub-operation is ordered between R’s sub-operationsby =,

(b) if W isawrite operation with constituent sub-operationsW; ,;+ (i) and W(1),. . . ,W(n)),
no other sub-operation is ordered between W's sub-operationshby ——.

(c) thefollowing conditions must be obeyed:
Condition 4.5: termination condition for writes; appliesto all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(d) given memory operationsX and Y, if X 22 Y, then X (i) — Y (j) for all i,j.

Figure 4.4: Conservative conditionsfor SC using general abstraction of shared memory.

example, to emulate an abstraction with a single copy of memory and no buffering (e.g., the abstraction
depicted in Figure 4.1), we can add a condition that would require the constituent sub-operations for each
read (R;,;:(i) and R(i)) and each write (W;,,;+(i) plusW(1),. . . ,W(n)) to appear atomic in the execution order;
i.e., no other sub-operations are ordered among the sub-operationsof aread or writeby —2. Alternatively, to
model multiplecopies of memory without the buffer (e.g., asin Figure2.17 for WO with no read forwarding),
we can require that for every read R by P;, the R;,,;+(i) and R(i) sub-operations for that read appear atomic,
and for every write W by P;, the W;,,;+(i) and W(i) sub-operations for that write appear atomic. Another
way to achieve the above is to require W 2% R to imply W(i) =2 R(i) for all i, which effectively
defeats the read forwarding optimization. Similarly, to model the buffer without multiple copies (e.g., asin
Figure 2.13 for TSO), we can require the sub-operations of a write except for the initial write sub-operation
(i.e., W(D),...,W(n)) to appear atomic. Finally, theinitiation condition for reads and writesis only needed if
the buffer isbeing model ed and the termination conditionfor writesisonly needed if multiple memory copies
are being model ed.

To illustrate the use of our general abstraction, we will present three different specifications of sequential
consistency below that successively place fewer restrictions on the execution order while maintaining the
same semantics with respect to the resultsthey allow.

Conservative Specification of Sequential Consistency

Figure 4.4 shows the conservative specification for sequential consistency based on the general abstraction.
This specification isvirtually identical to the specification in Figure 4.2 since conditions(a) and (b) effectively
eliminate the effect of modeling multiple sub-operationsfor reads and writes. Therefore, we can effectively
ignore the multiple memory copies and read forwarding in the abstraction. Similar to the conditions in
Figure 4.2, the last condition requires the execution order among sub-operations to be consistent with the
program order among memory operations. Conditions (a), (b), and (d) together aleviate the need for the
initiation condition. Thisis achieved by requiring all sub-operations of one operation to be ordered before
any sub-operations of another operation that proceeds it in program order.

To better understand the conservative conditions, consider the program segment in Figure 4.5. The
example shows a processor writing a location and setting a flag, while the other processor waits for the flag
to be set and then reads the location. Assume the values of A and Flag are initialy zero. The right side of
the figure shows the program order arcs (=) and the conflict order arcs (=) between the write and the
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Figure 4.5: Example producer-consumer interaction.

successful read of the flag in an execution of the program. With sequential consistency, the read of A should
return the value 1 in every execution. Let us consider how the conditions on execution order in Figure 4.4
ensure this. The program order condition (condition (d)) constrains =% asfollows: W4 (i) =% W4, (j) and
Rriag (i) —= Ry4(j) for al i,j. If we assume the successful read of the flag returns the value of the write of
flag by thefirst processor, then W g, (2) AN Rriag (2). Therefore, by transitivity, we have W 4 (i) 22 RA()
for al i,j, which denotes that al sub-operations of the write to A happen before the read A sub-operation,
ensuring that the read returnsthe value 1 in al executions. We next present a slightly more aggressive set of
conditionsfor sequentia consistency.

Expressing Scheurich and Dubois Conditionsfor Sequential Consistency

Figure 4.6 presents a specification for sequential consistency that is effectively atrandation of Scheurich and
Dubois’ requirementsfor SC (Condition 2.2 in Chapter 2) to our general abstraction. To match Scheurich and
Dubois abstraction [SD87], conditions(a) and (b) of the specification aleviate the effect of read forwarding.
However, we still model the non-atomicity of write sub-operationsto different memory copies. Condition (d)
of the specification capturesthe fact that all sub-operationsof aread or write should appear in == before any
sub-operationsof the next read or writein program order. The second chain (i.e., W == R 22 RW) captures
the requirement that any operation that followsaread in program order appearsin — after all sub-operations
of the writewhose valueis returned by the read. This formalizes the notion of “globally performed” [SD87]
(see Condition 2.2(c)). Finaly, condition (€) of the specification formalizes the cache coherence requirement
(Condition 2.2(d)), requiring sub-operations of conflicting writes to occur in the same order in al memory
copies. As with the previous specification, conditions (a), (b), and (d) together aleviate the need for the
initiation condition.

We now consider the behavior of the program segment in Figure 4.5 under this specification. Asin the
previous specification, the effect of the program order condition in part (d) istoimply W4 (i) — Weria, ()
and Rpiq (i) 2% Ru(j) for dl i,j. The termination condition in part (c) guarantees that Wiy (2) (in fact
Wiiay (i) for al i) will appear in the execution order. As before, we know W ey, (2) = Rpiay(2). By
transitivity, thisimplies W4 (i) == R4 (j) for al i,j. Therefore, the behavior of the program segment will
satisfy sequential consistency. Notethat we did not need to use the second chain in part (d) of the specification
to reason about the correctness of this example. However, this constraint plays a key role in making writes
appear atomic in examples such as those shown in Figure 2.3(c) and (d) in Chapter 2.
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Conditionson =2
(a) if Risaread operation by P; with constituent sub-operationsR; .+ (i) and R(i),
no other sub-operation is ordered between R; .+ (i) and R(i) by .
(b) if W isawrite operation by P; with constituent sub-operationsW; ;¢ (i) and W(i),
no other sub-operation is ordered between Wi, (i) and W(i) by —=.
(c) thefollowing conditions must be obeyed:
Condition 4.5: termination condition for writes; appliesto all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(d) given memory operationsX and Y, if X and Y are the first and last operationsin one of
RW 22 RW, or
W =% R 22 RW (or more conservatively: W =2 R)
then X (i) == Y(j) for all i,.
(&) if W =2 W', then W(i) == W' (i) for all i.

Figure 4.6: Scheurich and Dubois' conditionsfor SC.

Toillustratethat our second specification for SCislessrestrictivethan the previousone, we consider some
of the differences between the orders the two impose on execution orders in our example program segment.
The most distinct differenceis that the previous specification requires the sub-operations of awriteto appear
atomic in =% with no intervening sub-operations from a different operation. Therefore, given W4, (2)
% Rriag(2), the previous specification requiresWi v riag (1) —— Rriag (2) and Wpia, (i) —— Rriay(2) for
al i. However, the second specification isless restrictive. For example, it isok for Wgy,, (1) to appear after
Rriag(2) in =% (notethat the second chain in part (d) requiresthat W4, (i) — R4 (j) for al i,j). Similarly,
given two conflicting writes on different processors, the previous specification requires all sub-operations
of one write to occur in — before any sub-operations of the second write. On the other hand, the second
specification is less restrictive because it only requires that the sub-operations for the two writes occur in
the same order for all memory copies (part () of the specification). By imposing fewer constraints on the
execution order, this specification exposes more optimizations that may be exploited when implementing
sequential consistency.

An Aggressive Specification of Sequential Consistency

This section presents a specification of sequentia consistency which fully exploitsthe features of our general
abstraction to place fewer restrictions on the execution order. To avoid execution order constraints that are
unnecessary for maintaining the semantics of a model, we exploit the following observation. Given our
simple notion of the result of an execution, any two executions that impose the same order among conflicting
sub-operations appear equivalent in terms of results. Therefore, given avalid execution E (Definition 4.9)
with a valid execution order =%, any execution E° whose execution order 22, maintains the same order
among conflicting sub-operations (to the same memory copy) as — is also avalid execution. The reason
is constructing a valid execution order for E’ istrivial since = is one such execution order.? Therefore,

6By exploiting the read forwarding optimization, the specification presentedin this section goesfurther by actually allowing execution
ordersthat do not maintain the same order among conflicting operations as any valid execution order allowed by the more conservative
specifications. The reason is that given W 2% RonP; to the same location, we will in some cases allow R(i) to occur before W(i)
in the execution order, while this may never be allowed by the conservative specifications. Nevertheless, the initiation condition along
with the value condition still require the read to return the value of the write, thus ensuring the results of the executionswill be possible
under the more conservative specifications.
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it is sufficient to only constrain the execution order among conflicting operations in order to specify correct
executions.

The previous conditionsin Figures 4.4 and 4.6 impose constraints on the execution order between both
conflicting and non-conflicting sub-operations. The key insight behind the more aggressive conditions is
to impose constraints on the execution order among conflicting sub-operations only, as discussed above.
Figure 4.7 shows these aggressive conditions for SC. The conditions are expressed in terms of some new
relationsthat are used for notational convenience. The 22% relation isasubset of 2 and the =2% relationis
composed of =~ relations (spo and sco stand for significant program order and conflict order, respectively).
These relations capture certain 22 and = ordersthat are used to constrain the execution order.

Part (&) of the constraints on = enumerates the four general conditionson =%, including theinitiation
condition for reads and writes. Part (b) places further restrictions on conflicting sub-operations. Consider the
various componentsinthis part. In general, the constraint placed on the execution order for two operations X
and Y isof theform X (i) == Y (i) for al i. Thefirst component isuniprocessor dependence which capturesthe
order of operations from the same processor and to the same location. Together with the initiation condition
for reads and writes (Condition 4.4) and the value condition (Condition 4.6), this component captures the fact
that aread should return either the value of the last write to the same location that is before it in program
order or the value of a subsequent writeto that location. The second component is coherence which ensures
that write sub-operationsto the same location take effect in the same order in every memory copy. The third
component, denoted as the multiprocessor dependence chain, consists of a set of conditionsthat capture the
relation among conflicting operations that are ordered by 2= U % chains. Aswe will see shortly, this set
of conditionsis the key component of our aggressive specification that differentiates it from a conservative
specification (e.g., Figure 4.4). The notation“{A =% B 2% 1+” denotes one or more occurrences of this
pattern within the chain. Thisis similar to regular expression notation; we will also use “*” to denote zero
or more occurrences of a pattern. In contrast to the conservative specifications, the aggressive specification
imposes an order only among the conflicting endpointsof a2~ U —% chain as opposed to enforcing theorder
at every intermediate point within such a chain. The formal proof of equivalence between these aggressive
conditionsand Lamport’s definition of SC appears in one of our previous publications[GAGT93].

Consider the program segment in Figure 4.5 again, this time with the aggressive specification. The
relevant constraint in Figure 4.7 that ensures the correct behavior for this program is the second condition

spo

under the multiprocessor dependence chain category. This condition applies as follows: given W, —
Wriey ~2% Rpiy 2% Ry, the condition implies W4 (i) =% Ra4(i) for al i (this reduces to W, (2)
2% R4(2) since R4 (i) isonly defined for i=2). Therefore, every execution is required to return the value
of 1 for the read of A. Note that there are many more valid execution orders possible under the aggressive
specifications as compared to the previous conservative specifications. For example, the following execution
order, Wrias(2) == Rpiag(2) == Wa(2) =% R4(2), is alowed under the aggressive but not under the
conservative specifications (because program order is violated on the first processor). Aswe will seein the
next chapter, thisflexibility exposes optimizationsthat are not obviouswith the conservative specifications.
We now consider a few examples to motivate the need for the termination and initiation conditions.
First, consider the example in Figure 4.5. Without the termination condition, no other condition requiresthe

sub-operation W gy, (2) to occur in the execution. Without this sub-operation appearing in the execution, the
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define 222: X 222 v if X and Y areto different locationsand X 2= Y

define 253: X 222 Y if X and Y arethefirst and last operationsin one of
7
X2y

I I
RZLw LR

Conditions on =2
(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; appliesto all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of
uniprocessor dependence: RW 22 W
coherence: W C—OI> w
multiprocessor dependencechain: one of
WL R 2% R
RW 2 (A28 B 251+ RW
WISREE (A2 B+ R
then X (i) — Y (i) for all i.

Figure4.7: Aggressive conditionsfor SC.

P1 P2 P1

al: A=1; a2: B=1, al: A=1;
bl: u=B; b2: V=A; bl: U=A;

(a) (b)

Figure 4.8: Examplesillustrating the need for theinitiation and termination conditions.

while loop on P2 would never terminate, which violates sequential consistency. Therefore, the termination
condition plays an important role in the specification. Figure 4.8(a) provides a more subtle example for the
termination condition. The outcome (u,v)=(0,0) does not occur in any SC execution of this program. As
long as W4 (2) and Wy (1) appear in the execution, the second chain under the multiprocessor dependence
chain in the specification would ensure that this outcome is disallowed. However, without the termination
condition, no other conditionwould force these two sub-operationsto appear in the execution and the outcome
(u,v)=(0,0) would incorrectly be allowed by the specification.

Figure 4.8(b) shows an example to motivate the need for the initiation condition. In any sequentially
consistent execution, theread of A should returnthevaueof 1. However, without the initiation condition, our
aggressive specification would fail to ensure this. To illustrate how the initiation condition works, consider
the execution order: Wi,i:a(1) == Rinira(1) == R4(1) == W4(1). The above is a valid execution
order under our aggressive specification (note that the uniprocessor dependence condition does not require
W4 (1) =% R,(1)). However, even though the read sub-operation R 4 (1) occurs before W 4 (1), theinitiation
condition requires W;,,;::4 (1) to occur before R;,,;+:4(1), and a ong with Condition 4.6, this ensures that the
read of A will return the value 1.

The important facets of our specification methodology are (a) the abstraction used for shared memory
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(e.g., modeling sub-operations) and (b) imposing execution order constraints only among conflicting sub-
operations. Giventhis, there are many possiblewaysto represent the same set of constraints. Nevertheless, as
wewill seeinthenext chapter, our notation and representation doeslend itself well to mapping the constraints
into an implementation.

In summary, even though the aggressive specification in Figure 4.7 places much fewer constraints on the
execution order, the resulting executions providethe same results as with the more conservative specifications.
While the difference between the two sets of specifications is not discernable by the programmer, from a
system design perspective, the aggressive specification exposes the optimizations that are safe thus making
it easier for the system designer to implement the model efficiently. The next chapter considers efficient
implementation techniques that exploit such aggressive specifications.

The specification framework we have described is general and can be used to express a variety of other
memory models. In the following two sections, we use this framework to specify sufficient requirements for
supporting properly-labeled programs and to formalize the specifications for various system-centric models.

4.2 Supporting Properly-L abeled Programs

This section specifies the sufficient system requirements for supporting the three programmer-centric models
that were introduced in the previous chapter. The proof of correctness for these specifications is similar
to the proof presented in our earlier paper [AGGT93] on sufficient conditions for supporting the PLpc
model [GAGT92]. Section 4.6 describes related specifications and proofs for other programmer-centric
models.

4.2.1 Sufficient Requirementsfor PL1

Webegin by specifying thesystem requirementsfor supportingthePL1 model. Aswediscussedintheprevious
chapter, the system can exploit the distinction between competing and non-competing label s provided by this
model to allow certain operations to be reordered and overlapped. The specification of system reguirements
is considered sufficient if for any PL1 program, all executions allowed by the specification are sequentially
consistent (Definition 3.5 in Chapter 3). For programs that do not qualify as a PL1 program, the PL1 model
does not impose any restrictions on the system. To build intuition, we begin with a conservative specification
of system requirements that is sufficient for supporting PL1 programs. We next provide a more aggressive
specification that imposes execution order constraints among conflicting operations only.

Figure 4.9 presents a conservative specification that is sufficient for supporting the PL1 model. Similar
to the conservative specifications for SC presented in Figures 4.4 and 4.6, program order is enforced by
imposing constraints on the execution order of both conflicting and non-conflicting operations. The 222 and
R relationsidentify the program orders that are significant for maintaining the appropriate ordering among
memory operations. Rc and Wc denote competing read and write memory operations, respectively; thisis
based on the labels that are conveyed by a PL1 program. R and W represent any read or write operations,
including competing ones. As before, RW denotes either a read or write; RWc is either a competing read or
competing write. Below, we describe conditions (&) through (€) on the execution order.
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define —,——:
X ﬂ: Y if X andY arethefirst and last operationsin one of
RrRWc 22 RWc
X 222 Y if X and Y arethefirst and last operationsin one of
Re 22 RW
RW 22 we

Conditionson =2
(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to write sub-operationsfor all competing writes.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) uniprocessor dependence: if X 22 Y, X,Y conflict, and X=RW and Y =W, then X(i) == Y (i) for all i.
(c) coherence: if We —2 Wc', then We(i) — W' (i) for all i.
(d) multiprocessor dependence: if X and Y are the first and last operationsin one of
/
Xy
Xy
We =2 Re 222 RW (or more conservatively: We —2 Rc)
then X (i) == Y(j) for all i,.

rch

(e) reach: if R 225 W, then R(i) == W(j) for all i j.

Figure 4.9: Conservative conditionsfor PL1.

Part (a) requiresthe genera conditions (Conditions4.4-4.7) to be obeyed. In contrast to the specifications
for sequential consistency, the termination condition (Condition 4.5) is imposed only on competing writes.
Referring back to Figure 4.5, the program would be considered a PL1 program as long as the write of Flag on
P1 and the read of Flag on P2 are labeled as competing. If the example is properly-labeled, the termination
condition guarantees that the while loop will eventually terminate by requiring the write sub-operation of
Flag in P2’s memory copy to appear in the execution order. On the other hand, if the write of Flagon P1is
incorrectly |abel ed as a non-competing operation, thisguarantee isno longer upheld. Thisisalright, however,
since the specification need not guarantee sequentially consistent executions for non-PL1 programs.

The uniprocessor condition (part (b)) captures the order among conflicting operations from the same
process and to the same location (similar to the uniprocessor condition in Figure 4.7 for SC). The coherence
requirement (part (c)) represents the order among competing writes; its effect on the execution order is to
ensure competing write sub-operations to the same address execute in the same order in al memory copies.
Even though non-competing writesare not directly covered by the coherence requirement, the other conditions
ensure that the above property is upheld for al writes as long as the program is properly labeled.

The multiprocessor dependence condition (part (d)) identifies other important program orders and conflict
orders. This condition effectively formalizes the sufficient program order and atomicity conditions for
supporting PL1 (e.g., see Table 3.1 in Chapter 3). The first two components identify the cases where the
execution order has to be consistent with the program order. The first component requires that al sub-
operations of one competing operation occur before any sub-operations of a second competing operation that
proceeds it in program order. The second component imposes a similar execution order from a competing
read to any memory operation that followsit in program order and from any memory operation to acompeting
writethat followsit. Thethird component inthisconditioneffectively capturestheneed for making competing
writes appear atomic with respect to competing reads that proceed them in the execution order.
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Finally, thereach condition (part (€)) captures the order among operations arising from uniprocessor data
and control dependences and certain multiprocessor dependences. This condition introduces a new relation,
caled the reach relation (ﬂ), that in some cases orders a read with respect to a write that proceeds it
in program order. The next section will motivate the need for and discuss the characteristics of the reach
condition.

Consider the example in Figure 4.5 with the conditionsfor PL1. Assume the read and write to Flag are
labeled as competing. Therefore, we have W4 2% Wy, and Rpe, 2% Ra . Given the above, the rules
under multiprocessor dependence require W 4 (i) — Wriag () and Rpiag (i) 2% Ra(j) for al i,j. Assume
Rriag returns the value of Wey,,, which implies Wey,4(2) e, Rriag (2). Therefore, by transitivity, we
know W 4 (2) =% R4 (2), which ensures that the read of A will always return the value 1. Now consider the
effect of incorrect labels. For example, assume the writeto Flag islabeled as a non-competing operation. In
thiscase, W, ~22 W14, NO longer holds, and the conditions no longer guarantee thet the read of A would
dways returnthe new value, i.e., R4(2) — W 4 (2) becomes avalid execution order. An analogoussituation
arises if the read of Flag is incorrectly labeled as non-competing. Again, both of the above cases are fine
since the conditions are not required to guarantee SC outcomes for non-PL1 programs.

In what follows, we will describe the reach condition and a relaxation of the uniprocessor correctness
condition (Condition 4.1). We will then present the more aggressive specification for supporting the PL1
model. Appendix H describes a more aggressive version of the termination condition for the PL models.

Motivation for the Reach Condition

The main purpose for the reach condition is to disallow anomal ous executions that arise if we alow certain
“speculative” write sub-operations to take effect with respect to other processors. This type of optimization
ispossible for systems that have the ability to overlap or reorder a read operation with respect to afollowing
write operation.” The need for the reach condition is best described through examples. Figure 4.10 shows
four program segments, al of which are properly-labeled (according to PL 1) with the competing operations
shown in bold. Using these examples, we show that without an extra constraint such as the reach condition,
conditions(a)-(d) in Figure4.9 fail to provide sequentially consi stent executions for these programs. We then
proceed to describe the reach condition and how it disallows the non-SC executions.

Consider the program segment in Figure 4.10(a). The program shows P1 reading location A, testing its
value, and conditionally writing location B, while P2 does the symmetric computation with accesses to A and
B interchanged. Asusual, assume all memory locations are initialized to zero. On each processor, whether
the write occurs depends on the value returned by the read. With the sequentia consistency model, neither
write occurs in any execution since both conditionals would fail in every possible case. Therefore, the two
read operations are non-competing, and since the write operations do not appear in any SC execution, we
can safely label both of them as non-competing as well. Given that the program is a PL1 program, any
implementation that satisfies the conditionsprovided in Figure 4.9 should disallow the writes from occurring
in any execution as well. Now consider an implementation that speculatively allows writes to occur before
the result of the conditional is resolved (e.g., theoretically possible in a system that uses branch prediction
with speculative execution past branches). In such an implementation, it is possible to get an execution in

7Since the specifications presented for SC in the previous sections disallow this type of optimization, there is no need for an explicit
reach condition in those specifications.
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Figure 4.10: Examplesto illustrate the need for the reach condition.
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which both conditionals succeed and both writes occur in the execution. The above execution is somewhat
anomalous since writes in the future affect the value of previous reads that in turn determine whether the
writes should have been executed in thefirst place. However, without the reach condition, such an anomal ous
execution with its corresponding execution order is perfectly consistent with conditions (a)-(d) in Figure 4.9.
The purpose of the reach requirement is to provide a precise and formal condition that would prohibit the
above type of anomal ous executions.

Figure 4.10 shows anumber of other scenarios where such anomal ous executions can occur. The example
in Figure 4.10(a) illustrated that certain control dependences need to be upheld for PL1 programs to execute
correctly. Figure4.10(b) showsan examplethat illustratesthe need for upholding certain data dependences as
well. Each processor reads a shared-memory location and uses the return value to index an array in memory.
Assume all locationsare 32-bit words and arrays C and D are each 5 elementslong (i.e., C[0..4] and D[0..4]).
In addition, assume the following contrived positioning of the locationsin memory (depicted in the figure):
the location specified by C[11] isthe same aslocation B (i.e,, in the C language notation, & (C[11]) == &B)
and the location specified by D[5] isthe same as location A (i.e., &(D[5]) == &A).2 Assuming all locations
initially have the value zero, al sequentialy consistent executions of thisprogram would result in P1 reading
the value of O for A and accessing C[0] and P2 reading the value of O for B and accessing D[0Q]. Since there
are no conflicts among the memory operations, al operations are non-competing. Now consider a non-SC
execution where the read of A returnsthevalue of 11 (causing P1 to writeto C[11]) and the read of B returns
the value of 5 (causing P2 to writeto D[5]). This execution conceptually corresponds to guessing/predicting
the value of the read operations (analogous to branch prediction), performing the stores based on the guess,
and then noticing that the values that were guessed are indeed the values returned by the reads. Similar to
the previous example, the anomaly arises from the fact that future stores affect the return value of previous
reads which in turn determine the address the stores writeto. And again, conditions (a)-(d) in Figure 4.9 fail
to disallow thisbehavior.

Toillustratethat scenarios such as the one above may actually occur even when programmersfollow strict
synchronization disciplines, Figure 4.10(c) shows the same program segment as in Figure 4.10(b) with extra
synchronization. Assume that, by convention, the programmer protects operationsto array C by lock L1 and
operationsto array D by lock L2. Even in the presence of thislocking strategy, the same anomal ous behavior
can occur in this example unless we further restrict the execution order with a constraint such as the reach
condition. Furthermore, even though no practical system may actually behave in this anomalous way, it is
still important to explicitly disallow such behaviorsif we hopeto provide acomplete and formal specification
of the system constraints.

The previous examples illustrate the importance of observing certain uniprocessor data and control
dependences. The next example, shown in Figure 4.10(d), illustrates the importance of a dependence that
is particular to multiprocessors. The example shows two processes synchronizing through a flag. In all
sequentially consistent executions, thefirst processor reads the value O for A which causes the conditional to
fail. Similarly, the second processor always returns the value O for theread of B and thuswaits for the flag to
be set and then storesto the A location. Therefore, the write to B on the first processor never occurs in any
SC execution (and it is therefore safe to label it as non-competing). The operations to Flag are competing,
and the operations to location A are non-competing since they are ordered by the flag synchronization in

8 Assumethereis no addressrange checking on array accesses, asin the C language. The example can be easily written to use pointers
instead of arraysto illustrate the point even with range checking.
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every execution. Now, consider a hypothetical implementation that alows the writeto A on P2 to proceed
before the read of B. This can lead to a non-SC execution where P1 and P2 read the value of 1 for A and
B, respectively. And again, conditions (a)-(d) in Figure 4.9 fail to disallow this execution. Note that while
the dependence on P1 from the read of A to write of B is a uniprocessor control dependence, thereis neither
a data nor a control dependence from the read of B to the write of A on P2. Therefore, smply observing
uniprocessor data and control dependences isnot sufficient for guaranteeing correct behavior in thisexample.

The ultimate goa of the reach condition is to guarantee correctness for properly-labeled programs by
imposing the fewest constraints possible. For example, it is not necessary to guarantee correctness for
programs that are improperly labeled. Furthermore, even when a program is properly labeled, the reach
condition need not impose extra conditions if the other conditions in the specification already guarantee
sequentially consistent executions for the program. Unfortunately, defining the reach condition to maintain
correctness only for the necessary cases is quite difficult. Therefore, the challenge is to provide a condition
that is as aggressive as possible while still maintaining correctness.

The reach relation, denoted by ek attempts to identify the relationships between memory operations
that are relevant to disallowing the types of anomalous behavior discussed above. Due to the numerous
subtleties that arise when one attempts to provide an extremely aggressive reach relation, the definition for
thisrelation is somewhat complex. Therefore, we will only describe the intuition behind our definition of the
reach relation below. Theformal definitionis provided in Appendix F.

Informally, a read operation reaches a write operation (i.e, R reh, W) that followsit in program order
(R 22 W) if the read determines whether the write will execute, the address accessed by the write, or the
value written by it. This aspect of reach effectively captures the notions of uniprocessor data and control
dependence, covering cases such as examples (a)-(c) in Figure 4.10. In addition, the reach condition relates
aread followed by a write in program order if the read controls the execution, address, or value written (in
case of awrite) of another memory operation that isin between R and W in program order and isrelated to
W by certain program orders (e.g., significant program order -22). This latter aspect of the reach relation
captures dependences that are particul ar to multiprocessorsto cover cases such theexamplein Figure 4.10(d),
and makes the reach relation both model -dependent and specification-dependent. The way we transform the
reach relation into a constraint in our conservative specification (Figure 4.9) is to require the sub-operation
of a read to occur before any sub-operations of a write that follows it in program order if R 7% W. Our
aggressive specification will provide aless restrictive condition based on the reach relation.

Our formulation for thereach relationis formal and aggressive, and is ssmpleto trand ate into correct and
efficient implementations. It is conceptually possible to provide less restrictive conditions at a higher level
of abstraction, for example by requiring that all properly-labeled programs behave correctly. However, itis
difficult to provide such conditionsin away that can be easily used by system designersto determine thetype
of optimizationsthey can exploit.

One key observation that makes the reach relation aggressive is that we ultimately care only about
dependences from a read to a write. Therefore, even though we delay certain “speculative’ writes, we
never delay speculative reads. For example, a system that performs branch prediction is allowed to freely
issue read operations speculatively past unresolved branches; this optimization is critical for achieving
high performance in dynamically scheduled processors and is exploited by several next generation processor
designs. Furthermore, writesthat do not haveany dependenceto previousreadscan beperformed specul atively
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al: for (i=0; i < N; i++) {

a1: if (A==1){ b1 BI[i] = Al[il;
bl: u=B;
cl: }
cl: C=1;
di: for (j=0; j < N; j++) {
di: } . D[l = CIjl;
o De 1; el. []] = [l]'
fl: }
(@) (b)

Figure4.11: Examplesto illustrate the aggressiveness of the reach relation.

aswell. Figure4.11 showsa couple of examplestoillustratethe aggressiveness of our definition. Assume al
operations are labeled as non-competing in both examples. In Figure 4.11(a), the reach relation exists only
between the read of A and the write of C. Therefore, the read of B within the conditional and the writeto D
outside are not included in reach and may be executed before the read of A or write of C. In Figure 4.11(b),
the reach relation exists between the read of array A and write of array B, and between the read of array C
and writeof array D, withineach iteration (we are assuming the arrays are non-overlapping). However, there
is no reach implied among operations in different iterations or among operations across the two loops, thus
allowing substantial reordering and overlap among the different iterations.

Section 4.6 compares our approach to other related work in this area. The next section discusses the
relaxation of another ordering issue related to dependences arising from the presence of infiniteloops.

Relaxing the Uniprocessor Correctness Condition

One of the consequences of the uniprocessor correctness condition (Condition 4.1) is that it effectively
disallows issuing instruction instances that follow infinite loops in a process program.® Otherwise, a
requirement such as “the number of instruction instances program ordered before a given instructioninstance
should be finite” would be violated. A practical way to enforce this conditionisto disallow any instructions
or operations that follow an unbounded (or potentially non-terminating) loop by program order from being
executed until it is known that the loop will terminate. Below, we consider a relaxation of the uniprocessor
correctness condition that allows certain instruction instances to execute before a preceding loop actually
terminates.

The motivation for the above relaxation comes from the fact that guaranteeing sequentially consistent
executions for properly-labeled programs does not necessarily require delaying instructions that follow
a potentially non-terminating loop. Furthermore, optimizations such as allowing speculative reads past
potentially non-terminating loops to execute before the loop terminates are important in achieving higher
performance especially if the loop actually terminates in the execution (anal ogous to speculative reads past
an unresolved branch). Figure 4.12 shows a contrived example to illustrate this. Assume the operations on
P1 and P2 are synchronized through the flag synchronization such that al other operations can be correctly
labeled as non-competing. After waiting for the flag synchronization, the second processor follows alinked
list within awhile loop and then performs other operations. Assume that the linked list is acyclic such that
the while loop would terminate in every SC execution. Without this knowledge, the system would have to

9This condition is used in Definition 4.11(a) which formalizes the notion of an execution.
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P1 P2

al: ... a2: while (Flag == 0);
b1: Flag =1, b2: ptr = Head_List;
c2: while (ptr != nil) {
d2: u += ptr —> data;
e2:  ptr=ptr —> next;
f2: }
g2: V=A;
h2: B=v;

Figure4.12: Exampletoillustrate optimizationswith potentialy non-terminating loops.

treat the loop as potentially non-terminating and thustreat theinstructionsthat follow theloop conservatively.
However, if we knew that the loop terminates in every SC execution, then it would be safe to reorder or
overlap the iterations of the whileloop with instructionsthat follow it (assume locations A and B are digoint
from the locations accessed by the linked list).

Unfortunately, automatically determining that a potentially unbounded loop terminates in every SC
execution is quite difficult in general. Furthermore, the optimization of speculatively issuing instructions
after aloopis not necessarily safe even when the loop terminatesin every SC execution. Therefore, our goal
isto determine the cases where such an optimization would be safe (such as the case in the example above)
and precisaly identify the type of information that isrequired to make thisdecision.

Figure 4.13 shows a couple of examplesto illustratethe need for some constraints on issuing instructions
before aloop is known to terminate. Both examples are properly-labeled with competing operations (if any)
shown in bold. Figure 4.13(a) shows an example with a loop that never terminates in any SC execution.
Therefore, thewriteto A on P1 never occursin any SC execution and the read of A on P2 aways returnsthe
value 0, thus causing the conditional to fail. Executing the write of A on P1 speculatively istherefore unsafe
since it will lead to a non-SC execution for this properly-labeled program. Figure 4.13(b) shows a different
example where the loop terminates in every SC execution. Therefore, it may seem safe to speculatively
issue the write to B before knowing that the loop will terminate. However, this optimization can aso lead
to a non-SC execution since P2 may observe the new value for B and thus not issue the write to A which
ultimately causes the while loop to not terminate. Even though the second example looks similar to the
examples that were disallowed by the reach condition discussed in the previous section, it turns out that the
reach condition is ineffective in this case; in the anomalous case, the write on P2 does not appear in the
execution and therefore there is no reach relation on P2. The conservative conditionsin Figure 4.9 do not
allow the anomal ous behavior because condition (d) requires al sub-operations of a competing operation to
occur in the execution order before any operationsthat follow it in program order, thus disallowing the write
on P1 from being executed early. However, as we will see, the more aggressive specification we present in
the next section does not enforce such an order and depends on extra constraints to disallow such anomalous
executions.

Appendix G providesthe aggressive uniprocessor correctness condition that allows specul ative execution
of certain instructionswhile previous loops have not terminated. With these aggressive conditions, a system
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P1 P2 P1 P2

al: while (1); a2 if(A==1){ al: while (A==0); a2 if (B==0){
b1: A=1; b2: B =1, b1: B=1; b2: A=1;
c2: } c2: }
() (b)

Figure4.13: Unsafe optimizationswith potentially non-terminating loops.

can execute an instruction even if it is not known whether the previous loopswill terminate, as long as these
previous loops are known to terminate in every SC execution. A read memory operation is always alowed
to execute before it is known whether the previous loopsin program order will terminate. Therefore, as with
the reach condition, we always allow reads to execute specul atively. In contrast, awrite memory operationis
not allowed to execute if the previousloop is not known to terminate in every SC execution; this restriction
covers examples such asthat in Figure 4.13(a). For awrite memory operation to occur in the execution order
before operations from a previous loop, there should a so be no read operationsfrom the previous loops that
are ordered before the write by the 22l redation (the slight difference between ¢k and "2 is described in
Appendix F); thislatter restriction covers examples such asthat in Figure4.13(b). Theinformation of whether
aloop will dways terminatein an SC execution is often known to the programmer and can be obtained from
the programmer. In fact, most programs are written such that all their SC executions are finite (thusimplying
that al loopsterminate). If theinformation is not known, then the conservative option isto assume the loop
may not terminate in some SC executions (unless compiler analysis can determine otherwise).1°

Therelaxation of the uniprocessor correctness condition (Condition4.1) as described above changes some
of the assumptions described in Section 4.1.1. The basic effect of the relaxation is that given a potentially
non-terminating loop, the processor can conceptually follow two paths of execution, one within and one
after theloop. The difference between the relaxed version and the original version arises when an execution
involvesloopsthat actually do not terminate. First, we still require every instruction instance within theloop
to occur in program order before any instruction instant that proceeds the loop. For non-terminating loops
however, this alows program order to potentially order an infinite number of instruction instances (from
the loop) before an instruction instance after the loop. Second, the notion of correct choice for the next
instruction must be changed when there is a non-terminating loop, since the processor is now allowed to
follow two paths. Finaly, the values returned by read operations no longer uniquely determine the dynamic
instruction instances. Of course, the original assumptions till hold for properly-labeled programs if we
maintain sufficient conditions similar to those specified in Figure 4.9 (or the more aggressive conditions
that are specified next), since for these programs our aggressive uniprocessor correctness condition makes
everything appear the same as if the original uniprocessor correctness condition was upheld.

We will be assuming the aggressive form of the uniprocessor dependence condition described above for
the system reguirement specifications we present for the PL models.

10The use of potentially non-terminating loopsis not necessarily a program error; consider the scheduling loop in an operating system,
for example.
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Figure4.14: Sufficient conditionsfor PL1.

A More Aggressive Specification for PL1

Figure4.14 presentstheaggressive set of sufficient conditionsfor supportingthe PL1 model. In contrast tothe

conservative conditionsin Figure 4.9, these conditionsimpose execution order restrictionsamong conflicting

sub-operations only. The format of the specification is quite similar to the aggressive specification for SC in
spo ! sco

Figure 4.7. Asbefore, we use the 2% (and 22 ) and =% relations for notational convenience in order to
capture the relevant = and 2 orders that are used in constraining the execution order.

The constraints on the execution order consist of two parts. The first part imposes the four general
congtraints on the execution order. The second part imposes further constraints on the order of conflicting
sub-operations whose operations are ordered through certain 22 U 2 chains. Below, we briefly describe
the different components in the second part. As before, the uniprocessor dependence condition captures
the order among conflicting operations from same processor. Similar to the aggressive specification of SC,
uniprocessor dependence does not impose an order from a write to a conflicting read that follows the write
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in program order. The coherence requirement captures the order among competing writes, requiring the
sub-operations for conflicting writesto execute in the same order in al memory copies. The multiprocessor
dependence chains capture the order among certain conflicting operations related by 2% U =2

Intuitively, the first three multiprocessor dependence chains primarily impose orders between two non-
competing operationsor between anon-competing and acompeting operation, whilethelast two chainsimpose
an order among competing operationsonly. The effect of thefirst two chainsisto order conflicting operations
if thereisan ordering chain (Definition 3.1 in Chapter 3) between them. For competing operations, conflicting
pairs ordered by 2% U = are captured by either the last two chains or the first chain. Finally, the reach
condition captures the order among conflicting operations that are ordered through Ty 2" chains. The
third multiprocessor dependence chain turns out not to be necessary for correctly supporting the PL1 model
as defined in the previous chapter. Nevertheless, this chain must be maintained if we adopt the alternative
definition for ordering chains presented in Appendix A. Furthermore, as we will discuss in Section 5.7 in
Chapter 5, this extra constraint greatly simplifies the support required for transparently migrating processes
or threads across physical processors. Finally, adding this extra restriction is not expected to affect the
performance of any practical implementations of the PL1 model.

Compared to the conservative conditionsfor PL1 in Figure 4.9, the aggressi ve specification exposes more
optimizations that can be safely exploited while still guaranteeing SC executions for PL1 programs. While
the various specifications provided for SC (Figures 4.4, 4.6, and 4.7) are equivaent based on the result of
executions (see Definition 4.5), the aggressive specification for PL1 actually allows a larger set of results
compared to the conservative specification. Both specifications guarantee sequentially consistent results for
PL1 programs. However, the aggressive specification takes fuller advantage of the fact that the PL1 model
does not place any constraints on the memory behavior for non-PL1 programs by alowing a larger set of
results for such programs.*

4.2.2 Sufficient Requirementsfor PL2

Compared to the PL1 model, the PL2 model requires a further distinction of competing memory operations
conveyed through the sync and non-sync labels. By convention, we will use acquire and release to refer to
sync read and write operations, respectively. Figure4.15 providesthe sufficient conditionsfor supporting PL 2
programs. As before, Rc and Wc represent competing operations. Rc_acq and Wc_rel represent competing
sync operations. Finaly, R and W represent any read or write, whether non-competing, sync, or non-sync.

The conditionsfor PL2 are quitesimilar to thosefor PL1. The main difference arisesinthe multiprocessor
dependence chains (and the 222 relation that is used in these chains). The first three chains order conflicting
pairs of operations where at least one operation in the pair is potentially non-competing. The conditions for
PL2 are more relaxed than those for PL1. Compared to PL 1, the competing operations that compose thefirst
three chains are required to be sync operations, with the writes denoted as rel eases and the reads denoted as
acquires. The reason is ordering chains for non-competing operationsin PL2 are required to consist of sync
operations (Definition 3.6 from the previous chapter). Therefore, unlike PL1, the program order between

11|n general, given a conservative specification that imposes constraints among both conflicting and non-conflicting sub-operations,
it is possible to come up with an equivalent (in terms of results) aggressive specification that imposes constraints only on conflicting
sub-operations. However, the reverse path from an aggressive specification to an equivalent conservativeoneis not always possible.
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Figure4.15: Sufficient conditionsfor PL2.
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non-competing operations and non-sync operations is unimportant. Similar to the PL1 conditions, the third
multiprocessor dependence chain is not necessary for supporting the PL2 model, but its presence simplifies
process migration and would be required if we adopt the alternative definition for ordering chains presented
in Appendix A. Thelast three chains maintain order between conflicting pairsthat are labeled competing. As
with PL1, the effect isto order any pair that is ordered by 22 U <o when thereis at least one 2% and one
—2. inthechain.

4.2.3 Sufficient Requirementsfor PL3

Compared to the PL2 model, the PL3 model requires afurther distinction of sync operationsthat is conveyed
through the loop and non-loop labels. Figure 4.16 provides the sufficient conditions for supporting PL3
programs. As before, Rc and Wc represent competing operations. Rc_acq and Wc_rel represent competing
sync operations, whether they are labeled loop or non-loop. Rc_nl_ns and Wc_nl_ns represent a competing
read or writethat iseither non-loop (which isasub-category of sync) or non-sync. Finaly, R and W represent
any read or write, whether non-competing, loop, non-loop, or non-sync.

Again, the main difference between this specification and the previous ones for PL1 and PL2 is in the
multiprocessor dependence chains (and the 2% relation that is used in these chains). The first two chains
order conflicting operations where at least one is potentially non-competing. The PL3 conditions do not
maintain achain similar to thethird chaininthe PL1 or PL2 conditions. The reason issupporting such achain
effectively disallows the optimization of allowing loop writes to be non-atomic. Section 5.7 in Chapter 5
describes how transparent process migration may be supported in light of thisrelaxation. The third and fourth
chains maintain the order between conflicting pairs that are labeled competing if there is an ordering chain
between them. Finally, the last two chains impose further constraints on the order of conflicting pairs of
non-loop sync or non-sync operations. In genera, the order maintained among operations labeled as loop
sync is much less constraining than for the non-loop sync and non-sync operations.

4.3 Expressing System-Centric M odels

The specification framework presented in Section 4.1 can al so be used to express various system-centric mod-
els, including those discussed in Chapter 2. Using this framework leads to formal and precise specifications
of such models. Furthermore, by constraining the execution order among conflicting sub-operations only,
we can provide aggressive conditionsthat are semantically equivaent to the origina specifications and yet
expose alarger set of optimizationsthat may be exploited by system designers.

This section presents the conditions for the two flavors of the release consistency model, RCsc and
RCpc[GLL*90, GGH93b]. Appendix | providestheconditionsfor theother system-centric model sdescribed
in Chapter 2 (i.e, IBM-370, TSO, PC, PSO, WO, Alpha, RMO, PowerPC). A few of these conditions have
been presented in an earlier paper that described our specification framework [GAGT93], using a dightly
different format and notation.

Figure 4.17 presents the origina conditions for RCsc [GLL*90, GGH93b] trandated directly to our
specification framework. The RCsc model was originally proposed as a set of implementation conditions
for supporting PL programs [GLL*90]. RCsc requires the same categories of labels as PL2 programs
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Figure4.16: Sufficient conditionsfor PL3.
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Figure4.17: Original conditionsfor RCsc.

(the distinction between the PL and PL2 models was described in the previous chapter). As with the PL2
specification, we use the following notation. Rc and Wc represent competing operations. Rc_acg and Wc_rel
represent competing sync operations. Finally, R and W represent any read or write, whether non-competing,
sync, or non-sync. The conditions for RCsc exploit the read forwarding abstraction in our framework to
capture the behavior of this model. This abstraction is aso important for capturing the behavior of other
models such as PC, RCpc, TSO, PSO, and RMO. The original conditionsfor RCsc and RCpc do not formally
define the behavior with respect to the termination of writes, the reach condition, and the uniprocessor
correctness condition (the same is true for most other system-centric models). We assume that termination
holds for al competing write sub-operations. We formalize the notion of “uniprocessor data and control
dependences’ [GLL*90] by using the reach relation (ﬂ). The reach relation is only necessary for models
such as WO and RCsc that allow the reordering of reads with respect to writes that follow them in program
order. Appendix | describes how the reach relation and the aggressive uniprocessor correctness conditions

can be adapted for the relevant system-centric models.

Figure 4.18 presents the egquivaent conditions for RCsc in their aggressive form where the constraints
on the execution order are present among conflicting sub-operations only. These conditions produce the
same set of valid executions as the conditions shown in Figure 4.17; the proof for this is presented in an
earlier paper [GAG193]. The “|” symbol used in the regular expressions represents an “or” that signifies
a choice among the different options. Since the original specification constrains execution order among
non-conflicting operations and at every intermediate point in relevant 2% U % chains, there are a lot
of extraneous constraints that are imposed. These extra constraints are clearly exposed when we express
the conditionsin their aggressive form, especially when we consider the multiprocessor dependence chains.
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Figure 4.18: Equivalent aggressive conditionsfor RCsc.

To better illustrate this, we can compare the sufficient conditions for PL2 shown in Figure 4.15 with the
RCsc conditionsin Figure 4.18. As we will show below, the conditions for RCsc are a superset of those
for PL2. The genera conditions (Conditions4.4-4.7) in part (a) of the specification are identica in the two
specifications. We next compare the different componentsin part (b). The uniprocessor dependence condition
isidentical. Coherence is stricter in the RCsc specification, since PL2 only requires it among competing
operations. The most important difference isin the multiprocessor dependence chains. The chainsin RCsc
clearly cover every chain specified for the PL2 specification. While chains in the PL2 specification only
contain competing operationsin the middle of the chain, the RCsc specification maintains a chain even when
the intermediate operations in the chain are non-competing. Finally, the reach condition of PL2 isupheldin
the RCsc specification in amore conservative way through the second multi processor dependence chain (note
that the reach relation is used in the definition of 22% and ﬂ).

Weillustratethe extra constraintsimposed by the RCsc multiprocessor dependence chains as compared to
the PL 2 specification using the example program segmentsin Figure 4.19. The program segment on the right
isidentical to the program segment on the left except for the couple of competing operations added to each
process’ program. Competing operationsare shown in bold and the label for such operationsis shown beside
the operation. Neither programis properly labeled since the operations to locations A and B are competing,
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bl: B=1; b2: V=A; cl: x=L2; [sync (acq)] c2: y =L4; [sync (acq)]
di: B=1; d2: V=A;
@)
(b)

Figure 4.19: Exampleto illustrate the behavior of the RCsc specifications.

but are not labeled as such. Under sequentia consistency, the outcome (u,v)=(1,0) is disallowed in both
examples. Meanwhile, the sufficient conditions for PL2 alow this non-SC outcome in both example; this
does not violatethe PL2 model since neither exampleisaPL2 program. Similar tothe PL2 specification, both
the original specification and the equivalent aggressive specification for RCsc allow the non-SC outcome of
(u,v)=(1,0) for the example in Figure 4.19(a). However, unlike the PL 2 specification, the non-SC outcomeis
surprisingly disallowed for the example on theright. This arises from the fact that the origina conditionsfor
RCsc constrain execution order at every intermediate point in relevant 22 U —<% chains.

Figure 4.20 shows the aggressive conditions for RCpc, the second flavor of release consistency. In
comparison to the RCsc specification in Figure4.18, the main differenceisthat the multi processor dependence
chains enforce fewer ordering constraints. The reason is (a) RCpc allows reads to be reordered with respect
to preceding writes in program order even when both are competing, and (b) al writes are alowed to be
non-atomic. Since the PL3 model was originaly inspired by RCpc, it isinteresting to compare the sufficient
conditionsfor supporting PL 3 with the conditionsfor RCpc. Aswiththe PL2 comparisonwith RCsc, thethree
main differences are in the coherence requirement, the reach condition, and the multiprocessor dependence
chains. Similar to RCsc, RCpc maintains coherence for al write operations and supportsthe reach condition
by incorporating the reach relation into 22%. RCpc also suffers from extraneous orders that arise because
the original conditionsimpose orders at intermediate pointswithin a chain. The multiprocessor dependence
chains in RCpc gtrictly cover the first four chains in the PL3 specification. However, the last two chainsin
PL3, which mainly order non-loop or non-sync operations, are not fully covered by RCpc. This makes the
two specifications incomparable. Nevertheless, as we will show in the next section, it is still possibleto port
PL3 programsto the RCpc model relatively efficiently by mapping the operationsin away that would enforce
the last two multiprocessor dependence chains in the PL 3 specification.

Compared to the original conditionsfor RCsc and RCpc [GLL*90, GGH93b], the conditions presented
here are more precise (e.g., with respect to formally specifying data and control dependences) and expose
more aggressive optimizations while maintaining the same semantics. Appendix | provides aggressive
specifications for a number of other system-centric models; these specifications are also often more precise
and expose more aggressi ve optimizations compared to the origina specifications for the models. The use of
aformal framework such as the one we have presented is extremely important for precisely specifying, and
for helping designers correctly implement, such models.

The next section describes how we can efficiently port properly-labeled programs to implementations that
support various system-centric models.
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Figure 4.20: Aggressive conditionsfor RCpc.

4.4 Porting Programs Among Various Specifications

This section describes the process of correctly and efficiently porting programs written for one model or
specification to another. We specify the ports by providing a mapping from operations in the source model
to operationsin the target model. The process of choosing the appropriate mapping of operations involves
comparing the source and target system specifications and ensuring that all orders required by the source
specification are maintained by the target specification. Thistask is greatly simplified if both systems are
specified using the same framework, which emphasi zes the importance of a general specification framework
such as the one proposed in this chapter.

We begin by describing the required mappingsfor porting programswritten for the sequential consistency
model to other system-centric models. Since we assume no extra information is known about the program,
these portsfail to exploit thevarious optimizationsallowed by the more rel axed system-centric models. These
mappings build intuitionasto how various orders may be enforced in system-centric models. We next discuss
how the subtle differences among the system-centric models make it difficult to efficiently port programs
among them. Finally, we describe the mappingsfor porting properly-labeled programsto the various system-
centric models. In contrast to the other mappings, the information provided by properly-labeled programsin
theform of operation label s enableextremely efficient mapping of such programstothevarious system-centric
models. Furthermore, the mappings are mechanical, allowing for automatic and efficient portability. A few
of the mappings we describe here are similar to mappings previously presented in the context of porting PLpc
programs to system-centric model [GAG*92].%

12The correctness proofs for the PLpc portsarein a different paper [AGGT 93]; the proof of correctnessfor the ports presentedin this
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Figure 4.21: Relationship among models (arrow pointsto stricter model).

441 Porting Sequentially Consistent Programsto System-Centric Models

This section describes how aprogram that iswritten for a sequentially consistent system may be ported to the
more relaxed system-centric models. Since no extra information is assumed about the program, we need to
conservatively enforce the same ordering constraints as a sequentially consistent system and cannot exploit
the reorderings allowed by the target models. Furthermore, enforcing the required orderings can incur extra
overhead (e.g., additional instructions) in some of the models. Therefore, depending on the target modd,
the port may achieve either the same performance or lower performance relative to a comparable system
that inherently supports sequential consistency. Aswe will show later, the extra information conveyed by
properly-labeled programs is instrumental in allowing us to achieve higher performance by exploiting the
reordering optimizations offered by the relaxed model s without violating sequential consistency.

Figure 4.21 depicts the various system-centric models discussed in Chapter 2; this figure appeared in
Chapter 2 and is reproduced here for easier reference. The arrows depict the stricter relation, going from the
more relaxed to the stricter model (e.g., SCis stricter than WO). Thisrelationistransitive (e.g., SCisstricter
than RCpc); models not related by the stricter relation are incomparable. The models are partitioned into
four categories depending on the types of program orders that are enforced among operations. SC enforces
all program orders. The modelsin the second category alow write-read reordering. The modelsin the third
category allow write-writereordering aswell. Finaly, modelsin the fourth category also allow read-read and
read-write reordering. Another main difference among the models (that is not depicted in the figure) is the
level of multiple-copy atomicity that is supported for writes.

Table 4.1 showsthe sufficient mappingsfor acorrect port from the sequential consistency model to various
target system-centric models. The mappingsin the table specify how read and write operationsin SC should
be mapped to operationsin thetarget model, sometimes requiring extrainstructionssuch as fences to be added
to the program text (RMW in the table denotes a read-modify-writeinstruction). To determine the sufficient
mappings, we compare the specification for SC (e.g., from Figure 4.7) with the specification of the target
model (e.g., specification for RCscin Figure4.18). A mapping issufficient if every order enforced by the SC
specification isa so enforced the target model after the mapping. In our experience, itissimpler to figure out
the appropriate mappings by comparing the aggressive specifications for the two models since conservative
specifications often mask the extraneous ordersthat are maintained by a model. The mappings specified are

chapter are similar to these proofs.

Section 4.4 Porting Programs Among Various Specifications 115



Table 4.1: Sufficient mappingsfor achieving sequentia consistency.

Model Mapping to Achieve Sequential Consistency

IBM-370 || (@ foreveryw 22, R, at least one of R or W is a synchronization operation, or W 2=
X 22 RwhereX isafence, asynchronization, or aread to samelocation asW.

TS0 (a) for every W 22 R, at least one of R or W is part of aRMW, or there is a RMW such
that W 22 RMW 22 R,

PC (a) every Rispart of aRMW.

(a) for every W 22 R, at least one of R or W is part of aRMW, or there is a RMW such
PSO that W 22 STBAR 22 RMW 22 R,
(b) aSTBAR exists between every W 22 W,

WO (a) every R and W is mapped to a synchronization operation.

(a) every R ismapped to an acquire or non-sync.

RCsc (b) every W is mapped to arelease or non-sync.

(a) every R ismapped to an acquire or non-sync.
RCpc (b) every W is mapped to arelease or non-sync.
(c) every Rispart of aRMW, with W mapped to arelease or non-sync.

Alpha () an MB exists between every X 22 Y.

RMO (a) aMEMBAR(XY) exists between every X 22 .

PowerPC || (8) @SYNC exists between every X 22 Y.
(b) every R is part of aRMW.

not necessarily unique. In addition, the port will be correct aslong as these mappings or a more conservative
set of mappings are used. For example, even though we require a fence between every W 22 W pair for
PSO, the port remains correct if there are extrafences also present among other operation pairs.

The mappings for models that require fences to enforce program orders (e.g., IBM-370, PSO, Alpha,
RMO, and PowerPC) raise an important issue regarding the static placement of the fence instructionswithin
the program text. For example, the mapping for Alpharequires a memory barrier instruction (MB) between
every pair of memory operations X 2% Y. For correctness, we assume that the fence instructionisplaced in
such away that every execution path between X and Y results in the execution of the fence. A simple way
to ensure thisis to place the fence instruction within the same basic block as the instruction that generates
memory operation X or memory operation Y.

Porting SC Programsto IBM-370, WO, RCsc, Alpha, and RMO

We first concentrate on the system-centric models that provide direct mechanisms for enforcing the orders
required for supporting sequential consistency: 1BM-370, WO, RCsc, Alpha, and RMO. IBM-370, Alpha,
and RMO are fence-based model sand degenerate to SC if sufficient fences are introduced i n between memory
operations. For example, the Alphamodel guarantees SCif every operation pair in program order is separated
by a memory barrier (MB). WO and RCsc enforce orders based on operation labels and degenerate to SC if
operations are labeled conservatively. For example, RCsc guarantees SC executions if al reads are labeled
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al1: A=1; a2: B=1; al: A=1; a2: U=A; a3: v=B;
bl: u=B; b2: V=A; b2: B=1; b3: W=A;
() (b)
Pl P2 P3 Pl P2
al: A=1; a2: U=A; a3: V=A; al: A=1; a2: U=A;
b2: A=2; b3: W =A; b2: V=A;

(©) (d)

Figure 4.22: Examplestoillustrate porting SC programs to system-centric models.

as acquires or non-syncsand all writesare labeled as releases or non-syncs.

Porting SC Programsto T SO, PSO, PC, RCpc, and Power PC

Ports to the remaining system-centric models are more complicated since these models do not provide direct
mechanisms for enforcing some rel evant program orders or multiple-copy atomicity for writes. For example,
the TSO and PSO models do not provide any direct mechanism for enforcing the W 2% R order. Similarly,
the PowerPC model does not directly provide multiple-copy atomicity for any writes; therefore, evenif every
pair of operationsis separated by afence, it is ill possible that SC may be violated. Finaly, PC and RCpc
do not provide any mechanisms to directly enforce either of the above constraints.

Figure 4.22 shows a number of examples to illustrate these issues. For the program segment in Fig-
ure 4.22(a), TSO, PSO, PC, and RCpc do not provide a direct mechanism to disallow the non-SC outcome
of (uv) = (0,0). Similarly, PC, RCpc, and PowerPC do not provide a direct mechanism for enforcing a
multi processor dependence chain between thewrite of A on P1 and theread of A on P3in Figure4.22(b), and
thusallow the non-SC outcome of (u,v,w) =(1,1,0). Figure4.22(c) showsasimilar exampleto Figure4.22(b),
except with all the operationsto the same location. Thisexample distinguishesthe behavior of PowerPC from
the other models since PowerPC is the only model that does not provide a direct mechanism for disallowing
the non-SC outcome of (u,v,w) = (1,1,0). Finaly, Figure 4.22(d) shows a degenerate form of the previous
example using only two processors. Even for this simple example, the PowerPC mode does not provide a
direct way to disallow the non-SC outcome of (u,v) = (1,0).

Even though these models fail to provide direct mechanisms for enforcing all the required orders for
guaranteeing SC, there are indirect ways to enforce such orders. Consider TSO first. Table 4.1 enumerates
severa indirect waysto enforcetheW 2% R order in TSO, some of which are directly derived from looking
at the definition of 2£% for this model in Appendix I. Given W 2% R, if W is part of an atomic read-
modify-write operation or if there is a read-modify-write (to any location) between the two operations such
that W 22 RMW 22 R, then the specification impliesW “£% R which ends up maintaining the required
order through the multiprocessor dependence chains. The above orders are maintained due to the strong

Section 4.4 Porting Programs Among Various Specifications 117



restrictions that the original specifications for TSO and PSO place on atomic read-modify-write operations
which disallow writes to any location from occurring between the read and write of the read-modify-write
(other models, except RMO, only disallow writes to the same location). As an alternative mapping to the
above, the write to read program order is also maintained if the read is part of a read-modify-write. This
mapping does not depend on the stricter definition of read-modify-write, though proving the correctness of
thelatter mapping is slightly more subtle compared to proving the other two mappings[GAGT 92, AGGT93].
Referring back to Figure 4.22(a), use of any of the above mappingswill disallow the non-SC outcome. The
mapping for PSO issimilar to TSO, except we a so need store barriers (STBAR) between writesto disallow
write reordering.

In contrast to TSO and PSO, the PC and RCpc models do not provide as many options for enforcing the
writeto read program order simply because their constraints on atomic read-modify-writesare lessrestrictive
than those of TSO and PSO. However, the option of requiring the read to be part of a read-modify-write for
every W 22 R still providesthe correct behavior. Furthermore, requiring reads to be part of aread-modify-
write also solvesthe lack of atomicity for writes. For example, referring back to Figure 4.22(b), if the read
of A on P3ismadeto be part of aread-modify-write, then the outcome (u,v,w) = (1,1,0) isdisallowed by PC.
Since we cannot automatically select the reads in a program that depend on this extra order, the mapping for
PC presented in Table 4.1 requires every read to be part of a read-modify-write. The mapping for RCpc is
similar, but also requires conservative labels for al reads and writes (similar to RCsc).

Similar to PC and RCpc, the PowerPC model lacks adirect way of providing multiple-copy atomicity. To
solvethis, we can use the same mapping used for PC, i.e., require every read to be part of aread-modify-write.
In conjunction with the use of fences (called SYNC in PowerPC), this mapping enforces sufficient order to
guarantee sequential consistency, even for the examples in Figure 4.22(c) and (d) which were particular to
PowerPC.

The above mappings for TSO, PSO, PC, RCpc, and PowerPC use atomic read-modify-write operations
to indirectly enforce some of the orders required for guaranteeing sequential consistency. In the cases where
an operation is not naturally part of an atomic read-modify-write, these mappings require the operation to be
converted into a dummy read-modify-write. When aread is converted to a dummy read-modify-write, the
writeis required to store the same value astheread. Similarly, when awriteis converted to a dummy read-
modify-write, asfor TSO and PSO, thewriteisrequired to storetheoriginally specified val ue regardless of the
value returned by the read. Conversion of aread or write to adummy read-modify-write may be impossible
if the implementation does not provide sufficiently general read-modify-write operations. For example, a
test&set instruction is not general enough for this purpose. In practice, however, the wide acceptance of
instructions similar to Alpha's load-locked and store-conditional [Sit92] effectively alleviates this problem
by providing sufficient generality.

The more important concern about converting normal operations into dummy read-modify-write opera-
tionsisthe extraoverhead involved with the read-modify-write. One possible solutionisto extend the above
models to provide direct (and therefore, more efficient) mechanisms for enforcing the required orders. For
example, TSO and PSO can be extended with an extra fence instruction that orders W 22 R. In fact, the
Sparc V9 architecture allows the use of memory barriers defined for RMO under TSO and PSO (TSO and
PSO were originally defined under Sparc V8), with the MEMBAR(WR) providing the desired functionality.
For PC, we need a similar fence mechanism. In addition, we need a mechanism to force certain writes to
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Table 4.2: Sufficient mappings for extended versions of models.

Model Mapping to Achieve Sequential Consistency
TSO+ (3) aMEMBAR(WR) exists between every W 22 R.
PC+ (a) afence exists between every W 22 R.

(b) every W is mapped to an atomic write.

(3) aMEMBAR(WR) exists between every W 22 R.

PSO+ po
(b) aSTBAR exists between every W — W.

(a) every R ismapped to an non-sync or acquire.
(b) every W is mapped to anon-sync or release.
(c) afence exists between every W 22 R.

(d) every W is mapped to an atomic write.

RCpc+

(3) aSYNC exists between every X 22 Y.
(b) every W is mapped to an atomic write.

Power PC+

appear atomic, for example by labeling them as atomic writes. RCpc requires similar mechanisms to PC,
except we can limit the scope of the fence and the atomic write label to competing operations only. Finaly,
PowerPC can be extended with the atomic write option. We have included the formal specifications for the
extended modelsin Appendix | aong with the other specifications. Table 4.2 shows the aternative mappings
for the extended versions of the models, shown with a“+” following the name of the model (e.g., TSO+).

Efficiency of Porting SC Programsto System-Centric Models

The ports presented in Tables 4.1 and 4.2 do not exploit the reordering optimizationsthat are enabled by the
system-centric models since they impose program order and atomicity constraintson all operations. Further-
more imposing these constraints often incurs extra overhead compared to the original program executing on
a sequentialy consistent system. For some of the ports, the overhead is due to the extra fence instructions
that are added to the program. For other ports, transforming a read or write operation into a dummy atomic
read-modify-write incurs overhead. The effect of these overheads on performance can be quite substantia
due to their high frequency. For example, if we assume 50% of the instructions lead to shared-memory
operations, adding a fence instruction between every pair of memory instructions (as is required for models
such as Alpha, RMO, or PowerPC) leads to 1.5 times more instructions. In fact, WO and RCsc are the only
two target modelsthat have the potential of incurring no extraoverhead since labeling all memory operations
conservatively enforces the required ordering constraints to satisfy SC without requiring extra instructions.
However, this requires the underlying implementation to support orderings through labels.

Many of the ordering constraints that are enforced by the above ports are unnecessary for guaranteeing
sequential consistency in a typical program. As we will see shortly, the type of information provided by
properly-labeled programs allows us to identify the unnecessary constraints and achieve substantially more
efficient portsto system-centric models.
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4.4.2 Porting Programs Among System-Centric M odels

This section considers the issues in porting programs across various system-centric models. A naive way
to provide a correct port from any source to any target system-centric model isto pretend the source model
is sequential consistency and use the same mappings as those specified in the previous section. Since
sequential consistency is stricter than any system-centric model, guaranteeing sequential consistency on the
target trivialy disallowsany executionsthat are disallowed by the source model. A more efficient port would
attempt to only enforce the orderingsimposed by the source model.

We consider aport to be efficient if the ported program on the target model does not perform much worse
relative to the minimum of the two performance levels described below: (@) the performance of the origina
program on the source model, and (b) the performance of the program on the target model assuming it is
optimized for thetarget model. According to the above criteria, porting a program to a stricter target model is
simple and efficient. For example, referring back to Figure 4.21, porting a program from WO to SC or from
RMO to Alphafdl in thiscategory. Thereistypically no change required in such a port. Asan optimization,
it is sometimes possible to remove fence instructionsif the orders enforced by the fence are implicitly upheld
on the target model (e.g., consider a port from Alphato SC).

In contrast, porting programs from a stricter model to a more relaxed model, or porting programs among
incomparable models (i.e., neither model is stricter than the other), may lead to inefficiencies especialy
when there are subtle differences between the source and target models. Such subtle differences can arise
in severa aress, e.g., definition of significant program orders, whether read forwarding is allowed, level of
write atomicity, requirements on atomic read-modify-writes, and how the reach and termination conditions
are enforced. Problems often arise because the constraints imposed by the source model are difficult and
inefficient to impose in the destination model. There can be two reasons for this: (i) the constraints in the
source model may be extraneous constraints that are not necessary for the correctness of most programs,
but need to be enforced in the port since we do not have more information about the program, or (ii) the
destination model is deficient since it cannot efficiently enforce certain constraintsthat are actually required
for the correctness of most programs. As an example of the first reason, consider the Alpha model which
enforces program order among reads to the same location. This makes the Alphamodel a difficult source if
we want to port programs to other models, such as WO, RCsc, or RMO, that also relax the program order
among reads but do not implicitly maintain program order among reads to the same location. Asan example
of the second reason, consider porting programsto models such as PC, RCpc, or PowerPC. The fact that these
models do not support write atomicity, along with the lack of extrainformation about the program, can make
these models inefficient targets. Of course, models that are related do not exhibit such subtle differences,
making ports between them relatively efficient. For example, porting programs between PC and RCpc, or
among TSO, PSO, and RMO, is simple. Overall, the closest to an idea source model is RCpc, since it
is virtually the most relaxed system-centric model. Similarly, the closest to an ideal target is SC since it
implicitly enforces every constraint, whether it is extraneous or not.

In summary, porting programs among system-centric models can be inefficient due to subtle differences
among the models. The fact that we do not have any extra information about the program exacerbates this
problem because the port must guarantee that all ordersenforced by the source model are a so enforced on the
target. Aswe will seein the next section, the information provided by properly-labeled programs provides
much more efficient portability across the whole range of system-centric models.
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4.4.3 Porting Properly-Labeled Programsto System-Centric Models

While porting a properly-labeled program to a system-centric model requires guaranteeing sequentially
consistent executions for the program, the information provided by properly-labeled programsin the form of
operation labelsallows usto achieve portsthat are substantially more efficient than the ports of SC programs
specified in Table 4.1.

Tables 4.3, 4.4, and 4.5 show the sufficient mappings for porting PL1, PL2, and PL3 programs.*® These
mappings are not unique and other mappings may be possible. To determine the appropriate mappings, we
ensurethat any ordersimposed by the sufficient conditionsfor aproperly-labeled program (Figures 4.14, 4.15,
and 4.16) are al so imposed by the specification of the destination model with the specified mapping. Although
these mappings are similar in nature to the mappings for SC programs in Table 4.1, they are significantly
more selective. For example, while porting an SC program to WO requires al memory operation to be
labeled as synchronization, porting a PL1 program requires this for only the competing memory operations.
Since competing operations are typically far less frequent that non-competing operations, sel ective mapping
of operations can provide a substantia performance advantage by exploiting the reordering optimizations of
the target model.

Properly-labeled programs port efficiently to most of the system-centric models. Furthermore, overheads
dueto extrafenceinstructionsfor model ssuch asIBM-370, PSO, Alpha, RM O, and PowerPC, or dummy read-
modify-writesfor models such as TSO, PSO, PC, RCpc, and PowerPC, are significantly reduced compared to
porting SC programs simply because these additional instructions are used selectively and infrequently. For
example, consider the need for dummy read-modify-writes when porting a PL1 program to PC. Without any
information about the program, themapping in Table 4.1 requiresevery read to be part of aread-modify-write.
However, with the PL1 labels, we can limit this requirement to competing reads only. Therefore, the number
of dummy read-modify-writes that are added by the port can be quite low because (a) competing reads are
typically infrequent, and (b) some of these reads may already be part of a read-modify-write!* Table 4.6
shows the ports of properly-labeled programs to the extended versions of some of the system-centric models
introduced in Section 4.4.1. While the extended versions were important for porting SC programs more
efficiently, the ordinary versions of the models are sufficiently efficient for porting PL programs.

Most of the system-centric model s can beneficialy exploit the extrainformation about memory operations
aswemove fromPL1 to PL2 and PL3. The IBM-370, TSO, and PC models have the same mapping for PL1
and PL 2 programs since the di stinction between competing sync and non-sync operations cannot be expl oited
by these models. However, PL3 programs lead to potentially more efficient mappings in the above models.
Table 4.4 aso shows the RCsc model as having the same mapping for PL2 and PL3 programs. While RCsc
can actually benefit from the extrainformation provided by PL 3 programs, the more aggressive mapping that
arisesis complicated and difficult to achieve in practice; therefore, we use the same mappings as for PL2.

Among the system-centric models shown, RCsc is the most efficient model for executing PL1 and PL2
programs and RCpc is the most efficient model for executing PL3 programs. Compared to the other system-
centric models, RCsc and RCpc best expl oit the reordering optimizationsallowed by PL programsand enforce

13For the PowerPC mappings shown in Table 4.5, we assumethat if we depend on an existing write to the same address (clause (c) for
PL1 and PL2, or clause (d) for PL3), any SYNC that needsto be placed after the Rc dueto the other clausesis placed after the existing
write aswell (except the SYNC that may be required between Rc and the existing write).

1 The fact that PL1 and PL2 programs can be ported reasonably efficiently to the PC, RCpc, and PowerPC modelsis quite surprising
sincethelatter models do not provide direct mechanismsfor providing atomic writes. As explained above, however, it turns out the need
for (potentially dummy) read-modify-writes can be limited to competing reads.

Section 4.4 Porting Programs Among Various Specifications 121



therequired orderswith virtually no extra overhead (such as additional fence instructions). Thisis somewhat
expected since the RC models were originally developed in conjunction with the proper |abeling framework.
Of course, the sufficient conditionsfor properly-labeled models allow yet further optimizations not exploited

by RCsc and RCpc.

Table 4.3: Sufficient mappingsfor porting PL programs to system-centric models.

Model PL1 PL2 PL3
po
(a) for every We 22 Rc, atleast one f?a():_nlf_(r)lts, a?/ Iegst xg_r(;lf_nRSc_nG;
of Rc or Wcisasynchronizationop- or We_nl_nsisasynchronization op-
IBM-370 || eration, orwe 22 X 22 Rewhere | (8 sameasPLL. eration, or Weonlns 22 X 22
X isafence, asynchronization, or a Rc_nl_ns where X is afence, asyn-
read to same location as Wc. chronization, or aread to same loca-

tionasWc_nl_ns.

po (@ for every Wecnlns 22
gar?efgfr s:/: eg/ \\ll\lv((::is—;rt szc’aaéllvleavst Rcnl_ns, at least one of R_nl_ns or
TSO thereis aRMW phthatW po | (@) sameasPLL W_nl_nsis part of a RMW, or there
(;rMVevre_zl%a Re Suc € is a RMW such that We.nl_ns 2o,

: RMW 2% Ronlns.
PC (a) every Rcis part of aRMW. (a) sameasPL1. (a) every Re_nl_nsis part of aRMW.
o (@ for every Wcnlns 2%
(a) for every Wc 2% R, at least f)arzef(())fr S(/: eg/ \\ll\lv((::is_;rt szcyaall?llvlesvs Rc_nl_ns, at least one of Rc_nl_nsor
one of Rc or Wc is part of a RMW, thereis aRMW P hthat Wi po | Weonlnsispart of aRMW, or there
) po | orthereisa suc c— | . po
(b) a STBAR exists between every (®) \7VSTB)A5\I€X|S;S betwe\;n f;"‘o" (b) a STBAR exists between ev-
w 22 we. \;e\rl)(/:relc—> candevery W =1 &y wc 2% wc and every W 2%

- We_rel.
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Table 4.4: Sufficient mappingsfor porting PL programs to system-centric models.

Model

PL1

PL2

PL3

WO

(a) every Rc and Wc is mapped to a
synchronization operation.

(@ every Rcacqg and Wc.rel is
mapped to a synchronization oper-
ation.

(b) for every Xc 22 Ye, at least
one of X or Y is mapped to a syn-
chronization operation.

(@) every Rcacqg and Wc.rel is
mapped to a synchronization oper-
ation.

(b) for every Re 22 Ycor We 22
W, at least oneoperationis mapped
to a synchronization operation.
(c) for every Woec.nl_ns
Rc.nl_ns, at least one operation is
mapped to a synchronization opera-
tion.

po
—

RCsc

(a) every Rcismappedto an acquire.
(b) every Wc is mappedto arelease.

(a) every Rc_acqis mapped to an ac-
quire; other Rc mapped to non-sync
or acquire.
(b) every Wc_rel is mapped to a re-
lease; other Wc mapped to non-sync
or release.

(a) sameasPL2.

RCpc

(a) every Rcismappedto an acquire.
(b) every Wc is mappedto arelease.
(c) every Rcis part of a RMW, with
W mapped to non-sync or release.

(a) every Rc_acqismapped to an ac-
quire; other Rc mapped to non-sync
or acquire.

(b) every Wc_rel is mapped to a re-
lease; other Wc mapped to non-sync
or release.

(c) every Rcis part of aRMW, with
W mapped to hon-sync or release.

(a) every Rc_acqismappedto an ac-
quire; other Rc mapped to non-sync
or acquire.

(b) every Wc_rel is mapped to are-
lease; other Wc mapped to non-sync
or release.

(c) every Re_nl_nsispart of aRMW,
with W mapped to non-sync or re-
lease.
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Table 4.5: Sufficient mappingsfor porting PL programs to system-centric models.

Model PL1 PL2 PL3
(& an MB exists between every
. Rc.acqg =< RW and RW 22
(@ an MB exists between every (@ an MPE exists between e"ﬁgy We_rel.
Aloha Rc 2% RW andRW 2% We. \'7\/0-3(;? — RW and RW — | (1) an MB exists between every
P (b) an MB exists between every c-rel. . Rc 2% Rc, Rc 22 Wec, and
po (b) an MB exists between every po
Xc— Yc. xc P2 ve Wc — We.
' () an MB exists between every
weonl.ns 22 Reonlns.
(8) aMEMBAR(RY) exists between
every Rc.acq == Y.
(8 aMEMBAR(RY) existsbetween | (2) aMEMBAR(RY) existsbetween | () & MEMBARXW) exists be-
every Rc oy every Re.acq Py tween every X —— Wec_rel.

O (b) a MEMBAR(XW) exists be- | (b) a MEMBAR(XW) exists be- (C)aMREMp%AFi(RY) exisisbetween
tween every X 22 We. tween every X 22 Wec_rel. (e&/)erzl ’\j E_I\T B Alg.(WW) oxists be
(c)aMEMBAR(XY) existsbetween | (c) aMEMBAR(XY’) existsbetween we 2% W
every Xc 22 Y. every Xc 22 Ye. E\g/)een every We — . a

MEMBAR(WR) exists between ev-
ery We_nl_ns 2% Rc.nl_ns.
(8 a SYNC exists between every
. Rc.acqg == RW and RW 22
(a) a SYNC exists between every @ a SYQIOC exists between e"fﬁ;y Wec_rel.
Rc F° RW and RW 22 we. \'7\/0-3(;? — RW and RV — | (1) a SYNC exists between every
) c_rel. po po
52): 2OSY\I(\ICC exists between every (b) a SYNC exists between every 5\,00 z WRCC, Rc =—— Wec, and
Power PC o B e xc 22 vye. -
(c) every Reciseither part of aRMW (c) every Re is either part of aRMW. (c) a SYNC exists between every
or is immediately followed in pro- every Rel p . we.nl_ns 2% Re.nl_ns.
ram order by an existing write to | " 1S immediately followed in pro- 7
9 v 9 gram order by an existing write to | (d) every Reiseither part of aBRMW
the same address. the same address. or is immediately followed in pro-
gram order by an existing write to
the same address.
124 Chapter 4 System Specification




Table 4.6: Porting PL programs to extended versions of some system-centric models.

xc 22 ve.
(c) every Wc ismapped to an atomic
write.

xc 22 vye.
(c) every Wc is mapped to an atomic
write.

Model PL1 PL2 PL3
. [€) a
TSO+ E\?e; WM:MV%RP(\ONRF){C exists b | () sameasPLL. MEMBAR(WR) exists between ev-
yWe — Rc. ery We_nl_ns 2% Rc.nl_ns.
(a) a fence exists between every (a) a fence exists between every
e+ we P Re. (@) sameasPL1. we.nl.ns 2% Renl_ns,
(b) every Wc is mapped to an atomic (b) every We_nl_nsis mapped to an
write. atomic write.
. (@ a MEMBARMWR) exists be | @ . a
(& a MEMBAR(WR) exists be- po MEMBAR(WR) exists between ev-
tween every We 22 Rc tween every We = Rc. ery We_nl_ns 22 Rc.nl_ns
PSO+ . : i - i o
(b) a STBAR exists between every (b) a STEOAR eXIS;S between S\O/ (b) a STBAR exists between ev-
w22 we. ery We — We and every W — ery We 22 We and every W 22
Woe_rel
- Woe_rel.
(a) every Rc_acqismappedtoanac- | (@) every Rc_acqismappedto an ac-
quire; other Rc mapped to non-sync | quire; other Rc mapped to non-sync
(a) every Rcismappedto anacquire. | or acquire. or acquire.
(b) every Wc ismappedto arelease. | (b) every Wc_rel ismappedto are- | (b) every Wc_rel is mapped to are-
RCoCH (c) a fence exists between every | lease; other Wc mappedto non-sync | lease; other Wc mapped to non-sync
P we 22 Re. or release. or release.
(d) every Wc is mapped to an atomic | (€) 2 Ience exists between every | (c) a fenceoexists between every
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45 Extensionsto Our Abstraction and Specification Framewor k

While our framework is genera and extensible, the methodology we have presented so far deals only with
data read and data write memory operations. Furthermore, parts of our specification methodology, such as
imposing execution order constraints among conflicting operations only, depend heavily upon our simplified
definition for the result of an execution. This simplified abstraction is extremely useful for isolating and
specifying the behavior of shared memory. Furthermore, for most programmers, the simple abstraction and
specifications are sufficient for understanding the behavior of a system. Nevertheless, a small number of
programmers, such as system programmers, may require a more general framework that also encompasses
other types of operations such as those issued to and from /O devices. Similarly, system designers must
typically deal with ordering semantics for a more genera set of events.

To characterize the behavior of redlistic shared-memory systems, our framework must be generalized in
two ways: (a) include more events, such as events generated by I/O devices, and (b) extend the notion of
result to include the effect of some of these events. Appendix J identifies some of the issues that arise in
modeling a realistic system and describes possible extensions to our framework to deal with these issues.
Many of theissueswe discuss are not particular to multiprocessorsand occur in uniprocessor systems aswell.
Furthermore, even uniprocessor designs may sacrifice serial semantics for events such as 1/0O operations or
instructionfetches in order to achieve higher performance. Chapter 5 further describesimplementation issues
with respect to I/O operations, instruction fetches, and multiple granul arity data operations.

46 Related Work

This section compares our abstraction and specification framework with other approaches. We a so describe
related work in specifying sufficient conditionsfor supporting properly-label ed programs.

4.6.1 Relationship toother Shared-Memory Abstractions

Section 4.1.3 presented our general abstraction for shared memory and enumerated the significance of the
three main features modeled by this abstraction: a complete copy of memory for each processor, severa
atomic sub-operations for a write, and buffering operations before issue to memory. This abstraction is an
extension of an earlier abstraction we developed jointly with Adve and Hill of Wisconsin[GAGT93]. Below
we discuss some other abstractions for shared-memory that have been proposed as a basis for specifying
memory models. We compare these abstractions mainly on the basis of their flexibility for capturing the
behavior of various memory models and ordering optimizations. The next section considers the various
specification methodol ogies, most of which are based on the abstractions discussed bel ow.

Dubois et a. [DSB86, SD87] present an abstraction that models the various stages of completion for a
memory operation. They use this abstraction to present specifications for both sequential consistency and
weak ordering. The notion of “perform with respect to a processor” in this abstraction models the effects
of replication and the non-atomicity of writes, essentially capturing the first two features of our abstraction.
One of the problems with this abstraction is that the definition of “perform” is based on real time. Another
shortcoming of the abstraction isthat it does not seem to be powerful enough to capture the read forwarding
optimization where the processor is allowed to read the value of its own write before the write takes effect in
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any memory copy. Infact, it seems difficult to capture the behavior of commercial models such as TSO, PSO,
and RMO and other models such as PC, RCsc, and RCpc using Dubois abstraction.® Furthermore, even
though models such as SC or WO can be easily modeled without resorting to the notion of read forwarding,
more aggressive specifications of such models (e.g., conditions shown for SC in Figure 4.7) benefit from a
more general abstraction.

The abstraction proposed by Collier [Col92] is formal and captures replication of data and the non-
atomicity of writes. In fact, the first two features in our abstraction, that of a complete memory copy per
processor and several atomic sub-operations for writes, are based directly on this abstraction. Collier’s
abstraction has a so been used by other researchers to specify system requirements for memory models (e.g.,
DRF1[AH924d)]). Yet it has the same shortcoming as Dubois et al.’s abstraction in itsinability to capture the
read forwarding optimization. Our abstraction subsumes Collier’sabstraction. In particular, our abstraction
degenerates to Collier’'s abstraction if we remove the R;,,;; and W,,,;; sub-operations and require W 2R
to imply W(i) == R(i) in the specification when both operations are to the same location. These notionsare
important, however, for properly capturing the read forwarding optimization.

Sindhu et a. [SFC91] a so propose an abstraction which isused to specify the TSO and PSO models. This
abstraction is flexible enough to handle the read forwarding optimization, modeling it through a conceptual
write buffer that allows a read to return the value of awrite before it is retired from this buffer. However,
the abstraction fails to capture the non-atomicity of writes which is an important feature for modeling the
behavior of severa models and systems. More recently, Corella et al. [CSB93] have also proposed an
abstraction for specifying the PowerPC model. This abstraction failsto dea with the lack of multiple-copy
atomicity when the coherence requirement is not imposed on al writes, and also fails to mode the read
forwarding optimization.

Yet another way of abstracting the system isto represent it in terms of execution histories[HW90]; Hagit
et a. have also used thistype of abstraction to specify the hybrid consistency model [AF92]. Effectively, a
history represents one processor’sview of al memory operationsor acombined view of different processors.
This type of abstraction isin essence similar to Collier’s abstraction and shares the same advantages and
disadvantages.

The abstraction used by Gibbons et d. [GMG91, GM92] to formdize the system requirements for
properly-labeled (PL) programs and release consistency is the only abstraction we are aware of that captures
the same set of features as our general abstraction. That is, they mode the existence of multiple copies, the
non-atomicity of writes, the out-of-order execution of memory operations, and allowing the processor to read
its own write before the write isissued to the memory system.!® The one shortcoming of this abstraction is
that specifications based on it typically model the system at too detailed alevel. For example, Gibbonset al.’s
specifications [GMG91, GM92] involve more events than we use in our specification and inherently depend
on states and state transitions, making it complex to reason with and difficult to apply to system designswith
substantially different assumptions.

The abstraction presented in this chapter extends our previousabstraction [GAGT 93] in afew ways. First,
we added theR; ,+(i) sub-operation. Our original abstraction had asubtlelimitation: givenR1 2% W 22 R2

15See an earlier technical report [GGH93b] for a discussion of this limitation and a possible extension to Dubois’ abstraction that
remediesit.

16whiletheoriginal My, .. abstraction [GMG91] did not model out-of-order read operationsfromthe same processor, thenon-blocking
My <. astraction [GM92] later removed this restriction.
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to the same location on P;, our original definition of theinitiation condition would require R1(i) — W, (i)
and W;,,;;(i) == R2(i). This implicitly orders R1 and R2 (i.e., R1(i)) == R2(i)) which turns out to
be overconstraining in some specifications. Introducing the R;,,;:(i) sub-operation removes this problem.
Second, we made the atomic read-modify-write condition (Condition 4.7) more aggressive to allow the read
forwarding optimizationfrom apreviouswriteto theread of the read-modify-write. Finally, we simplified the
format of the specifications by removing some of theintermediate ordering relations (such as 22> [GAG* 93)).

4.6.2 Related Work on Memory M odel Specification

This section describes the various approaches that have been proposed for specifying system requirements
for memory models. We compare the various specification methodol ogies primarily based on the level of
aggressive optimizationsthat can be captured and exposed by each technique.

One of the key observationsin our specification methodol ogy isthat the behavior of most memory models
can be captured without constraining the execution order among non-conflicting operations. For example,
we showed equivalent conservative and aggressive specifications for sequentia consistency (Figures4.4 and
4.7), where the aggressive specification imposes execution orders among conflicting operations only and yet
mai ntai ns the same semantics as the conservative specification. Such aggressive specifications expose a much
wider range of optimizations and alow the specification to be used for awider range of system designs.

We originally made the observation that memory models can be specified aggressively by only imposing
constraints on conflicting operations as part of our joint work with Adve and Hill [GAGT93]. The above
observation has been previously made by others as well. For example, Shasha and Snir [SS88] exploit a
similar observation in identifyingaminimal set of orders (derived from the program order) that are sufficient
for achieving sequential consistency for a given program. Collier [Col92] aso uses this observation for
proving equivaences between different sets of ordering constraints. However, previous specifications of
memory models do not exploit this observation to its full potential. Specifically, many of the specifications
impose unnecessary ordering constraints on non-conflicting pairs of memory operations; even Shasha and
Snir’s implementation involves imposing delays among non-conflicting memory operations that occur in
program order. In contrast, our framework presents a unified methodol ogy for specifying ordering constraints
that apply to pairs of conflicting memory operations only.

There have been numerous specification techniques that lead to conservative constraints. Duboiset a.'s
specification style [DSB86, SD87] places unnecessary constraints on memory ordering since it constrains
the execution order among accesses to different locations in a similar way to the conservative conditions
for SC in Figure 4.6. This same limitation exists with the specifications for TSO and PSO provided by
Sindhu et al. [SFC91] and the specification of release consistency provided by Gibbons et a. [GMG91,
GM92]. Asdiscussed above, Collier [Col92] does observe that two sets of conditions are indistinguishable
if they maintain the same order among conflicting accesses, yet his methodology for specifying conditions
congtrains order among non-conflicting operations just like the other schemes. Therefore, none of the
above methodol ogies expose the optimizations that become possible when only the order among conflicting
operationsis constrained.

Adve and Hill’s specification of sufficient conditions for satisfying DRF1 [AH924d] is one of the few
specifications that presents ordering restrictions among conflicting memory operations only. However, parts
of these conditionsaretoo general to be easily convertibleto an implementation. WhileAdve and Hill provide
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asecond set of conditionsthat transl atesmore easily into an implementation, thislatter set of conditionsare not
as aggressive and restrict orders among operations to different locations. Finally, because their specification
is based on Collier’sabstraction, their approach does not easily lend itself to specifying models that exploit
the read forwarding optimization.

In designing our specification technique, our primary goals have been to provideaframework that covers
both thearchitecture and compiler requirements, isapplicableto awiderange of designs, and exposes as many
optimizations as possible without violating the semantics of a memory model. Our specification framework
could conceivably be different if we chose adifferent set of goals. For example, with the genera nature of our
framework, the designer may haveto do some extrawork to relate our conditionsto aspecific implementation.
Had we focused on a specific class of implementations, it may have been possible to come up with an
abstraction and a set of conditionsthat more closely match specific designs. Similarly, our methodology of
only restricting the order among conflicting operations is beneficial mainly at the architectural level. This
complexity would not be very useful if we wanted to only specify requirements for the compiler. And infact,
such complexity isundesirable if the specification isto only be used by programmers to determine the set of
possible outcomes under a model (however, we strongly believe programmers should reason with the high-
level abstraction presented by programmer-centric models). Nevertheless, we fedl the benefit of providing a
uniform framework that applies to a wide range of implementations outweighs any of its shortcomings.

In summary, our specification methodology exposes more optimizations and is easier to trandate into
aggressive implementations than previous methods. Given the generdity of our framework, it would be
interestingto also use it to specify the system requirements for other modelsthat we have not discussed in this
thesis. The fact that a uniform framework may be used for specifying different models can greatly simplify
the task of comparing the system implications across the various models.

4.6.3 Related Work on Sufficient Conditionsfor Programmer-Centric Models

There have been a number of attempts at specifying and proving the correctness of sufficient conditions for
supporting various programmer-centric models. The seminal work in this area has been done by our group at
Stanford and Adve and Hill at Wisconsin, with some of the work donejointly.

The origina papers on the properly-labeled (PL) [GLL*90] and the data-race-free-0 (DRFO) [AH90Db]
frameworks each provide sufficient conditionsfor satisfying the relevant programmer-centric model, along
with proofs of correctness for these conditions. For the PL work, the sufficient conditionswere in the form
of the RCsc model. Adve and Hill later extended their data-race-free model to distinguish between acquire
and release operations similar to the PL framework, and provided a new set of conditions for satisfying
DRF1[AH93]. Gibbonset al. [GMG91, GM92] have a so provided sufficient conditions, along with proofs,
for supporting properly-labeled programs. The sufficient conditions presented in the first paper [GMG91]
were limited to processors with blocking reads, but thisrestriction was aleviated in alater paper [GM92].

Aspart of our joint work with Adve and Hill on the PLpc model, we identified the optimizationsalowed
by this model along with specifying ports of PLpc programs to a few system-centric models [GAGT92].
In alater paper [AGGT93], we formally specified the sufficient conditions for supporting PLpc programs
and provided correctness proofs for both these conditions and the conditions specified for porting PLpc
programsto other models. The conditionsfor supporting PL pc programs were specified using our aggressive
specification methodology [GAG 93], and therefore imposed execution orders among conflicting operations
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only, thus exposing alarge set of ordering optimizations. The sufficient conditions presented in this chapter
for supporting the three properly-labeled models, aong with the conditions for porting properly-labeled
programs, are an extension of the above work on PLpc. Furthermore, the conditionsfor porting PL programs
provided in this chapter cover a wider range of system-centric model compared to our previous work in
specifying such portsfor the PLpc modd [GAGT92].

Hagit et a. [AF92, ACFW93] have also proposed hybrid consistency as a set of sufficient conditionsfor
supporting afew programmer-centric model sthat they have defined. However, aswe mentioned in Chapter 3,
hybrid consi stency placessevere restrictionson thereordering of operationscompared to anal ogous conditions
for PL and DRF programs, partly because some of the programmer-centric models defined by Hagit et a. are
overly restrictive.

Compared to the sufficient conditionspresented in this chapter (or in our work on PLpc [AGG™ 93]), many
of the other specifications are more conservative and often less precise. The evolution of the reach condition
isindicativeof thelatter point. The main purposefor thereach conditionisto disallow thetypes of anomal ous
executionsthat ariseif we allow “speculative” write sub-operationsto take effect in other processors' memory
copies. In most previouswork, such conditionswere either implicitly assumed or assumed to be imposed by
informal descriptionssuch as*intra-processor dependencies are preserved” [AH90b] or “ uniprocessor control
and data dependences are respected” [GLL*90]. Some proofsof correctness (e.g., proof of correctness for PL
programs executing on the RCsc model [GLL*90]) formalized certain aspects of this condition, but the full
condition was never presented in precise terms. Later work by Adve and Hill specified this condition more
explicitly in the context of the DRF1 model [AH928] and proved that it is sufficient for ensuring sequentially
consistent results for data-race-free programs executing on models such as WO and RCsc. More recently,
we jointly formalized an aggressive form of this condition as part of specifying sufficient conditions for
PLpc [AGG*93]. The reach condition presented in this thesis is based upon the above work on PLpc and
congtitutes the most precise and aggressive set of conditions that we are aware of to eliminate anomalous
executions due to specul ative writes.

4.6.4 Work on Verifying Specifications

Specifying system requirements often involves subtleissues that may lead to errorsin the specification or im-
plementation based on the specification, making automatic verification of specifications and implementations
an important research area.

Thereare several typesof verification toolsthat are interesting. One useisto verify that two specifications
are equivaent, or that one is stricter than the other. For example, such a tool may be used to check the
equivalence of the aggressive and conservative specificationsfor various models. Another useisto verify that
an implementation satisfies the constraintsimposed by a specification. Thisis somewhat similar to verifying
two specifications, except the specification of an implementation may be provided a a much lower level
of abstraction compared to the specification of a memory model. Yet athird use is to automatically verify
the outcome of small programs or traces or to verify the correctness of simple synchronization primitives
under a given specification. A tool that verifies the outcome of small programs or traces may aso be used
to probabilistically check the equivalence (or stricter relation) between two specifications by comparing the
behavior of each specification across alarge set of examples (potentially generated in a random fashion). A
side benefit of attempting to verify agiven specification using any of the above methodsisthat it will require
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the description of the model to be formal and precise. This aone can expose a number of subtleissuesto the
designers of the model.

Park and Dill [PD95] have described a verifier for the Sparc TSO, PSO, and RMO modelsthat is capable
of producing the possible outcomes of very small programs and may also be used to verify the correctness of
simplesynchronization primitives. Hojati et al. [HM TLB95] have al so suggested automatic tool sfor verifying
the correctness of an implementation against a set of properties and the correctness of simple programsin
the context of the Sparc TSO and PSO models. Finally, Collier [Col92] has suggested a number of simple
test programs that may be executed on atarget system to identify the type of optimizationsthat are exploited.
These tests are limited in scope, however; they do not check for many of the aggressive optimizations that
are used in systems today and the fact that a system passes a given test fails to conclusively determine that
the system does not exploit a given optimization. Overal, thereremain alot of opportunitiesand challenges
for research in thisarea

4.7 Summary

This chapter described a formal framework for specifying sufficient system requirements that precisely
capture the semantics of various memory consistency models. Our specification methodol ogy has two major
advantages compared to previousapproaches. Firgt, it exposes many aggressiveimplementation optimizations
that do not violate the semantics of a given model. The key observation isto constrain the execution order
among conflicting operations only; thisturns out to be sufficient for specifying the semantics of the models
described in thisthesis. The second advantage of our methodology is that converting our specifications into
either conservative or aggressive implementations and conversely verifying that an implementation satisfies
the specification are relatively straightforward. These characteristics aid the designer in implementing a
memory model correctly and efficiently across a wide range of system designs. The next chapter describes
how these specifications can be trandated into efficient implementations.
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Chapter 5

| mplementation Techniques

The choice of a memory consistency model often influences the implementation of the entire system, in-
cluding the hardware, compiler, and runtime or operating system. The three most important issues from an
implementation point of view are correctness, performance, and complexity or cost. The memory model, or
the corresponding system requirement specification, determines the set of ordering constraints for a correct
implementation. The challenge for adesigner isto maintain correctness while achieving the full performance
potential of the chosen memory model and limiting the complexity or cost of the design.

This chapter describes a wide range of practical techniques for efficiently supporting various memory
models, focusing on both architecture and compiler issues. A major portion of the chapter is dedicated
to implementation issues related to the architecture, with a focus on scalable designs based on hardware-
coherent caches and genera interconnects. We begin by describing the notion of cache coherence which
is often subsumed by the specification of a memory model (Section 5.1). Section 5.2 enumerates severa
architectural techniques (e.g., lockup-free caches) that take advantage of the ordering optimizations enabled
by relaxed memory models. Since unconstrained ordering optimizations can violate the semantics of agiven
memory model, the implementation must a so provide extra mechanisms that appropriately limit the scope of
various optimizations. These mechanisms are described in detail in Section 5.3. Finaly, Section 5.4 presents
several promising techniques that utilize a higher degree of hardware complexity to enable more aggressive
optimizations. While we mainly focus on systems with scal able interconnects and hardware-coherent caches,
Sections5.5 and 5.6 describeimplementati on techniquesthat are applicabl eto systemsthat usemorerestrictive
interconnects (e.g., bus or ring) or support cache coherence in software.

The implementation of a memory mode! is influenced by a number of other issues such as the dynamic
mapping of processes to processors, interaction with other latency hiding techniques such as prefetching or
multiple contexts, and supporting other types of events such as I/O operations. These topics are covered in
Sections 5.7-5.9. Finally, to fully realize the performance benefits of relaxed memory models, it isimportant
to also exploit the compiler optimizations that are enabled by the model. To this end, Section 5.10 describes
methods for determining the set of safe compiler optimizationsfor agiven mode. Discussion of related work
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is spread throughout the chapter.

5.1 Cache Coherence

The caching of shared data leads to the presence of multiple copies for a given memory location. Cache
coherence refers to keeping such copies up-to-date with respect to one another. In what follows, we briefly
describe issues related to cache coherence and provide an abstraction for it. Section 5.3.2 provides a further
formalization of the correctness conditionsfor cache coherence protocols. A given cache coherence protocol
can be usually adapted to support a wide range of memory models, alowing us to leverage the large body of
work on correct and efficient cache coherence implementations.

While cache coherenceis a prerequisite for achieving correct memory behavior in systemsthat allow the
caching of shared data, it is not a sufficient condition and congtitutes only a small subset of the constraints
imposed by a memory model. For example, cache coherence does not cover ordering constraints implied
by program order relations among operations to different locations. Furthermore, many of the constraints
imposed by amemory model apply regardless of whether asystem supportscaches. Finally, it may bedifficult
to distinguish the cache coherence protocol from the overall protocol used to maintain consistency in some
systems. Nevertheless, in most systems, the cache coherence protocol is an important part of the overall
scheme for supporting a memory model.

5.1.1 Featuresof Cache Coherence

There are two distinct features for any cache coherence protocol: (i) the mechanism for locating all copies of
amemory location, and (ii) the mechanism for eliminating stale copies. Bus-based multiprocessorstypically
use a snoopy scheme to locate cached copies, whereby addresses transmitted on the bus are observed by all
caches. A more scalable approach isto keep adirectory per memory location that identifiesthelist of copies.
The simplest representation for the directory information is a full bit vector, as used in DASH [LLG190],
where there are as many bits as the maximum number of sharers. A number of more scal able representations
have been proposed based on the observation that most of memory is either not cached or cached by only a
few processors at any given time [Web93, Sim92, CKA91].

To keep the copies up-to-date, a write must eliminate the stale data at the other copies. This can be
accomplished by either invalidating the stale data or updating the cached data to the newly written value.
The invaidation or update of a copy is often accompanied by an acknowledgement response that signals
completion. While most designs are either invalidation-based or update-based, a hybrid design may statically
or dynamically choose between the two schemes on aper memory location basis [KMRS88].

Systems that support cache coherence in hardware often maintain coherence at the granularity of severa
words, typically corresponding to the cache line size. We refer to this as the coherence granularity. A
larger coherence granularity helps amortize the overhead of state and tag bitsin caches and other state bits
associated with directory-based schemes. Cache copies are typically fetched at the granularity of a cache
line. In addition, invalidations eliminate a whol e line even though the write that causes the invalidationisto
asingleword. Large coherence granularities present an obvious performance trade-off since data with good
spatia locality benefit from operations on a cache line granularity, while data with poor spatial locality may
experience more cache misses dueto false sharing [TLH94].
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Another common and important function of the cache coherence protocol is to seriadize the effect of
simultaneous write operations to a given location. For example, consider two processors simultaneously
issuing a write to the same location with different values. Cache coherence ensures that the two writes
are observed in the same order by al processors, with the same value persisting at all copies. Thisis
effectively the same notion as the coherence requirement introduced in Chapters 2 and 4. In terms of system
requirements discussed in Chapter 4, coherence impliesthat for two writes, W1 and W2, to the same location,
W1(i) == W2(i) for al i. Whilemost specificationsimposethisconstraintson all writes, some specifications
(eg., sufficient conditions for PL1, PL2, and PL3) limit the scope of this constraint to a subset of writes.
However, as we will later discussin Section 5.3.2, most practical implementations provide this serialization
for all writes.

5.1.2 Abstraction for Cache Coherence Protocols

The techniques used to support a memory model are naturally influenced by some inherent characteristics of
theunderlying cache coherence protocol. This section presentsageneral abstractionfor directory-based cache
coherence protocolsthat captures the relevant characteristics of such protocols. This abstraction provides a
concrete base for the various implementation techniquesthat are discussed in the later sections.

For purposes of describing a cache coherence protocol, it is often useful to distinguish between the
following two components: (i) the coherence protocol within a processor’s cache hierarchy, and (ii) the
coherence protocol across different processors' caches. In what follows, we will discussthe states and events
corresponding to the above two components.

Coherence for the Processor Cache Hierarchy

We begin by considering the coherence protocol within a processor cache hierarchy. In general, the cache
hierarchy consists of n levels (typically 2 to 3) of caches, often with m levels (typically zero or one) of write
through caches and (n — m) levels of write back caches at the lower levels of the hierarchy (farther away
from the processor). The use of write back caches often leads to a substantial reduction in write traffic to the
memory system. Typically, each cache line has a state and tag associated with it. For a simple write through
cache, the state comprises of asinglevalid bit. For asimplewriteback cache, there are three states associated
with a cache line: invalid, clean (or shared), and dirty (or modified exclusive). The clean or shared state
signifies that the cached copy is valid, other processors may be caching the data, and memory is up-to-date.
The dirty or modified exclusive state signifies that no other processor is caching the data and that the datain
memory isstale.

To simplify the design of cache hierarchies, designers often enforce the inclusion (or subset) property
that requires the contents of each cache to be a subset of the lower cache in the hierarchy. The state bitsin
each cache are also extended to keep track of the presence or state of the linein the next higher level cache.
For example, the dirty state in awrite back cache may be expanded to three states: dirty-invalid (no copy in
higher level), dirty-clean (clean copy in higher level), and dirty-dirty (dirty copy in higher level).

More sophisticated cache designs may also associate extra states with a cache line. For example, some
write through caches maintain multiplevalid bits per cache lineto obtain better write performance [OMB92].
Similarly, write back caches may maintain more states per line to optimize certain transitions especially in
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Figure5.1: Cache hierarchy and buffer organization.

the context of snoopy (bus-based) coherence protocols. For example, aclean exclusive state may be used to
signify that no other processor is caching the data, yet the datain memory isup-to-date, or adirty shared state
may be used to alow the cache to supply data to other processors without updating memory. Finaly, some
lockup-free cache designs may use extra states per line to signify pending reguests to the memory system
that are awaiting a response (see Section 5.2.3). The implementation techniques discussed in the following
sections can be easily adapted to deal with these extra cache states.

Thecachehierarchy isresponsiblefor servicing processor requestsand externa requeststhat areforwarded
to it. To achieve the above, various messages are exchanged between the processor and cache hierarchy,
among the caches in the hierarchy, and between the cache hierarchy and the external interface(i.e., to memory
and other processor caches). Figure 5.1(a) illustrates the organization of atypical cache hierarchy. Messages
that travel in the direction of the external interface are called outgoing messages, while those that travel
towards the processor are called incoming messages. As shown in the figure, these messages are often
buffered among the different levels to enhance performance. Various buffer organizations may be used. For
example, Figure 5.1(b) shows an organization with separate buffers for request and reply messages which
may make it easier to avoid deadlocks in message handling and buffer management. Section 5.2.3 discusses
theimpact of buffer organization on the ordering among messages and the types of solutionsthat may be used
to avoid deadlock due to finite buffer space.

The processor issuestwo typesof memory operationsto thefirst level cache: aread operation that expects
adatareply, and awrite operation with data that typically expects a completion or acknowledge reply. Each
level in the cache hierarchy attemptsto service the memory operationsissued by the processor and otherwise
passes the request to the lower level cache. If the lowest level cache fails to service the request, the request
is sent to the external interface and is eventually serviced either by memory or by another processor’s cache
hierarchy. Similarly, requests from the external interface may be passed from the lower to the higher level
caches. Table 5.1 enumerates typical messages that are exchanged within a processor cache hierarchy to
service requests from either the processor (outgoing request) or the external interface (incoming request).
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Table5.1: Messages exchanged withinthe processor cache hierarchy. [wt] and [wb] mark messages particul ar
to write through or write back caches, respectively. (data) and (data*) mark messages that carry data, where
(data*) isasubset of acache line.

Mode Outgoing Request Incoming Reply Incoming Request Outgoing Reply
read read (data) read [wb] read (data) [wb]
read-exclusive[wb] read-exclusive (data) [wb] read-exclusive[wb] read-exclusive (data) [wb]
invalidation- || exclusive[wb] exclusive [wb]
based write-read (data*) [wt] | invalidate-ack invalidate (invalidate-ack)

write (data*) [wt]
write-back (data) [wb]
(replacement-hint)

read read (data) read [wb] read (data) [wb]
update-read (data*) read-exclusive (data) [wb] update-read (data*) [wb]
update- update (data*) update update (data*) (update-ack)
based update-exclusive [wb]
update-ack

write-back (data) [wb]
(replacement-hint)

The table shows messages for both write through and write back caches using either an invalidation or
update based coherence scheme. For simplicity, we do not show messages related to prefetch or uncached
memory operations, and negative acknowledgement (nack) replies that force a retry of the original request
(the significance of nack repliesisdiscussed in Appendix K). The actua protocol and types of messages used
within a processor’s cache hierarchy are often dictated by the commercial microprocessor used in adesign.

Invalidation-Based CacheHierarchy Consider theinvalidation-based scheme with writeback caches. We
begin by discussing the outgoing requests. A read operation by the processor can be serviced by the cache if
thelineispresent in either clean or dirty state. Otherwise, the cache issues an outgoing read request, whichis
eventually satisfied by an incoming reply that returns a cache-line of data. A write operation by the processor
can be serviced by the cache if the line is present in dirty state. Otherwise, the cache issues an outgoing
read-exclusiverequest. Theincoming read-exclusivereply returnsacache-line of datain additionto signaling
that the write has been serialized with respect to other writesto the same location. As an optimization, the
cache may issue an exclusive (or upgrade) request if thelineis already in clean state (i.e., the cache aready
has the latest data). An exclusive (or upgrade) reply is similar to the read-exclusive reply but does not return
any data. The exclusive request may still need to be satisfied by a read-exclusive reply that carries the new
data (or must be reissued as a read-exclusive request) if another processor acquiresthe cache linein exclusive
mode in theinterim.

Read-exclusive or exclusive requests that reach the externa interface eventually lead to the invalidation
of copiesin other processors' caches. The invalidate-ack reply signals the compl etion of these invalidations;
Section 5.4.1 discussesthedi stinction between conservative and aggressive notionsof completion. Depending
on the design, the invalidate-ack reply may either be merged with the read-exclusive or exclusive reply or
explicitly sent as a separate message (or as multipleinvalidate-ack replies per processor copy). Section 5.3.5
describes designs where the read-exclusive or exclusive replies may be sent earlier than the invalidate-ack
reply. The fetch and invalidation granularity are the same in most design, though thisis not the case in dl
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designs.

The replacement of adirty line from a cache leads to an outgoing write-back request that carries the only
valid copy of the data. Some cache designs aso provide the option of signaling the replacement of a clean
linethrough an outgoing replacement-hint request; thislatter message can be safely dropped without affecting
correctness in most designs (e.g., the directory information will conservatively consider the cache as still
sharing acopy). Thereistypically no reply associated with either type of replacement request. Finally, some
designs may overload the outgoing read-exclusive reply for doing a write-back, thus aleviating the need for
two separate message types.

We now consider incoming requests. A cache hierarchy may receive an incoming invalidate request
caused by a write from another processor. In most cache designs, there is no explicit invalidate-ack reply
to signal when the clean copy is actualy invalidated in the hierarchy; we further discuss this optimization
in Section 5.4.1. The cache hierarchy with a dirty copy of a cache line is aso responsible for servicing
read or read-exclusive requests from other processors since the datain memory is stale. An incoming read
request alters the state of the cache line from dirty to clean, while a read-exclusive request alters the state to
invalid. In some designs, such as a snoopy bus-based scheme, the incoming read or read-exclusive request
may be broadcast to all processor cache hierarchies as opposed to only the cache hierarchy with the dirty
copy. A cache hierarchy that does not have the line in dirty mode simply ignores an incoming read request,
and implicitly treats the incoming read-exclusive request as an invalidate request.

A processor write is handled differently in a write through cache. The write leads to an outgoing write
request that carries the newly written data. As an optimization, outgoing write requests to the same or
consecutive addresses may be merged into a single write request of alarger granularity. Caches that use an
allocate-on-writepolicy may issueawrite-read request if thelineisnot aready inavalid state. Thewrite-read
request issimilar to awrite request except it expects aread reply that suppliesthe data for the portion of the
cache line that is not written to. With respect to incoming requests, a write-through cache does not need to
service incoming read and read-exclusive reguests since memory is always kept up-to-date.

Update-Based Cache Hierarchy We first consider the update-based scheme with write through caches,
referring to the message typesin Table 5.1. Processor reads work exactly the same as for invalidation-based
coherence. Processor writes are also similar, though other cache copies are updated with the new value
instead of being invalidated. A processor write generates an outgoing update request that carries the newly
written data. The update reply signals that the write has been serialized with respect to other writes to the
same location. In designs with more than a single level cache, the update reply (or update-exclusive reply
described below) may carry data in order to update lower level caches on its incoming path; thisissueis
described in more detail in Section 5.3.2. The update-ack reply is analogous to the invalidate-ack reply and
signalsthecompletion of the updates. Theincoming update-ack reply may either be merged with other replies
such as the update reply or may be sent as a separate message. Similar to invalidation-based caches, updates
to same or consecutive addresses may be merged into a single update request. Similarly, a write may lead
to an update-read request which is analogous to the write-read request; the read and update replies are often
merged in thiscase.

Using a write back cache alows a cache copy to be maintained in a dirty state in some cases, thus
alleviating the need to propagate updates on every write. For example, the externa interface may respond to
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an update or update-read request with an update-exclusiveor read-exclusivereply if no other processor caches
currently have a copy, thus signaling the cache to maintain the copy in dirty state. A cache that maintains a
dirty copy may receive incoming read or update-read requests, both of which lead to an outgoing read reply
and alter the state of thelineto clean; the update-read request a so updates the stal e cache copy (similar to an
incoming update request).

Hybrid protocols may selectively choose between an invalidate or update policy and potentially ater the
policy on a per cache linebasis. Such protocols use a combination of the message types discussed above to
maintain coherence within the processor cache hierarchy.

Coherence across Different Processor Cache Hierarchies

Coherence actions across different processor cache hierarchies are triggered by outgoing requests that flow
to the externa interface. The coherence protocol isresponsiblefor locating the most up-to-date copy for read
requests, and for locating and eliminating stale copies for write requests. Requests such as a read-exclusive
request involve both the read and the write functionality. Below, we briefly describe the states and events
associated with simple snoopy and directory protocolsfor supporting thisfunctionality.

In a snoopy protocol, outgoing requests that reach the externa interface are broadcast to all processor
cache hierarchies. Each cache hierarchy determines whether it needs to take any actions. For example, a
read or read-exclusive request must be serviced by the hierarchy that has the line in a dirty state. In an
invalidation-based protocol, the read-exclusive request also leads to the invalidation of copiesin caches with
the line in clean state. The memory is responsible for supplying valid data if none of the caches have the
linein dirty state; this case may either be detected by delaying the response from memory until al processor
caches have had achance to respond or by maintaining extrastate (i.e, asinglebit) at the memory to determine
whether the memory copy is up-to-date.

Inadirectory protocol, directory stateislogically maintained for each line of memory (typically the same
granularity asthe cacheling). A given memory line may bein one of three possible states: uncached, shared,
and exclusive. The uncached state corresponds to the only valid copy residing in memory. The shared state
corresponds to both memory and one or more processor caches having a vaid copy. Finaly, the exclusive
state corresponds to a single processor cache owning the valid copy. The protocol typically associates extra
information with each line to identify the set of sharers or the owner processor. Requests are first sent to the
home node where the given memory location resides. Read or write requests to alinein exclusive state are
forwarded from the home to the processor cache with the exclusive copy. Other requests are satisfied at the
home memory, with writerequests potentially causing invalidate or update messages to be sent to other cache
copies.

5.2 Mechanismsfor Exploiting Relaxed M odels

With the widening gap between computation and memory access speeds, the overlap of memory operations
with other memory operations and computation within a given thread of execution has become an impor-
tant factor in achieving high performance in both uniprocessor and multiprocessor systems. The effect of
overlapping optimizationsisto partially or fully hide the latency of memory operations. Such optimizations
are especially important in multiprocessors due to the typically higher number of cache misses and larger
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Figure5.2: Typica architecture for distributed shared memory.

memory latencies. The performance potential for a multiprocessor implementation depends on two factors:
(a) the overlap and reordering optimizations enabled by the memory model, and (b) the extent to which the
implementation expl oits these optimizations.

Figure 5.2 shows a typical distributed shared memory architecture. Read and write operations issued
by the processor may be serviced at various levels of the memory hierarchy: by the processor’s buffers
or caches, by the memory, or by another processor’s buffer or cache. Memory latency may be hidden by
supporting multiple outstanding memory operations from each processor and servicing memory operation
as early as possible. To attain the maximum benefit from these optimizations, it is important to (a) provide
sufficient resources, often in the form of buffers, to support multiple outstanding memory operations, (b)
reduce or eliminate serialization in issuing and servicing memory operations,* and (c) provide a balanced
design with optimizations applied at all levels. The latter point is extremely important; for example, an
aggressive processor that supports multiple outstanding operations also requires an aggressive cache and
memory system.

This section describes architectural mechanisms for supporting aggressive overlapping optimizations,
exposing a variety of techniques (many of which are derived from uniprocessors) along with the associated
complexities of handling multiple outstanding operations. Additional mechanisms for appropriately limiting
the scope of these optimizations to satisfy the constraints of specific multiprocessor memory models are
discussed in the next section.

1Serialization in handling memory operations can limit the achievablenumber of outstanding operations (i.e., equal to approximately
the time to service atypical operation divided by the serialization time).
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5.2.1 Processor

The opportunity to overlap memory operations with other operations and computation from the same thread
begins at the processor. To effectively hidethe latency of memory accesses, the processor requires the ability
to continue past pending operations to find other computation and memory accesses to execute. The extent
of thisability is primarily determined by the technique used for scheduling instructions.

We categorize processors into two groups. in-order issue and out-of-order issue. An in-order issue, or
statically scheduled, processor checks for data and structural hazards at decode time [HPOQ]. The issue of
theinstructionis delayed in case there is a hazard, leading to an in-order issue and execution of instructions.
Typica sources of hazards are source data that is not yet computed (data hazard) or busy resources such
as computation units or full buffers (structural hazards). In contrast to an in-order issue processor, an
out-of-order issue, or dynamically scheduled, processor decouples the decoding of an instruction from its
issue and execution, with the execution unit assuming the responsibility for detecting structural and data
hazards [HP90]. The out-of-order issue and execution of instructions allows the processor to continue
decoding and executing instructions even though some previous instructions may be delayed due to data
dependences or busy functiona units. While out-of-order issue designs are substantially more complex
than in-order issue designs, they are becoming more common place in the new generation of commercial
processors.

Consider the potentia overlap between memory operations and computation with in-order issue proces-
sors. Write operations are typicaly issued into a write buffer and are overlapped with future computation
sincethe processor does not inherently require aresponsefor thewrite. Therefore, aslong asthereissufficient
space to buffer writes, the processor does not stall due to pending writes. Read operations are inherently
different from write operationssincefutureinstructionsmay depend on thevauereturned by theread. Simple
in-order issue processors often support blocking reads which stall the processor at the read operation until the
return value arrives. To allow overlap of read operations with future instructions, the processor can support
non-blocking reads, thus postponing the stall until the first instruction that uses the read return value. The
possible overlap in typical code generated by current compilers is rather small since the use is often within
a few instructions from the read instruction [GGH92], but may be enhanced by instruction schedulers that
attempt to further separate the read instruction from its use [FJ94]. Therefore, the potential of overlap for
non-blocking reads is highly sensitive to instruction scheduling.

Now consider the potential overlap among different memory operations given in-order issue processors.
We divide overlap of memory operations into three categories: (i) overlap of a write followed by a read
(write-read), (ii) overlap of multiple writes (write-write), and (iii) overlap of aread with a following read
or write (read-read or read-write). The first two types of overlap effectively allow the processor to hide the
latency of writes. Thethirdtype of overlap (read-read or read-write) allowsthelatency of readsto be partially
hidden as well, but obviously requires a processor with non-blocking reads. Since there can be multiple
outstanding memory operations, the memory system has the opportunity to overlap the service of multiple
operations from the same thread. However, the number of outstanding operations at any given time may be
small (e.g., zero or one) unlessinstructionsare carefully scheduled.

Dynamic scheduling provides the opportunity for the processor to continue past an outstanding load and
the instructions that are dependent on the return value. The use of dynamic scheduling to hide memory
latency dates back tothe IBM Stretch [Buc62] and IBM 360/91 [ Tom67]. Figure 5.3 showsasimpleexample
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Figure5.3: Example of out-of-order instruction issue.

of this type of overlap. The program segment in Figure 5.3(a) shows two load instructions each followed
immediately by the use of thereturn value. Assume both load instructionsare long latency cache misses. An
in-order issue processor would issue thefirst load, stall at the use until the return valueis back, issue the add,
and then issue the second load. Even with non-blocking reads, no overlap is achieved between the two read
operations. Figure 5.3(b) shows an abstract view of an out-of-order issue processor, modeled as alookahead
window of instructionswhere the processor can issue any ready instructionsfrom the window. The processor
starts by issuing the load to A. The add instruction that uses the return value of the load is not ready to be
issued. However, the processor can proceed to issue theload to B whiletheload of A isoutstanding. The add
instructionsare issued later when therelevant read dataisreturned to the processor. The effective overlap that
isachieved isillustrated in Figure 5.3(c). The same type of overlap would be possible with an in-order issue
processor (with non-blocking reads) if the original code is scheduled as in Figure 5.3(c), again illustrating
that in-order issue processors are more sensitive to theinitial instruction schedule.

To be effective in hiding large latencies, dynamic scheduling must be complemented with techniques
such as register renaming [Kel 75], dynamic branch prediction [LS84], and speculative execution. Register
renaming alleviates write-after-read (WAR) and write-after-write (WAW) dependences that would otherwise
delay the execution of future instructions. Dynamic branch prediction increases the lookahead capability
of the processor while speculative execution alows the processor to execute instructions past unresolved
branches? Appendix L provides a few examples of how speculative execution can help in exploiting a
relaxed model.

Thefollowing sections describe how the various componentsin thememory system can exploitthe overlap
among memory operationsthat is exposed by the processor.

5.2.2 Read and Write Buffers

Memory operations are typically buffered after they are issued by the processor. The main purpose for
buffering is to avoid processor stalls when the memory system cannot accept operations as fast as the
processor issues them. This section briefly discusses buffering optimizations such as forwarding, bypassing,
merging, and out-of-order (non-FIFO) service, that are enabled by relaxed models. Section 5.3.5 describes

2Limited forms of speculative execution can also be supportedin in-order issue processors, e.g., through boosting [SLH90].
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how buffers can aso play an important role in enforcing the appropriate order among memory operations as
dictated by amemory model.

The processor issues two types of memory operations. aread operation along with an address, and awrite
operation along with an address and relevant data. In-order issue processors issue memory operations to
the buffer in program order with valid address and data. Out-of-order issue processors may issue operations
out of program order; however, some designs may issue place-holders for unready memory operations with
unresolved addresses or values in order to allow the first level of buffering to keep track of program order
among the operations. In the discussion below, we will assume two logica buffers, one for reads and
another for writes. In an actual implementation, the two logical buffers may be physically merged or may be
implemented as several separate buffers.

Consider the logical write buffer first. Assume write operations are issued to the write buffer in program
order. A simple write buffer maintains first-in-first-out (FIFO) order in issuing the writes to the next level
in the memory hierarchy. More aggressive buffers may alow non-FIFO issue to alleviate issue stalls. For
example, thewrite at the head of the buffer may still be unresolved (i.e., given an out-of-order i ssue processor)
or thenext level inthe memory hierarchy may temporarily not be ableto accept operationsto certain addresses
(eqg., if thereisalready an outstanding operation to that lin€). In such cases, non-FIFO issue can improvethe
service rate for writes, thus reducing the chance of processor stalls due to buffer overflow.

Another common optimization for write buffers is write merging. The purpose of write merging is to
coal esce writes to the same address or nearby addresses into asinglewrite. In an aggressive implementation,
each entry in thewrite buffer can maintain datafor a set of consecutive addresses, typically corresponding to
the line size for the next level in the memory hierarchy. When awrite isissued to the write buffer, the write
buffer first searches for an already existing entry for the given address range. In case such an entry already
exists, the new data is merged in with the previous data for that entry. Otherwise, a new entry is allocated
for the write. In thisway, before an entry is retired, any writes issued to the buffer that match the entry are
merged and coalesced into a single write with potentially more data. Of course, a side effect of merging and
coalescing writes is that writes may be serviced in a different order relative the order they are issued to the
buffer.

We now consider optimizationsfor reads. Read operations are more critical than write operations since
the processor typically requires the return value before proceeding with subsequent computation. Therefore,
itisbeneficia to alow aread to be serviced before pending writesthat have already beenissued. Thisrequires
the read to bypass any writesin the write buffer. To ensure the correct value for the read, such bypassing is
only alowed if the address of the read does not match any of the write addresses. Thisrequires an associative
match, but the match can be made conservative by comparing fewer address bits. Theread issimply stalled if
an address match is detected. An optimizationin thiscase isto service theread right away by forwarding the
value of the latest writein the buffer that matches its address; thislatter match requires comparing al address
bits. Both bypassing and forwarding can lead to the reordering of reads with respect to writes relative to the
order in which they are issued by the processor. Finally, similar to writes, non-FIFO issue of reads from the
buffer may also be beneficial.

The next section describes cache optimizationsthat exploit relaxed models. An aggressive cache design
may reduce the benefits from optimizations such as bypassing and forwarding by increasing the service rate
of buffers which increases the chances of an operation encountering an empty buffer; thiseffect isillustrated
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by our simulation results in Section 6.2.3 of the next chapter. Finaly, the optimizations discussed above
(i.e., non-FIFO issue, merging, bypassing, and forwarding) may aso be beneficia at the lower levelsin the
memory hierarchy.

5.2.3 Cachesand Intermediate Buffers

To exploit overlap among memory operations requires a lockup-free cache that is capable of servicing
memory operations while previous operations are till outstanding [Kro81]. A standard blocking cache
Services processor requests one at a time. Therefore, only a single processor request is serviced during a
long latency cache miss. It isreasonably straightforward to extend a blocking cache design to alow requests
that hit in the cache to be serviced while there is an outstanding miss. To achieve higher performance, it
is important to also allow multiple outstanding misses. Lockup-free caches are inherently more complex
than standard blocking caches. However, since they play acritical role as alatency hiding mechanism, their
use is becoming more widespread both in uniprocessor and multiprocessor designs. The first part of this
section describes various design issues for lockup-free caches. The second part considers the design of the
intermediate buffers between caches, and issues such as deadl ock that arise in handling multiple messages in
the incoming and outgoing paths.

L ockup-free Cache Design

We begin by identifying some of the requirements for a lockup-free cache. A genera lockup-free cache
must support multiple outstanding read and write requests. For writes, the data written by the write must be
buffered while the write request is outstanding and must be correctly merged with the reply data. For reads,
there needs to be a mechanism to forward the relevant portion of the returning data reply to the requesting
unit or destination register.

A key component in the design of a lockup-free cache is the mechanism that is used for tracking
outstanding requests. Most designs track outstanding requests in transaction buffers that are externa to
the cache [Kro81, SD91, FJ94], often referred to as MSHRs (miss information/status holding registers). An
aternativeapproach istotrack therequestsdirectly inthe cache, asintheremote access cache for the Stanford
DASH [LLGT90, Len92]. Finaly, some recent proposa's advocate a hybrid approach [Lau94]. The main
difference between these designsisin the limitations placed on the number and type of outstanding requests,
and the hardware complexity of each design.

Below, we describe a straightforward implementation that keeps track of outstanding requests within the
cache. For simplicity, we assume an invalidation-based coherence scheme using a simple write back cache
with three states: invalid, clean, and dirty. To support multiple outstanding operations, an extra state is
introduced per cache lineto represent a pending (or transient) state. A cache line enters the pending state on
a cache miss and remains in this state while the miss is outstanding. The line may not be replaced whileitis
in the pending state. Therefore, operations that conflict on the line must be delayed, allowing only a single
outstanding request per cache line (or per set in a set-associate cache). Whilethisrestriction may cause some
stallsin small caches, larger caches or set-associative caches are less likely to be affected by such conflicts.

Aswe will see bel ow, there are numerous optimizations possible for accesses to a cache linethat already
has an outstanding request. The followingisalist of such optimizationsfor operations to the same address
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or line: merge reads with outstanding requests as appropriate, read data from aline with awrite outstanding
and forward the value appropriately, write to a line with a read outstanding, and merge multiple writes to
the same line. Some designs may al so allow simultaneous outstanding operationsto different addresses even
when there is a mapping conflict in the cache.

A writemissresultsin thewrite datato be writteninto the cache lineand the state of thelineto be changed
to pending. To alow for correct merging with the reply data, each cache line is augmented with fine grain
valid bits (corresponding to the smallest size write operation that is supported). The state of the valid bitsare
only considered while the line isin the pending state. The appropriate valid bits are set during a write miss
as the write datais written to the cache. A future writeto the pending line may be merged by simply setting
the corresponding valid bits and writing its data into the line. Once the write datareply arrives, it is merged
appropriately with the data present in the cache line according to the valid bits. A future read to the pending
line may fetch its value if the corresponding valid bitsfor that data segment are all set. Otherwise, the read
must be delayed. As an optimization, an extra pending state may be used to signify aline that wasin clean
mode before awrite miss. We refer to thisas the pending clean state. A read to aline in pending clean state
may fetch its value immediately regardless of the state of the valid bits. The line can exit the pending or
pending clean state as soon as the exclusive or read-exclusive reply returns, even in protocolsthat provide an
early response (i.e., before all invalidation-ack replies are back).

A read missresultsin the datato be requested and the state of the cache line to be changed to pending. To
allow appropriate routing of the return value when the read reply arrives, the destination register or unit and
the actual word address to be read from the line are a so recorded in a separate read transaction buffer. The
size of this buffer places alimit on the number of outstanding reads. A futureread to the pending line can be
merged with the pending read if thereis sufficient space in the transaction buffer to record the information for
the new read. A futurewriteto the pending lineistreated in the same way as when the state is set to pending
dueto apreviouswrite miss (in fact, these two cases are indistingui shablebased on the state); the appropriate
valid bits are set and the write data is stored in the cache line. The read data reply is placed in the cache on
arrival. In addition, for each address/register pair in the transaction buffer that corresponds to thisline, the
specified word is selected and appropriately routed to its destination. If any of the valid bitsare set, the read
datareply is properly merged with the write data in the line, a write miss request is generated to fetch the
linein exclusive mode, the valid bits remain set, and the line remains in the pending state (or is changed to
pending clean stateif this state is supported) until thewritereply arrives. Even though delaying the servicing
of awritemiss until the read reply returnsis conservative, it greatly simplifies the design.

While the line is in the pending or pending clean state, incoming read and read-exclusive reguests (i.e.,
originating from lower level caches or the external interface) destined for the line must be either delayed or
sent back with a negative acknowledgement reply.® Incoming invaidate requests may be readily serviced,
however. An invalidate request has no effect if the lineisin the pending state. An invaidateto alinein
pending clean state changes the state to pending to reflect the fact that blocks with clear valid bits contain
potentially stale data (and should therefore not be forwarded to future reads).

Another issue in lockup-free cache designs is the out-of-order arrival of replies. In a standard blocking

3Implementationsthat support a dirty-shared caching state may haveto service certain requestsin order to avoid deadlock or livelock.
For example, consider P1 with a dirty-shared copy. Assume P1 and P2 both write to A, resulting in an exclusive request from P1 and a
read-exclusive request from P2 to be sent to the home. If P2's request gets to the home first, it will be forwarded to P1 and may need to
be serviced by P1 to avoid deadlock or livelock.
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cache, thereisonly asinglerequest outstanding. Therefore, an incoming reply can be easily matched withthe
request. A simple way to solve the problem in lockup-free caches is to require the reply to carry an address.
Thisallowsrepliesto beeasily matched with requests, but impliesthat the address must be carried back by the
reply even outside the cache hierarchy. To reduce the amount of extra bits carried by the reply, the external
interface can assign a unique tag to each outstanding request to be carried back by the reply. For example,
supporting eight outstanding requests would require only athree bit tag.

In the lockup-free cache hierarchy design described above, only thefirst level cache needs to support the
mechanisms required for dealing with pending requests and appropriately merging requeststo apending line.
Thefirst level cache essentially acts as afilter for requeststo thelower level caches, guaranteeing that alower
level cache will not receive further requests for a given line while the line has a miss pending.* Therefore,
whilethelower level caches still need to alow multipleoutstanding requests, they need not support extracache
states, vaid bits, or read transaction buffers. Allowing multiple outstanding requests is a simple extension
over ablocking cache in the context of a multiprocessor, since even blocking caches need to simultaneoudly
service processor requests and requests from the external interface.

Compared to astandard blocking cache, the abovel ockup-free cache design incurs some obvious additional
costs. Thereisaseparate transaction buffer that keepstrack of address/register pairsfor pending read requests.
Furthermore, replies must carry either auniquetag or thefull address. Finally, each cache linehas one or two
(in case the pending clean state is provided) extra statesin addition to thefine grain valid bits. Thereisaway
to reduce the extra cost per cache line, however. The main observation is that the valid bits are only useful
for lines with outstanding requests. Based on this observation, Laudon has proposed a hybrid design that
maintainsthe valid bitsfor outstanding cache linesin an external transaction buffer, called the pending-write
buffer, while still maintaining the write data in the cache [Lau94]. The pending-write buffer can be built
as asmall fully-associative cache, with the tag pointing to the cache line for which the pending-write entry
is alocated. While Laudon’s design only maintains a single pending state (i.e., the optimization involving
the pending clean state is not included), it is possible to extend the pending-write buffer to support the extra
pending clean state and still maintain a single pending state per linewithinthecache. Of course, the size of the
pending-write buffer places alimit on the number of outstanding write requests as compared to the original
approach discussed above which theoretically allows a maximum of one outstanding request per cache line.
However, the pending-writebuffer can have more entries than atraditional MSHR since each entry issmaller
given the write datais placed within the cache.

Overadl, there are numerous possible techniques for supporting lockup-free caches with varying imple-
mentation and performance trade-offs. While there have been some detailed studies of these trade-offs
in the context of uniprocessors [FJ94] and multiprocessors [Lau94], we expect more studies to appear as
lockup-free caches become morewidely used. Finally, multi-ported and interleaved caches are a so becoming
more prominent as a way of satisfying the bandwidth requirements of multiple instruction issue processors.
Like lockup-free caches, these designs depend on the reordering of operations allowed by relaxed modelsto
overlap simultaneous accesses to the cache.

4This assumesthat the lower level caches do not have alarger cache line size relative to the higher caches. This simplification may
also not apply to hierarchiesthat contain awrite through cache.
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Inter-Cache Buffers

The buffers between caches alow each cache to operate more independently and are important for supporting
multiple simultaneous requests withinthe hierarchy. However, the buffer design hasto cope with the potential
for deadlock in hierarchies with more than a single write back cache. Figure 5.4 shows a canonical example
of how buffer deadlock may arise. Assume both levels use write back caches. There is an incoming and an
outgoing FIFO buffer connecting the two caches, each with two entries. The figure shows two read requests
in the outgoing queue (originating from the processor) going to thelevel 2 cache and two read requestsin the
incoming queue (originating from the external interface) going to the level 1 cache. Assume the states of the
cache lines are such that the each cache can service the request destined to it. However, the level 2 cache
requires an entry in the incoming buffer to generate the reply to theread of A, and the level 1 cache requires
an entry in the outgoing buffer to generate the reply to the read of C. Thiscircular dependency arises because
servicing a request involves placing areply in the buffer in the opposite direction and leads to deadlock due
to alack of buffering resources.

The buffer deadlock problems described above arise only in cache hierarchies with more than a single
write back cache. Write through caches do not cause abuffer deadlock problem because incoming requeststo
higher level caches do not generate a reply, thus breaking the circular dependency.® Therefore, the sSimplest
solutionto the buffer deadlock problemisto use only asinglelevel of write back cache in the cache hierarchy.
Use of multiplelevels of write back caches requires a more general solution, as described bel ow.

Solving thebuffer deadl ock problem requiresanalyzing thefl ow of messagesbetween thecaches. Consider
the message types shown in Table 5.1 for write back caches using an invalidation-based coherence scheme.
In general, a given message may lead to the generation of zero, one, or two messages. Most incoming or
outgoing requests are either serviced by a cache, leading to a reply in the opposite direction, or are passed
alongto the next level cache potentially as a different type of request. Theincoming read-exclusive request is
uniquesinceit sometimes leadsto areply goingin the oppositedirection in additionto an invalidation request
going to the next level cache. The generation of repliesis one source of circular dependencies. Servicing
an outgoing read or read-exclusive request may also cause two messages to be sent to the next level cache,
one of them being an outgoing write-back request; these write-back messages are another potential source of

5We are assuming that incominginvalidate requests are acknowledgedearly (see Section 5.4.1), thus no outgoing invalidate-ack reply
is generated within the cache hierarchy.
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buffer deadlock.®

There are a number of possible solutions to the buffer deadlock problem. We begin by describing a
solution for designs with a single incoming and a single outgoing FIFO buffer between each cache [Lau94].
The solution is based on limiting the maximum number of requests that are injected into the hierarchy by
the processor or the externa interface and providing large enough buffers to absorb these messages. Given a
limit of m outstanding requests from the processor and n incoming requests from the externa interface, the
pair of buffers between two adjacent write back caches arerequired to hold 2m + n messages plus one extra
space per buffer to allow awaiting message to be processed. The reason each processor request requires two
entries is because it may lead to a write-back message. Therefore, if we split the entries equally between
the incoming and the outgoing buffers, each buffer must hold [(2m+n)/2]+1 messages.” Unfortunately, the
above solution requires fairly large buffers to alow a reasonable number of outstanding requests within the
hierarchy.®

An dternativeway to solvethe buffer deadlock problemisto disassociate the consumption of repliesfrom
the servicing of requests. One way to achieve thisisto provide separate pathsfor request and reply messages.
Figure 5.5 shows a number of aternative organizations. The organization in Figure 5.5(a) depicts separate
outgoing buffers and a combined incoming buffer. The separate outgoing reply buffer allows incoming
requests to be serviced regardless of the state of outgoing requests. Thiseliminatesthe circular dependencies
that are present in single FIFO buffer designs. Figure 5.5(b) shows the dual organization where theincoming
buffers are separated and the outgoing buffer iscombined. Finaly, Figure 5.5(c) shows the organization with
separate buffers on both the incoming and the outgoing paths.

The fundamenta requirement for avoiding deadlocks in the above scheme is to separate messages that
potentially generate a “loop-around” message from the “loop-around” messages on both the incoming and
outgoing paths. It turnsout that only request messages can generate loop-around messages and thel oop-around

60utgoing write-back requestsresult from servicing an outgoing read or read-exclusiverequest (from a higher level outgoing queue)
that misses in the cache but maps to aline that is already in the dirty state. In addition to passing the read or read-exclusive request to
the lower level cache, the write-back request must also be eventually injected into the outgoing queue.

"The above assumes that all messages fit within a single buffer entry; the scheme can be easily extended to deal with variable size
messages (e.g., messages with and without data).

8L audon [Lau94] describes asecond solution with more modest buffer requirements whereby an incoming (outgoing) buffer accepts
messages from the downstream (upstream) buffer only when it is at least half empty. However, we uncovered scenarios where this
agorithm would actually deadlock.
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messages are always replies. Therefore, separation based on requests and replies satisfies the requirement
above. However, thisisnot theonly way of separating themessages. For example, not every request generates
aloop-around message. Therefore, requests such as an incoming invalidate message may be placed on either
gueue in adesign with separate incoming buffers. The same holdsfor outgoing requests such as awrite-back
in a design with separate outgoing buffers. This flexibility allows the choice of separating messages into
different pathsto be customized for the purpose of performance or maintaining certain orders among messages
while still avoiding deadlocks.

In addition to providing separate incoming or outgoing paths, write-back requests must also be handled
properly to avoid deadlock. One solutionisto provide aminimum outgoing request buffer size of at least two
entries. The cache does not service any outgoing requests from the higher level buffer unless there are two
entries available in its outgoing request queue. In case awrite-back is generated, the write-back message is
placed into the queue along with the request that is passed down. Another solutionisto buffer the write-back
request in a separate buffer and to reinject it into the outgoing request queue when there is sufficient space
available. The cache does not service reguests from the higher-level outgoing queue while the write-back
request isbuffered. A write-back buffer of greater than one entry may be used to allow multiple miss request
to be sent out before the write-backs need to be sent out. Similar issues arise in cache hierarchies that support
replacement-hint requests (when the line that is replaced is clean), though a replacement-hint request does
not carry any data along with it and may be dropped if necessary.

Providing separate paths for requests and replies on at least one of the incoming or outgoing directions
has several advantages. First, alarge number of outstanding messages can be handled with relatively small
buffers. In fact, a single entry suffices for avoiding deadlock. Second, messages of different size are handled
naturally, without needing to design for the worst case. Finally, as we will discuss shortly, separate paths
on both the incoming and the outgoing direction provide advantages in the design of the external interface.
One potentia disadvantage of separate pathsfor requests and repliesistheloss of certain ordering guarantees
that would otherwise be preserved with a single incoming or outgoing path. Nevertheless, it is still possible
to maintain sufficient ordering for correctly supporting a memory model by carefully choosing the messages
that travel on each path.

5.2.4 External Interface

The externa interface is responsible for exchanging messages between the cache hierarchy and the rest of
the system. To overlap the latency of operationsto memory and other processor caches, thisinterface must
support multiple outstanding requests to and from the memory system. This section briefly discusses issues
related to the buffer organization at this interface. As we will see, the design of the externd interface is
heavily influenced by the way messages are handled by the network and memory system, and aso by the
buffering scheme used between caches within the hierarchy.

First consider theissue of supporting multiple outstanding (outgoing) requests from the cache hierarchy.
Almost al outgoing requests, except for write-back requests, expect an incoming reply message in response.
The way such replies must be handled depends on how the network and memory system copes with potential
deadlocks that may arise due to message handling (similar to issues that arise in inter-cache buffers). In
designs with a large number of processors, a viable approach for avoiding deadlock within the network
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and memory system is to provide separate logical paths and buffers for requests and replies® Both the
DASH [LLG'90] and FLASH [KOH*94] systems use this technique; DASH uses physically separate
request and reply networks while FLASH uses a single network with multiple virtua lanes to provide the
separate paths. A key requirement for avoiding deadlock in the above scheme is that reply messages must
be serviced (or consumed) unconditionally without depending on the service of any other messages (e.g.,
requiring a request message to be serviced first). This requirement affects the externa interface since it is
involved in accepting incoming replies from the network and memory system. Cache hierarchy designswith
logically separate incoming request and reply paths allow the interface to unconditionally accept incoming
replies. Designs with a combined request and reply path require extra support, however. A simple solution
isto ensure sufficient buffer space for the reply message(s) before issuing an outgoing request that expects a
reply. A static solutionisto allow at most » outstanding requests and to provide sufficient buffering resources
to accept n incoming replies. More dynamic solutionswould reserve sufficient space on the incoming side
before sending out an outgoing request.

Next consider the issues related to incoming requests. One of the key aspects with respect to incoming
requestsiswhether the corresponding outgoingreply isexpected by the outsideinterface potential ly beforeany
outgoing requests from the cache hierarchy are accepted. For example, a simple bus-based implementation
that supports a single outstanding request on the bus requires the reply message to appear on the bus before
any other messages are accepted. Thisiseasy to support if the cache hierarchy and externa interface provide
logically separate paths for outgoing requests and replies. However, in designs with a single outgoing path,
the external interface must provide sufficient buffering to absorb al outgoing requests buffered within the
cache hierarchy (including write-back requests) in order to allow repliesto bypass these requests on the way
out. The abovefunctionality may a so be required in most split-transaction busdesignssincethereistypicaly
aglobal limit on the maximum number of outstanding requests on the bus. Again, outgoing replies must be
able to bypass outgoing requests within the cache hierarchy and externa interface in order to avoid deadl ock.
Finally, to simplify the cache coherence protocol, even systems with more general interconnect networks
(e.g., FLASH [KOHT94]) may require the cache hierarchy and external interface to provide the reply to an
incoming request before any other outgoing messages are accepted.

In summary, cache hierarchy designswith a singleincoming and single outgoing path requirethe external
interface to provide sufficient buffering to absorb al expected incoming replies and outgoing requests. The
size of both buffersis proportional to the number of outstanding requests that is allowed by each processor;
the outgoing buffer must absorb both this maximum number of requests plus any write-back requests that
may be induced by these requests. Designs with separate incoming paths alleviate the need for the incoming
buffer in the external interface. Similarly, designs with separate outgoing paths aleviate the need for the
outgoing buffer.

525 Network and Memory System

The network and memory system play an important role in overlapping the service of multiple memory
operations from the same processor or different processors. To achieve such overlap, network and memory

SWith a limited number of processors, it is possible to use large buffers to absorb the maximum number of messages that may be
issued by all the processors. This approachis impractical in larger systems. An exception to thisis a system such as Alewife [CKA91]
that uses main memory as alarge buffer to break deadlocks.
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resources are often replicated and distributed across the system. Main memory isalso often distributed among
the nodes. This providesaleve of interleaving in the memory system, and a so provides each processor with
higher bandwidth and lower latency to the memory local to itsnode. The memory within each node may also
beinterleaved or partitionedinto multiple banksto support further overlap. High performance networks, such
as two or three dimensional mesh networks, aso enable the overlapping of memory operations by providing
multiple paths and heavily pipelining the messages within each path. One of the consequences of multiple
pathsis that the network provides very few message ordering guarantees; designs that use static routing at
best guarantee point-to-point order for messages within the same virtua lane.

Overdl, the above optimizationslead to memory operations being serviced in an order that is potentially
different from the order they are issued to the memory system and network. Furthermore, the presence of
multiple paths in the network leads to inherently non-atomic coherence operations (e.g., updating a copy)
across the multiple cached copies.

5.2.6 Summary on Exploiting Relaxed M odels

This section described exampl e optimizationsthat attempt to issue and service memory operationsas quickly
as possible at various levels of the memory hierarchy, exploiting operation reordering whenever necessary.
Achieving high performance requires a balanced design that provides sufficient bandwidth at all levels of
the memory hierarchy. Therefore, al components of the system, including the processor, cache hierarchy,
network, and memory system, must be designed to support the desired level of overlap among memory oper-
ations. Such aggressive designs are naturally more complex. Furthermore, supporting multiple outstanding
operationsintroduces various deadl ock problems that must be addressed in such designs.

5.3 Maintaining the Correct Ordering Among Oper ations

The three most important issues from an implementation perspective are performance, correctness, and
complexity. The previous section described examples of optimizations that boost performance, but lead to
the reordering of memory operationsthat may violatethe semantics of a given memory model. A key design
challenge is to appropriately limit the scope of such optimizations for correctness while still achieving the
full performance potential for a given model. At the same time, it is important to limit implementation
complexity. Therefore, a designer must trade off the marginal performance gain from a given optimization
versus the resulting increase in design complexity.

This section presents practical and efficient mechani smsfor enforcing the correct ordering among memory
operations. We mainly focus on issues relevant to tightly-coupled architectures based on scalable intercon-
nection networks. Mechanismsrelevant to systemswith restricted networksand 1oosely coupled architectures
are later discussed in Sections 5.5 and 5.6, respectively. As with performance optimizations, mechanisms
for ensuring the correct ordering of memory operations are not just limited to the processor or the memory
system, but affect the whole system. Furthermore, there is often an interdependence between the type of
reordering optimizations exploited (along with deadl ock-avoidance solutions) and the mechanisms used to
enforce correct ordering.

We use the specifications devel oped in Chapter 4 to determine whether an implementation correctly imple-
ments a given memory consistency model. Because these specifications provide close to minimal constraints
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Figure 5.6: Conditionsfor SC with reference to relevant implementation sections.

on memory ordering, most implementations conservatively satisfy a given specification by imposing stricter
ordering constraints than required. We begin this section by relating the abstract events used in the specifi-
cations to actua events in an implementation. Sections 5.3.2 to 5.3.7 describe mechanisms and techniques
for satisfying the various conditions imposed by a specification.'® Figure 5.6 shows the sufficient system
conditionsfor sequential consistency as presented inthe previous chapter. Beside each of the main conditions,
we have referenced the section that addresses the relevant implementation i ssues; the reach condition (which
does not apply to SC) is discussed in Section 5.3.6. Section 5.4 describes a number of more sophisticated
techniquesthat provide more efficient implementations by expl oiting opti mizationsexposed by the aggressive
specifications devel oped in Chapter 4.

5.3.1 RelatingAbstract Eventsin the Specificationto Actual Eventsin an Implemen-
tation

To determine the correctness of an implementation, we need to relate the abstract memory events and the
corresponding execution order described in Chapter 4 (specificaly, in Section 4.1.3) to physica events and
ordersintheimplementation. The relationship between abstract and physical eventsis straightforward except
for afew subtleissues related to the completion of write operations; the reason for this subtlety will become
more clear in Section 5.3.4.

Figure 4.3 in the previous chapter pictorialy (and informally) depictsthe generd abstraction for memory
operationsthat the specifications are based upon. Inthisabstraction, each processing node conceptually has a
complete copy of the shared memory along with a memory operation buffer that buffers that node’s memory

10we assume the uniprocessor correctness condition (Condition 4.1 in Chapter 4) is trivially satisfied by all implementations.
Appendix G describesa relaxation of this condition.
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operations. Reads are modeled as two sub-operation, R;,,;;(i) and R(i) by P;, and are serviced by either
the local copy of memory or the loca buffer. Writes are modeled as » + 1 sub-operations (where n is the
number of processing nodes), consisting of asingleinitia sub-operation, W;,,;:(i) by P;, and n sub-operations,
W(1), ..., W(n), corresponding to the write updating the values in each of the » memory copies. Since the
main purpose for the R;,,;+(i) and W;,,;+(i) sub-operationsis to capture the program order among conflicting
operations, we do not attempt to relate them to physical events.

The mapping between abstract events and physica events depends heavily on the underlying implemen-
tation. Figure 5.7 showsthe type of implementation we are assuming. For concreteness, we assume asimple
directory-based coherence protocol similar to theprotocolsusedin DASH [LLGT90] and FLASH [KOH94].
The concept of the owner copy plays an important role in such coherence protocols. If the lineis held ex-
clusive by a cache, then it is considered to be the owner copy. Otherwise, the memory at the home nodeis
considered to be the owner. For simplicity, we a so assume the protocol maintains the coherence requirement
for al writes; i.e., writes to the same location (or memory line) are serialized at the owner copy so that they
complete in the same order with respect to al processors. Below we describe the path taken by aread or a
write request beforeit is serviced.

Consider aread request. After the processor issues the read, the processor’s caches and buffers attempt
to serviceit. If thisfails, theread is sent to the home node corresponding to its physical address and can be
serviced there if avalid copy of the line existsin memory (i.e., the home nodeis the owner). Otherwise, the
read is forwarded to the owner node that maintains an exclusive copy of the cache line. Due to infrequent
transient cases in the protocol, aread request may need to traverse the above path more than once (e.g., due
to negative-acknowledgement replies) before it is serviced. The read request is considered complete when
its return value is bound. This completion event in the physical implementation corresponds to the read
appearing in the execution order in our specification abstraction. Of course, in adistributed architecture such
astheone shownin Figure5.7, the processor detects the completion of the read only &fter it receives thereply
message containing the return data.

Consider a write request now. A write request may aso involve reading the cache line if the cache
supports a write-allocate policy (e.g., consider a read-exclusive request); this can be effectively treated as a
read request piggy-backed on top of the write. Below, we focus on the path that the write request traversesto
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invalidate or update stale copies of the cache line. Since the effect of awrite request on multiplecache copies
isinherently non-atomic, we model the write event as consisting of multiple completion events with respect
to each of the n processors. A write is considered complete when its constituent events have occurred with
respect to every processor.

Given awrite W issued by P;, W completes with respect to another processor P; (i.e., ¢ # j) at thetime
al older values (i.e., values from writes that are serialized before W) are eliminated from P;’s read path.
Along with the coherence requirement, thisimpliesthat awrite cannot complete with respect to any processor
beforeit is seriaized (at the current owner) with respect to other writes to the same location (or same line,
since seridization typically takes place at thelinegranularity). Furthermore, aread by P; that compl etes after
a conflicting write W has completed with respect to P; can no longer return an old or stale value. Finaly,
except for the issuing processor P;, aread from another processor P; cannot physically return the value of
awrite before the write is serialized and completes with respect to P;. However, the issuing processor P; is
allowed to return the value of its own write before the writeis serialized or completes with respect to itself.

Below, we enumerate the various cases for servicing awrite. The points at which we consider a write
to be complete with respect to a given processor are conservative; in some protocols, it may be possible to
consider thewrite as having completed at an earlier pointintime. A writereguest W by P; can be serviced by
itsown processor’scaches if an exclusive copy of theline exists withinthe hierarchy. Thewriteis considered
complete with respect to P; at the time the exclusive copy is modified. The write is considered complete
with respect to another processor P; either when the exclusive copy is modified or when all previous writes
to the same line that are serialized before W are complete with respect to P;, whichever occurs later.!! If
the cache hierarchy cannot satisfy the write, the request is forwarded to the home node. The directory at the
home maintai nsinformation on thelocation of other copies of theline. We enumerate the three possible cases
below. The first case corresponds to the directory indicating that no other processor caches hold a copy of
theline. In this case, the write W is considered complete with respect to a processor either when the copy at
memory is modified'? or when all previous writes to the same line that are serialized before W are complete
with respect to P;, whichever occurs later. The second case corresponds to the directory indicating that an
exclusive copy of the lineis held by P;.. In this case, the write request is simply forwarded to P;’s cache
hierarchy. The write W is considered complete with respect to another processor P; (i.e., not the same as Py,)
either when the exclusive copy within P’ s hierarchy is modified or when al previouswritesto the sameline
that are serialized before W are complete with respect to P;, whichever occurslater. The writeis considered
complete with respect to P, at thetime all stale copies withinits hierarchy are appropriately modified.

Finally, thethird case for awritecorrespondsto thedirectory indicatingthat one or more cache hierarchies
(other than P;’s hierarchy) are sharing clean copies of the line. In addition to modifying the memory copy,
invalidate or update messages are sent to each of the relevant cache hierarchies to eliminate the stale copies.
Within each cache hierarchy, theinvalidate or update message traverses the hierarchy until al copiesthereare
appropriately modified. Thewrite W is considered complete with respect to P; (i £ j) at thetime &l copies
within P;’s cache hierarchy are appropriately modified; if P;’s cache hierarchy does not maintain a copy of

11Because the state is distributed in the system, the information at the caches or at the directory may not exactly capture the actual
state of the system. For example, even though a cache may indicate that there are no cache copies of a line, there may be pending
invalidations from previous writes that are till in route to the “stale” copies. This explains the need for the complicated second clause
that requires previous writes to have completed before a new write is considered complete with respect to a processor.

2Modification of acopy does not necessarily imply the updating of that copy. The modification may only comprise of changing the
relevant state to signify a stale copy.
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(a) thefollowing conditions must be obeyed:
Condition 4.5: termination condition for writes (may apply to only a subset of write sub-operations).
Condition 4.6: return value for read sub-operations.
(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of
coherence: W =2 W (may apply to only a subset of write sub-operations)
then X (i) — Y (i) for all i.

Figure 5.8: Generic conditionsfor a cache coherence protocol.

theline, then the write completes with respect to P; (¢ # ;) either when the memory copy at the home nodeis
modified or when all previouswrites to the same line that are serialized before W are complete with respect
to P;, whichever occurs later. The write W is considered complete with respect to its issuing processor P;
in the time interval after the completion with respect to P; of any writes to the same line that are seriaized
before W and before the compl etion with respect to P; of any writesto the same linethat are serialized after
W. In some protocols, a message is sent back from the home node to the issuing processor (i.e., an early
read-exclusive or exclusive reply before invalidationsare acknowledged) to signal that the writeis serialized
with respect to other writes to the same location; this message may be used to denote the completion of the
writewith respect to theissuing processor. Similar to read requests, transient cases may lead to awriterequest
traversing the above paths more than once before it completes. In addition, the processor that issuesthe write
request detects the completion of the write only after receiving the appropriate reply messages.

Given the above mapping between abstract and real events, theimplementation is considered to be correct
if the order among the real eventsis consistent with the order imposed by the specification among the abstract
events. The aboveisasufficient and not a necessary condition since an implementation is considered correct
aslong as it appears as if the specification is upheld (i.e., it provides the same results as the specification).
However, given the aggressive nature of the specifications developed in Chapter 4, all the implementations
we consider satisfy the sufficient condition.

5.3.2 Correctness Issuesfor Cache Coherence Protocols

This section describes the issues related to correctly implementing a cache coherence protocol. Figure 5.8
presents aformal set of conditions, based on the abstraction framework developed in Chapter 4, that a cache
coherence protocol must satisfy. These conditionsconstitutea strict subset of, and are common across (except
for a more selective termination or coherence requirement in some specifications), the model specifications
presented in Chapter 4. Picking a specific set of common conditions to represent the specification for
the cache coherence protocol can be somewhat arbitrary. We chose the common subset by excluding the
following: conditionsthat restrict ordering based on the program order rel ation (which eliminatestheinitiation
condition for writes, the uniprocessor dependence condition, and the multiprocessor dependence chains), the
reach condition, and the atomicity condition for read-modify-write operations. We believe that this subset
formally captures the intuitive correctness requirements for a cache coherence protocol. Condition5.1isa
straightforward trandation of the conditionsin Figure 5.8 from abstract events to physical events based on
the rel ationship described in the previous section.
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Condition 5.1: Implementation Conditions for a Cache Coherence Protocol

Thefollowing conditions must be satisfied by the cache coherence protocol:

(a) Termination Condition for Writes: Every write issued by a processor eventually completes (i.e., within a
finite time) with respect to all processors.

(b) Return Value for Read Operations: A read operation by P; returns a value that satisfies the following
conditions. Below, we assumethe read and write operations areto the sasme address. If thereis awrite operation
issued by P; that has not yet completed with respect to P; before the read completes, then the value returned
by the read must be from the last such write that has been issued by P;. Otherwise, the value returned by the
read must be from the latest write (from any processor) that has completed with respect to P; before the read
completes. If there are no writes that satisfy either of the above two categories, then the read must return the
initial value of the location.

(c) Coherence Requirement: Writes to the same address complete in the same order with respect to every
Processor.

Conditions (a) and (c) above may be restricted to only a subset of the write operations.

The termination and coherence requirements are especially relevant to systems that replicate datathrough
caching. The termination condition requires an issued write to eventually appear in the completion order
with respect to every processor. Furthermore, our specification framework implicitly requires each issued
writeto appear at most once in the completion order with respect to agiven processor. The above constraints
imply that each issued write appears exactly once and only once in the compl etion order with respect to each
processor. The coherence requirement further requires that writes to the same address complete in the same
order with respect to every processor. Finally, the value condition constrainsthe value that aread must return.

The remaining part of this section presents implementation techniques for satisfying the restrictions
outlined by Condition 5.1 above. We begin by discussing implementation techniques for satisfying the
value condition and coherence requirement. We next discuss the importance of supporting the coherence
requirement and issuesthat ariseif thisconditionisnot supportedfor al writes. Wefinally describetechniques
for satisfying thetermination condition. Themoresubtleissuesin correctly implementing acoherenceprotocol

(e.g., transient cases, cross checking, maintai ning point-to-point order, etc.) are described in Appendix K.

Supporting the Value Condition and Coherence Requirement

This section presentsafew different techniquesfor supporting the val ue conditionand coherence requirement.
There are a number of subtle issues in a cache coherence protocol for correctly supporting the above two
conditionsthat are covered in Appendix K.

The simplest way of supportingthe coherence requirement isto serialize writesto the same location at the
current owner. Thisserializationisused to ensurethat writes to the same location compl ete in the same order
with respect to every processor. In atypical invalidation-based protocol, the owner may be either theissuing
processor’s cache hierarchy, the memory at the home node, or another processor’s cache; the read-exclusive
or exclusive reply typicaly signals theissuing processor that itswriteis serialized. In asimple update-based
protocol, the memory at the home node is the only possible owner; the update reply typically signas the
serialization in this case.

One of the key aspects in supporting the value and coherence requirements is to correctly dea with
outgoing and incoming requests at a processor that already has a pending write to that location. Consider an
invalidation-based coherence protocol with awrite buffer and a single level write-back cache per processor.
We consider two different implementationsbelow. In thefirst implementation, an exclusive or read-exclusive
request is issued to the memory system and the pending write remains in the write buffer until the cache
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obtains exclusive ownership for the line. Consider subseguent operations to this cache line by the issuing
processor while the original writeis pending. A subsequent writeis simply queued in the write buffer; the
write can be merged or coalesced with the pending write. Since an exclusive copy of the line has already
been reguested, no new requests are generated for the memory system. A subsequent read must return the
value of the latest write to the same address from the write buffer if any such write exists. In case of amatch,
the system may support forwarding or may simply stall the read until the conflicting writes are retired from
the write buffer. Requests from other processors destined to this cache are handled in the usua way. The
value condition is satisfied because pending writes are only visible to the issuing processor; this is because
the value of the write is not placed in the cache until after the write is serialized at the owner. Appendix K
describes the message orderings between incoming invalidate requests and read or read-exclusive repliesthat
may be important to maintain especially within the cache hierarchy.

Notethat from thetime thewritemiss request isissued by P; tothetimethewriteis seriaized with respect
to other writes to the same location, conflicting writes from other processors that are serialized and complete
with respect P; are actually not visible to P;. Therefore, reads from P; may never return the value of such
writes since they instead return the value of P;’s outstanding write.

The second implementation differs from the implementation above by allowing the write to be retired
and the write data to be written to the cache while the write is ill pending (similar to the lockup-free
implementation described in Section 5.2.3). Thisimplementation istrickier since we have to ensure that the
value of a pending write is visible to its own processor and yet disallow other processors from observing
the value placed in the cache. Furthermore, the data placed in the cache must be appropriately merged with
the reply data that returns in response to the write (in the case of a read-exclusive reply). Mechanisms for
achieving the above functionality were discussed in the context of lockup-free caches in Section 5.2.3. For
instance, whilethelineis pending, incoming read or read-exclusive requestsare either delayed or turned back
with anegative acknowledgereply. Similarly, incoming invalidate requestsare serviced by changing the state
of the line from pending clean to pending, but do not get rid of the values in the cache line corresponding to
pending writes. Designs such as DASH [LLG*90] use a hybrid scheme that isamerge of the two techniques
discussed above. In DASH, a write updates the write through first level cache immediately (similar to the
second technique),'® but the update to the second level write back cache is delayed by the write buffer until
ownership isgranted (as in thefirst technique).

Appendix M considers implementation issues for supporting the value condition and coherence require-
ment in update-based designs.

Importance of Upholding the Coherence Requirement

While the system-centric model s discussed in thisthesis impose the coherence requirement on all writes, the
programmer-centric models relax this condition by imposing it on only a subset of the write operations (i.e.,
competing writesfor PL1 and PL 2, and non-loop and non-sync writesfor PL3). Whileit may seem beneficia
to exploit the above relaxation, this section describes the several advantages of providing coherence for al
writes in the context of hardware shared-memory implementations.

The primary reason for providing coherence is to simplify the implementation. Consider the sufficient

13pealing with awrite through cache is simpler than dealing with write back caches becauseit is aright to invalidate or replace the
line even before the write to the line is serialized. In addition, there are no incoming read or read-exclusive requests.
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Figure5.9: Updates without enforcing the coherence requirement.

conditions for satisfying the PL1 model shown in Figure 4.14 in the previous chapter, with the coherence
requirement only imposed among competing writes. Nevertheless, it turnsout that satisfying constraintssuch
as the uniprocessor dependence condition (of the form W1 % W2) or multiprocessor dependence chain (of
the form Wc <2~ Rc 7% W) is easier if we guarantee coherence among all writes. For example, for the
uniprocessor dependence condition, enforcing W1(i) — W2(i) for dl i is much simpler if the coherence
requirement is upheld for the two writes. The same holds for the constraints imposed by the atomicity
condition for read-modify-write operations (Condition 4.7). Finaly, upholding the coherence requirement
for al writes can be done quite efficiently in the context of hardware cache-coherent implementations. As
we will see in Section 5.3.5, the simplest implementations for keeping track of outstanding invalidation or
update requests inherently satisfy the coherence requirement for all writes by alowing only a single write to
have outstanding coherence transactions.

The second reason for enforcing the coherence requirement for all writesisto providea sensible semantics
for programs that are not properly-labeled. Figure 5.9 illustrates an update-based coherence protocol which
does not satisfy the coherence requirement for all writes. Assume location A is initialized to the value 0,
P1 and P2 both maintain copies of thislocation, and the home for A resides on athird node. The example
shows both P1 and P2 writing to location A. Each processor updatesits own cache and sends update requests
to other copies. If the coherence requirement is not upheld for the two writes, it is possible for the copy at
P2 to transition from 0 to 2 to 1 while the copy a memory and at P1 transition from O to 1 to 2, allowing
P1 and P2 to permanently observe different values for location A. The semantics is even more intractable if
P2 replaces its cache copy, making the copy at memory visibleto P2. In thisscenario, the value of A visible
to P2 transitionsfrom 0 to 2 to 1 and back to 2, making it appear as if P2'swrite occurred more than once.
Without maintai ning acomplete copy of memory at each node, it isvirtually impossibleto alleviatethe above
behavior caused by replacements unless the coherence requirement isupheld for all writes.

Migrating a processto adifferent processor can present similar problems. Consider migrating the process
at P2 to either P1 or the home node. Again, the process can observe the effect of its write more than once,
with the value transitioning from 0 to 2 to 1 while the processis on P2 and then transitioning back to 2 after
it is migrated. In fact, indefinitely migrating a process among different processors can lead to the process
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observing the effect of a single write infinitely many times. Furthermore, even maintaining a full copy of
memory does not solve the problems caused by migration. Therefore, supporting the coherence requirement
on al writesis worthwhileunless designersare willingto limit an implementation to only executing properly-
labeled programs. Even though this limitation is imposed by severa software-supported shared-memory
implementations (see Section 5.6), hardware implementations are often required to support a larger set of
programming styles.

Supporting the Termination Condition

The termination condition requiresawrite that isissued to eventually complete with respect to all processors,
thus ensuring all processors will eventually observe the effect of a given write.!* For some specifications
(eg., RCsc, RCpc, and the sufficient conditions for PL1, PL2, and PL3), the termination condition is
imposed on only a subset of the write operations (i.e., competing writes).!> A number of software-supported
shared-memory implementations (see Section 5.6) benefit from this relaxation. However, most hardware
cache-coherent implementations end up inherently ensuring the termination conditionfor al write operations.

To satisfy the termination condition, an implementation must ensure that a write eventualy affects all
stale copies in the system. A designer must carefully consider places in a design where the servicing of a
writeis delayed either due to queueing or dueto arbitration (e.g., if reads have priority over writes) to ensure
that the write operations will eventually get serviced. Furthermore, the implementation cannot depend on
the arrival of new operationsto trigger the completion of previouswrite operations. For example, a merging
write buffer that delayswrite operationsin order to increase the window of opportunity for merging may need
to periodically flush the write operationsin the buffer. Similarly, incoming buffers within a cache hierarchy
must ensure queued invalidate and update requests will eventually get serviced.

Appendix H describes a more aggressive form of the termination condition for the PL models, along with
itsimplementation implications.

5.3.3 Supportingthelnitiation and Uniprocessor Dependence Conditions

The initiation and uniprocessor dependence conditions interact closely to maintain the intuitive notion of
uniprocessor data dependence; i.e., to ensure that the “effect” of a processor’s conflicting read and write
operations are consistent with program order. A simple way to ensure thisisto require conflicting operations
from the same processor to completein program order. Thus, given conflicting operations from P;, R 2% W
implies Rini(i) == Winie(i) and R(i) =2 W(i), W1 2% W2 implies W1,,i:(i) == W2;,;,(i) and
W1() =2 wW2(j) for al j,® and W 2% Rimplies Wiy, (i) —= Rini(i) and W(i) — R(i). Note that the
initiation and uniprocessor dependence conditionsdo not impose any ordering constraintson two readsto the
same location.

Except for the IBM-370 model, the other model s discussed in thisthesis relax the above constraintsin the
case of W 22 R by only requiring W;,i:(i) == Rins(i) (and not W(i) == R(i)) to hold. This relaxation

14The termination conditionimplicitly dependson the uniprocessor correctness condition (Condition 4.1 in Chapter 4) which requires
every write in the programto beissued (i.e., the W, (i) sub-operation for every write must appear in the execution order).

B5For some asynchronousalgorithms, enforcing that all writes will eventually become visible to all processors may be important for
convergence. This can be guaranteed by periodically flushing any writes whose completion has been delayed by the system.

18| n an implementation that maintains the coherence requirement for all writes, it is sufficient to ensure W1(i) AN W2(i) sincethe
coherence requirement will then ensure W1(j) =z W2(j) for al j.
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allows a processor to read the value of its own write before the write completes with respect to it. Even
though it may seem that allowing aread R that is after a conflicting write W in program order to complete
before the write may cause a possible violation of uniprocessor data dependence, the initiation condition still
requires W;,,;+(i) e, R;.::(1) and aong with the value condition, the read is guaranteed to return the value
of W (or alater conflicting writethat is between W and R in program order). Therefore, theread till seesthe
effect of the last conflicting writethat is beforeit in program order.

Techniques for satisfying theinitiationand uniprocessor dependence conditionsare well understood since
similar conditions must be maintained in uniprocessors. A conservative way to satisfy the conditionsis to
delay issuing an operation until the previous conflicting operation in program order completes. Delaying an
operation does not necessarily require the processor to be stalled; read and write buffers may be used for this
purpose. Below, we discuss the implementation techniques for supporting the required orders in more detail .

Given a conflicting read followed by awrite, the system must disallow the read to return the value of the
write by ensuring the read compl etes before the write. Processors with blocking reads inherently satisfy the
above condition. A more efficient technique may be to delay the completion of the write without stalling the
processor. For example, the write may be placed in the write buffer, or may be retired into a lockup-free
cache, but the sending of the exclusive or read-exclusive request may be delayed until the read completes.*’
In some protocols, it may be possible to issue the exclusive or read-exclusive request for the line before
the read completes; this typically requires a guarantee that the read will complete without retries and that
point-to-point order is maintai ned between the two requests. Such optimizationsare more difficult to support
in protocols that can force the read to retry (e.g., through a negative acknowledgement reply). For example,
if thewriteisdelayed in awritebuffer, it isimportant for aread that isbeing retried to unconditionally bypass
the write buffer (i.e., not forward the value of the write). A similar precaution applies to implementations
that do an early retire of the write into the cache. Retrying the read from alower level in the hierarchy can
eliminate some of these issues. Finaly, the presence of retries makes it difficult to correctly implement the
optimization of issuing the exclusive request before the read compl etes since point-to-point order no longer
inherently translates to the correct compl etion order.*®

For two conflicting writes in program order, the simple approach is to delay the servicing of the second
write until the first write completes with respect to the issuing processor. Again, this does not necessarily
imply a processor stall since the second write may be delayed in a buffer or may be retired to the cache
and merged when the reply for the first write arrives (as discussed in Section 5.2.3). Retiring the write to
the cache is more complex for update-based schemes or write through invalidation-based schemes since the
second write generates a new reguest to the memory system which may get out of order with respect to the
first write's request either if point-to-point order is not maintained or if the protocol can force the first write
to be retried. For protocols that enforce the coherence requirement for all writes, ensuring that the writes
completein program order with respect to theissuing processor automatically ensures that thewrites compl ete
in program order with respect to other processors. As discussed in Section 5.3.2, thisis one of the ways in
which enforcing the coherence requirement on all writes simplifiesthe implementation.

Finally, in the case of a write followed by a conflicting read in program order, only the IBM-370 model

17In protocols that do an early retiring of the write valuesinto the cache, an exclusive or read-exclusive request caused by any write
that lies in the same cache line as the read (i.e., even if the write and read do not conflict) may also need to be delayed until the read
completes.

18For example, to maintain the correct order, the protocol may need to ensure that the write request will also be forced to retry if the
previousread request to the same line is retried (by keeping additional state at the home node).
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Figure5.10: Example showing interaction between the various conditions.

requires the read to complete after the write completes with respect to the issuing processor. The techniques
described above for ensuring in-order completion of conflicting requests are applicablein this case as well.

Maintaining the initiation and uniprocessor dependence conditions has specia implications for systems
with out-of-order issue processors. This is because the processor can continue issuing memory operations
even if aprevious memory operation’saddress, or vaue in case of awrite, has not yet been computed. The
conservative approach isto treat an unknown address as potentially matching addresses of future reads and
writes. In case of a read operation with an unknown address, the completion of future write operations
is delayed until at least the read’s address is resolved. In case of a write with an unresolved address, the
completion of future read and write operations is delayed for the address to be resolved. Finaly, in case of
an unresolved value for a write, future read and write operations that conflict with the write are held back.
Section 5.4.3 describes an optimization in the case of an unresolved write address, whereby a following read
isalowed to be speculatively serviced and is retried (through a roll-back mechanism) if the write's address
turns out to match that of the read.

Finally, aswe will seein Section 5.3.5, enforcing the multiprocessor dependence chainsin stricter models
such as SC, PC, or TSO ends up inherently satisfying the initiation and uniprocessor dependence conditions.
Therefore, no additiona mechanisms are needed in such implementations.

5.34 Interaction between Value, Coherence, Initiation, and Uniprocessor Depen-
dence Conditions

Thereisasubtleinteraction between the value, coherence, initiation, and uniprocessor dependence conditions
when all of them are to be satisfied by a set of operations.’® Understanding this interaction providesintuition
for the form of the value condition and the exclusion (in most models) of W 2% R from the uniprocessor
dependence condition.

Consider the code segment in Figure5.10. Both P1 and P2 writeto location A and then read thislocation.
Assumelocation A isinitializedto 0, and each processor caches a clean copy. Let W1 and R1 denote thewrite
and read on P1, and W2 and R2 the operations on P2. Consider W1 and W2 being issued at approximately
the same time. Figure 5.11 depicts this scenario in two different implementations, both with write-back
caches and an invalidation-based coherence scheme. A oneword line sizeis assumed for simplicity. In both
implementations, thewriterequest leadsto amisson aclean line. Theimplementationin Figure5.11(a) delays
thewritein the write buffer until the exclusive request is satisfied, whilethe implementationin Figure 5.11(b)
allowsthewritetoimmediately retireinto the cachewith the corresponding cachelineremainingin the pending
state for the duration of the miss. These correspond to thetwo implementations discussed in Section 5.3.2 for

19This interaction was described first in a revision to the release consistency paper [GGH93b], and also in a later technical re-
port [GAGt 93].
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Figure5.11: Simultaneous write operations.

supporting the coherence and value conditions. For the traditional notion of data dependences to be satisfied,
the read on each processor must return the value of its own write on A or awritethat completes after its own
write. Thus, in our example code segment, it is safe for the reads to return the val ue of their own processor’s
write while the exclusive request is outstanding. The two key questions that arise are: (a) at what point in
time can we consider a write complete with respect to itsissuing processor? and (b) can a subsequent read
(eg., Rl or R2) return the value of its own processor’s write and compl ete before the write completes with
respect to that processor?

First consider the question about compl etion of a write with respect to the issuing processor. Without the
coherence requirement, a write can be considered complete with respect to its own processor immediately
after it issued. However, pinpointing thisevent ismore subtlewhen the coherence requirement isimposed on
apair of writes. The coherence requirement requires writesto the same location to compl etein the same order
with respect to all processors: either W1(i) == W2(i), or W2(i) == W1(i), for al i. If the writeis assumed
to complete with respect to its own processor as soon asit isissued (i.e., beforeit is serialized with respect to
other writes to the same location), then the compl etion events with respect to the issuing processors, W1(1)
and W2(2), would be considered to occur before either W1(2) and W2(1) which are the completion events
with respect to the other processor. This clearly violates the coherence requirement. The above example
motivates why the completion event for awrite with respect to its own processor is related to the reception
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of theexclusive or read-exclusive reply, which signalsthat the write has been serialized with respect to other
writesto the same location.

Next consider the question about a read returning the value of its own processor’s write before the write
completes with respect to that processor. This optimizationis uninteresting for modelsthat do not impose the
coherence reguirement on a given write since, as we discussed above, the write can be considered compl ete
with respect to its own processor immediately after it isissued. Therefore, the optimization only applies
to models that impose the coherence requirement on the given write. The optimization can be supported
in either implementation depicted in Figure 5.11; the implementation on the top can forward the value
from the write buffer, while the implementation on the bottom can forward the value from the cache. The
read-forwarding optimization is not safe for every memory model, however. Referring back to the example
in Figure 5.10, consider a model with a strict uniprocessor dependence condition which would require
W1(1) =% R1(1) and W2(2) =% R2(2). If the model also imposes the coherence requirement, either
W1(2) 2% W2(2) 2% R2(2) or W2(1) 2% W1(1) =% R1(1) must hold in any execution of the code. To
ensure the above, theimplementation must disallow aread to return the value of itsown writeuntil thewriteis
serialized. The need to delay the read arises from the subtleinteraction of theinitiation, value, coherence, and
uniprocessor dependence conditions: aread must return the value of itsown processor’swrite or alater write
in the execution order (initiation and value condition); the read cannot complete (i.e., return a value) until
the conflicting write that precedes it in program order completes with respect to this processor (strict form
of the uniprocessor dependence condition); and the write is considered complete with respect to itsissuing
processor after it has been serialized with respect to other writes to the same location (indirectly imposed by
the coherence requirement).

Except for the IBM-370 model, all other models described in thisthesis safely alow the read forwarding
optimization by relaxing the uni processor dependence condition through the elimination of the W(i) == R(i)
requirement given W 2= R. Therefore, referring back to the example in Figure 5.10, execution orders such
asR1(1) =% R2(2) =% Wi1(1) =% wi(2) =% W2(1) =% W2(2) are allowed. Note that the coherence
requirement is still satisfied. Furthermore, even though the reads complete before the writes in the above
execution order, the initiation and value conditions still maintain the traditional notion of data dependence
by requiring R1 and R2 to return the value of their own processor’s write (i.e., outcome of (u,v)=(1,2)).
The subtle interaction among the conditionsis broken by the following two things: (&) the relaxed form of
the uniprocessor dependence condition allows a read to complete before a conflicting write that precedes it
in program order, and (b) the value condition disassociates the visibility and completion events for writes,
allowing aread toreturn the value of itsown processor’ swrite before the write compl etes. Switching between
the strict and relaxed versions of the uniprocessor dependence condition affects the semantics of several of
the models: the IBM-370 model depends on the strict version, while the TSO, PSO, PC, RCsc, RCpc, and
RMO models depend on the relaxed version. For example, the program segments shown in Figure 2.14 in
Chapter 2 distinguishthe IBM-370 and the TSO (or PC) models based on whether aread isallowed to return
thevalue of its processor’'swrite early.

5.3.5 Supporting the Multiprocessor Dependence Chains

The multiprocessor dependence chainsrepresent the most distinctiveaspect of amemory model specification.
Intuitively, these chains capture the orders imposed on pairs of conflicting operations based on the relative
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Figure 5.12: Multiprocessor dependence chains in the SC specification.

program and conflict ordersof other operations. Thissection describestherel evant mechanismsfor supporting
multiprocessor dependence chains, including mechanisms for providing the ordering information to the
hardware (e.g., through fences or operation labels), for keeping track of outstanding operations, and for
enforcing the appropriate order among operations.°

Much of the discussion and examples in the following sections pertain to the SC and PL1 specifications
which represent the strict and rel axed sides of the spectrum. For easier reference, Figures5.12 and 5.13 show
the isolated multiprocessor dependence chains for these two specifications.

Overview of Implementing Multiprocessor Dependence Chains

Multiprocessor dependence chains comprise of specific program and conflict ordersthat impose an execution
order between the conflicting pair of operations at the beginning and end of the chain. In our specification
notation, most of the relevant program order and conflict order arcsthat constitutethese chainsare represented
by the 222 and <22 relations, respectively. For implementation purposes, it is useful to separate the
multi processor dependence chains into three different categories:

1. Chainsof theformW == R 2% Ror W == R 2% W consisting of three operations to the same
location.

2. Chainsthat begin with a == and do not contain conflict orders of theform R == W =% R.

3. Chainsthat begin with a—= or contain conflict orders of theformR —— W - R.

The above categories do not directly match the way the chains are separated in the model specifications.
For example, the second chain representation in the specification for SC can fall in either the second or the
third category above depending on the presence of conflict orders of theformR =~ W =% R.

2Even though the reach relation appears as part of the multiprocessor dependence chains (through =9 ) in system-centric models
such as RCsc, we postponethe discussion of this relation until Section 5.3.6.
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Figure5.14: Examples for the three categories of multiprocessor dependence chains.

Figure 5.14 provides examples of the three multiprocessor dependence chain categories. The disallowed
outcomes assume the SC specification, with all locations initially 0. The first two categories of chains
can be satisfied by enforcing specific program orders. The third category of chains aso require enforcing
multiple-copy atomicity on some writes.

The first category is of the form W == R 22 Y, where all three operations are to the same location.
Assume R and Y are issued by P;. W =% R dready implies W(i) == R(i), i.e., the write completes
with respect to P; before the read completes. If Y is a write, the required order, W(j) == Y(j) for all j,
is automatically enforced by the combination of the uniprocessor dependence condition and the coherence
requirement (i.e., if the implementation enforces this requirement between W and Y). If Y is aread, the
required order, W(i) — Y (i), can betrivialy satisfied by forcing R and Y to completein program order with
respect to P;, i.e., R(i) == Y(i). Referring to the example in Figure 5.14(a), this correspond to maintaining
program order between the two reads on P2. In arelaxed model such as PL1, program order between reads
to the same location needsto be enforced only if thefirst read isa competing read.

Figures 5.14(b) and (c) provide examples of the second category of chains. A simple way to satisfy such
chainsisto conservatively enforce the relevant program orders. Consider the SC specification, for example.
For every A “2% B inthe chain, theimplementation can ensure A(i) == B(j) for al i,j by delaying any sub-
operations of B until al sub-operation of A have completed. Given X and Y are thefirst and last operations
in the chain, maintaining the strict execution order at every point in the chain enforces X (i) — Y (j) for
al i,j. This conservatively satisfies the specification requirement of X(i) == Y (i) for al i. In fact, such
an implementation satisfies conservative specification styles such as those presented for SC in Figure 4.6 of
Chapter 4.

Satisfying the third category of chains requires extra ordering restrictions beyond maintaining program
order since these chains expose the multiple-copy behavior in an implementation. Consider the example in
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Figure 5.14(d). We will use the statement |abel s to uniquely identify operations; e.g., W1 refersto thewrite
on P1. Given an execution with the conflict orders shown in Figure 5.14(d), the SC specification requires
W,1(3) =% Ry3(3) to be enforced. The conflict orders already imply W,1(2) == R.2(2) and Wj,(3) =~
R.3(3). Maintaining the program order among operations on P2 and P3 would enforce R,2(2) — W»(j)
for all j and R,3(3) — Ry3(3). However, maintaining the program order isinsufficient for disallowing the
outcome (u,v,w)=(1,1,0) since it allows Ry3(3) == W,1(3).

The third category of chains can be enforced by ensuring that certain writes appear atomic with respect
to multiple copies®> A simple mechanism to achieve this is to require a write to complete with respect
to al other processors before allowing a conflicting read from another processor to return the value of this
write. Referring to Figure5.14(d), thisrestriction ensures W, 1 (i) == R,2(2) fori=(2,3). Assuming program
order is maintained on P2 and P3, the atomicity restriction enforces W,1(i) = Ry3(3) for i=(2,3), which
conservatively satisfies the execution order constraints of the SC specification. In general, the atomicity
constraint must be enforced for a write that starts a chain with a conflict order or a write that is part of a
conflict order of theform R ==~ W —% R (e.g., thewrite on P3in Figure 5.14(€)). In practice, satisfying
the SC specification requires enforcing this requirement for all writes, while the PL1 specification limitsthis
requirement to competing writes only.

An aternative mechanism for enforcing atomicity is inspired by the conditions Dubois and Scheurich
proposed for satisfying SC (see Sections 2.3 and 4.1.3), whereby the program order from aread to afollowing
operation is enforced by delaying the latter operation for both the read to complete and for the write whose
valueisread to complete with respect to all other processors, Therefore, givenW == R 22 Y inachain, the
above requirement enforces W(i) — Y (j) for al i,j except for i equal to W’s issuing processor. Compared
to the previous mechanism, the delay for the write W to complete simply occurs after, instead of before, the
read R. Referring back to the example in Figure 5.14(d), the above enforces W,1(i) == W,(j) for al i,]
except for i=1. Along with enforcing the program order on P3, thisimpliesW,1(i) — Ry3(3) for i=(2,3),
which conservatively satisfies the specification. Maintaining the program order conservatively past aread is
required for the following reads that appear in third category chains: (i) thefirst read (R) in the chain if the
chain beginswith W =% R, or (ii) the second read (R2) in aconflict order of theformR1 =~ W % R2.
In practice, the SC specification requires every R 22 Y to be enforced in the conservative way, while the
PL1 specification requires thisonly for Rc 2= Yc.

The following sections describe the various mechanisms for enforcing multiprocessor dependence chains
in more detail. The techniques described maintain the execution orders at al intermediate points in the
chain, and therefore do not exploit the aggressive form in which such chains are expressed in the specifica-
tions. Section 5.4.1 describes aternative techniques that satisfy the multiprocessor dependence chains more
aggressively.

Providing Ordering Information to the Hardware

To aggressively support multiprocessor dependence chains, the information about significant program orders
and write operations that must obey multiple-copy atomicity needs to be communicated to the underlying
system. Thisinformationisimplicit for models such as SC, TSO, and PC. In SC, for example, al program

2lSection 4.4 in Chapter 4 described indirect ways of supporting multiple-copy atomicity by transforming specific readsinto dummy
read-modify-write operations. This section describes more direct methods for supporting this type of atomicity.
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Table 5.2: How various models inherently convey ordering information.

Mechanism for Providing Information on
Modé Program Order | Multiple-Copy Atomicity
SC, TSO, PC - -
IBM-370, PSO, fence -
Alpha, RMO, PowerPC
WO, RCpc label -
RCsc, | abel |abel
PL1, PL2, PL3
TSO+, PSO+ fence -
PC+, PowerPC+ fence |abel
RCpc+ label, fence label

ordersare significant and every write must obey multiple-copy atomicity. For most relaxed models, however,
explicit information that is provided through operation | abel s or fences must somehow be explicitly commu-
nicated to the hardware. Table 5.2 shows how such information is inherently provided by various models
(models such as TSO+ are extensionsthat were defined in Section 4.4).

There are several waysto communicate the informationinherently provided by a model to the underlying
hardware:

e Theinformation may be conveyed in the form of an operation label encoded either in the type or the
address of a memory instruction.

¢ Theinformation may be conveyed through additional instructions, for example explicit fence instruc-
tions.

o Thedefault implicit ordering or implicit operation labels may be altered through special mode instruc-
tions.

The above mechanisms may be used in a hybrid manner. Furthermore, the way information is conveyed to
the hardware does not necessarily have to be the same as the way theinformation is inherently conveyed by
amemory model. For example, a program written for the PL1 memory model conveys information through
operation labels, yet the program may be executed on hardware that supportsexplicit fence instructions. This
requires the information provided by the labels to be transformed to explicit fences, similar to the way a
program is ported to different models (see Section 4.4). There may be some loss of information in such a
transformation, resulting in more conservative ordering constraints.

Piggybacking ordering information on top of theinstructiontype or address hasthe advantage of incurring
no additional instruction bandwidth. For example, consider the PL1 model which inherently distinguishes
between competing and non-competing operations. The first option is to encode the information in the
operation type by providing two flavors for every read and write memory instruction. Some operations,
such as special synchronization operations, may be represented with a single flavor corresponding to the
conservative label to reduce the number of extrainstructions. Nonetheless, this approach is only feasible if
the architecture provides sufficient additional opcode space. The second option is to encode the information
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in the effective virtual or physical address for a memory operation (using a double mapping technique), thus
aleviating the need for additional instruction flavors.??> Similar to the address-based approach discussed in
Section 3.5.2, the main disadvantage of the latter option is that the ordering information is not known until
after the effective virtua or physical addressis computed. This can limit some desirable optimizations. For
example, given two reads in program order, the hardware may have to delay issuing the second read until
the address of the first read has been computed since it would otherwise not know whether thefirst read isa
competing operation. In contrast, encoding the information as extra instruction flavors reveal s the operation
labels as soon astheinstructionisfetched. However, as mentioned above, using extrainstruction flavors may
not be practical in most architectures due to opcode space limitations.

Explicit fence instructions are an dternative to operation labels. The most common use of fence instruc-
tionsisto communicate the significance of specific program orders among instructionsthat occur before and
after the fence. One way to classify a fence instruction is by the set of previous operations and the set of
future operations that are related by the fence [GLL*90]. For example, the set of future operations may
be: (@) all future read and write operations (full fence); (b) al future write operations (write fence), (c) al
future read operations (read fence), and (d) only the operation immediately following the fence (immediate
fence). Likewise, the set of previous operations may be a combination of specific read and write operations
that precede the fence in program order. For example, for supporting PL1, an immediate fence may be
used to capture the program order from previous read and write operations to a competing write. A more
conservative way to convey thisprogram order isto use awrite fence before the competing write, which has
the side effect of aso imposing an order to the writes following the competing write; the use of conservative
fences obviously leads to aloss of information. Inimplementationsthat do not directly support explicit fence
instructions, achieving the functionality of a fence may require issuing a sequence of other instructions that
end up enforcing the desired operation ordering.?

The use of fences as described above is not suitable for distinguishing write operations that must appear
atomic with respect to multiple copies. There are several alternatives, however. The simplest is to provide
atomic behavior for al writes if amodd requiresit for any write. Alternatively, the third category chains
can be supported through the second technique described earlier in this section, whereby for some reads, the
program order from the read to a following operation is enforced by delaying the | atter operation for both the
read to complete and for the writewhose value isread to complete with respect to al processors; two flavors
of fences may be used, with one imposing the more conservative ordering. Finaly, a different mechanism
may be used to identify the writes that must appear atomic. Explicit fence instructions can theoretically be
used to directly provide equivalent information to operation labels. For example, afence instruction may be
used to logically identify the proceeding memory operation as a competing operation.>* However, we are not
aware of any systems that use fence instructionsin this manner.

The primary disadvantage of fence instructionsis the extra cost of the additional instructions especialy
in programs that require frequent use of fences. As mentioned in Section 4.4.1, porting a program written

2 A s an example of double mapping, consider two virtual addressesthat only differ in the high order bit being mapped to two physical
addresses that also only differ in the high order bit. This allows the hardware to treat the high order bit in the physical address as a
“flavor” bit to distinguish competing and non-competing operations. Of course, the size of both the virtual and physical address spaces
is effectively reduced.

ZFor example, delaying for previous writes to complete may require issuing a set number of dummy writes to flush previous writes
out of awrite buffer.

245ince a thread can be interrupted between the fence and the actual memory instruction, the implementation may need to save and
restore the presence of an unmatched fence on context switches (e.g., just like a condition code).
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for SC to an implementation with fences may require a fence instruction to be inserted between every pair
of shared memory operations; if we assume memory operations constitute 50% of al instructionsin the
origina program, the additional fence instructionswould constitute a 1.5 times increase in the total number
of instructions.

To dleviate theinefficiency of explicit fence instruction, an implementation may provide multiple modes
correspondingto different default orderings, ideally withthe ability to switch among modesthrough user-level
instructions.?® For example, an implementation that supportsthe RMO memory model through explicit fence
instructionsmay provide modes for supporting SC, TSO, and PSO aswell, where implicit fences areimposed
appropriately by the implementation to alleviate the need for inserting explicit fence instructions. The above
approach can be quite efficient for programs that do not require mode changes frequently.

Explicit modes can also be used to communicate default labels for operations that follow the explicit
mode instruction. For example, acouple of mode instructionsmay be used to switch between competing and
non-competing default labels for implementing a model such as PL1. This option has the advantage of not
requiring the extra instructions flavors that would be required to explicitly specify labels on a per operation
basis.

Operation labels or fences may be passed down by the processor to various|evels of the memory system.
In many cases, this information is consumed within the processor cache hierarchy. However, information
such aswhether awrite must appear atomic may need to be passed all the way down to the serialization point
at the home nodein some designs.

Keeping Track of Outstanding Memory Operations

Enforcing the appropriate program order and multiple-copy atomicity constraints regquires mechanisms to
keep track of outstanding memory operations. The following two sections describe techniques for tracking
the completion of individual memory operations as well as the completion of specific groups of memory
operations.

Completion of a Single Memory Operation The following describes mechanisms for detecting the com-
pletion of a given memory operation. For concreteness, we will assume an invalidation-based protocol with
single-level write back caches. Detecting the completion of a read operationistrivia sinceit issignaled by
theread reply. Therefore, the rest of this section focuses on write operations.

A writethat missesinits processor’s cache generates aread-exclusive or exclusiverequest to the memory
system. In response, the processor expects two logical replies from the memory system: (i) aread-exclusive
or exclusive reply (depending on whether the processor has the up-to-date data for the line) that signifies
exclusive ownership, and (ii) afinal acknowledgement reply to signify the compl etion of the writewith respect
to other processors. Detecting the completion of awrite with respect to other processors may in turn require
gathering invalidation acknowledgement messages from cached copies.

There are three important protocol design issues with respect to writes:

o when (i.e, how early) an acknowledgement reply can be sent back in response to an invaidation
request,

2The mode becomes part of the process state and must be saved/restored on context switches.
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o whether invalidation acknowledgements are gathered at the home node or at the requesting node, and

o whether the read-exclusive or exclusive reply may be sent to the requesting node before the write
is actually complete with respect to other processors (as a means to reduce the latency to the first
response), or whether thisreply must aways belogically piggybacked with the final acknowledgement
reply (delaying the response until the writeis complete).

The aboveissues are primarily relevant for writesto lineswith shared cache copies. For example, awriteto a
linethat isuncached or cached in exclusive mode at another node does not generate any explicit invalidation
messages; therefore, there are no invalidation acknowledgements and no latency benefit in separating the
read-exclusive or exclusive reply and the final acknowledgement into two messages.

First consider the option of early invalidation acknowledgements. For simplicity, we have been assuming
that an invalidation acknowledgement reply is sent back by a cache hierarchy after al stale copies in the
hierarchy are eliminated. However, virtualy all practical designs send back the acknowledgement as soon as
the invalidation request is placed in the cache hierarchy’s incoming queue. The above optimization clearly
changes the semantics of the acknowledgement: the early acknowledgement only signals that the write is
committed, but not necessarily completed, with respect to thetarget cache. Nevertheless, aswewill discussin
Section 5.4.1, the multiprocessor dependence chains and other memory model ordering constraints imposed
by a memory model can still be enforced in the same way as long as a few ordering constraints are imposed
among incoming writes after they are committed. For the purpose of this section, we continue to assume the
conservative approach.

Figure 5.15 illustrates some possible options with respect to where invalidation acknowledgements are
gathered and whether an exclusive reply is sent back possibly before the write is complete. Figure 5.15(a)
shows the option of gathering invalidation acknowledgements at the home along with a delayed exclusive
reply. In the scenario shown, P1 is the write requester that already has a clean copy, P2 also maintains a
clean copy of theline, and P3 isthe home node. The figure depicts the logical request and reply pathsin the
network as*R” and “ Q" respectively; the number besi de each message depictsthe sequenceintime. Because
the exclusive reply is delayed until invalidations are complete, this reply implicitly signals completion of
the write.?® Figure 5.15(b) shows the scenario where the exclusive reply is sent back as soon as the write
is seridized at the home. The eager exclusive reply reduces the latency for the first reply to the requester.
Nevertheless, afina invalidation acknowledgement reply is still sent later to notify the requesting processor
that all invalidationssent on behalf of thiswrite are complete; in cases where no invaidations are generated
from the home, the final invaidation acknowledgement is implicitly piggybacked with the exclusive reply.
The base cache coherence protocol for the Stanford FLASH [KOH™T94] supports both of the above modes
of operation.?” Note that the eager reply optimization isonly useful for the more relaxed models, especialy
those that allow multiple outstanding write operations; a strict model such as SC requires the processor to
wait for the writeto complete almost immediately anyway.

%|n designs that use early invalidation or update acknowledgements, the exclusive reply is considered delayed as long as it signals
the fact that the write is committed with respect to all processorseven though the write may not be complete yet.

ZIThere is a subtle protocol design issue with the above two options since an incoming reply to the home (i.e., invalidation acknow!-
edgement reply) may need to generate areply to the requester (i.e., either a delayed exclusive or afinal acknowledgement reply). This
violates the request-reply convention used in the protocol to avoid deadlock among network messages. The FLASH protocol dealswith
this by reserving sufficient resources upon reception of awrite request at the hometo later allow the sending of the reply to the requester
to be delayed in case the outgoing reply network queue at the homeisfull.
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(a) invalidation—ack to home, (b) invalidation—ack to home,
delayed exclusive reply eager exclusive reply

(c) invalidation—ack to requester

Figure 5.15: Protocol optionsfor awrite operation.
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Figure 5.15(c) showsthe aternative of gathering invalidation acknowledgements at the requesting node,
which is the option used in the Stanford DASH [LLG*90]. The invalidation acknowledgement from P2 is
directly forwarded to P1 instead of going through the home node, thus reducing the latency for notifying
the requester about the write completion. In this scenario, there is no distinction between a delayed versus
eager exclusivereply at the level of network messages; the requester node can support both modes by either
forwarding the exclusive reply to the processor immediately (eager) or gathering both the exclusive and the
acknowledgement replies before responding to the processor (delayed).

Detecting compl etion of writes requires maintaining a count of pending invalidation acknowledgements
for each outstanding write. The invalidation-ack count may reside either at the requester node or at the home
node, depending on where acknowledgements are gathered. The number of expected acknowledgements
is determined by the number of sharers for the line that is recorded at the home directory. In the FLASH
design, the invalidation count is kept within the directory entry associated with each memory line, alowing
the directory state and the count to be accessed in the same lookup. In the DASH design, the requester
is responsible for gathering acknowledgements and each requester maintains a limited number of counters
that are alocated to outstanding writes and accessed through an associative lookup. The humber of sharers
is communicated from the home to the requester node as part of the exclusive reply message (refer to
Figure5.15(c)); sincetheexclusivereply and theinvalidation acknowledgements may traverse different paths
inthe network, the requester must correctly deal with the reception of acknowledgements before the expected
number of acknowledgementsis known.

The choices of where to gather acknowledgements and whether to support eager or delayed exclusive
replieslead to trade-offsin complexity and performance. For example, gathering invalidation acknowledge-
ments at the requester can reduce the latency to detect the completion of a write (compare Figure 5.15(a)
or (b) with Figure 5.15(c)), which can be especially beneficial for strict models such as SC that cannot hide
the write latency. At the same time, gathering acknowledgements at the home can simplify the design. For
example, as we will discuss below, blocking the service of requests (e.g., by forcing a retry) to lines with
pending invalidations eliminates several corner cases in a coherence protocol. Gathering acknowledgements
at the home makes it easy to support this blocking functionality since all cache misses must first visit the
home node and the information on lines with pending invalidationsis readily available at the home.

Similar trade-offs arise for the choice between delayed or eager exclusive replies. Most commercia
processors expect only asinglereply to awritethat signalsboth ownership and completion (and &l so provides
the data for the line in case of a read-exclusive reply). The advantage of the eager exclusive reply is
that the processor or cache resources (e.g., write buffer entry) that are committed for pending writes are
relinquished earlier. However, the design becomes more challenging since the processor may assume the
write is complete as soon as the exclusive reply arrives. For correctness, the design must provide extra
functionality external to the processor to determine the actual completion of writes by keeping track of the
follow-on acknowledgements; this functionality is discussed in the next section.

Another key design issue that affects designs with eager exclusive replies is whether future read or
write requests from other processors can be serviced while a line has pending invalidations or updates due
to a previous write. By far the simplest solution is to disallow such requests from being serviced (eg.,
either through nacking or buffering). Protocols with delayed exclusive replies inherently satisfy the above
since the requester with the pending write does not receive ownership for the line until al invalidationsare
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Figure 5.16: Subtleinteraction caused by eager exclusive replies.

acknowledged and neither the home nor this requester can service new requests during the time the writeis
outstanding. The same is not necessarily true for protocolsthat support eager exclusive replies.

Figure5.16 shows an exampl e scenario with eager exclusivereplieswhere servicingawritewhilethereare
invalidations pending for aline can lead to complications. Consider the program segment in Figure 5.16(a),
with operationsto Flag labeled as competing under the PL1 model. A correct implementation of PL1 must
disallow the outcome (u=0). However, as we will show below, guaranteeing this requires extra support in
designs with eager exclusive replies. Assume the following conditions for the example in the figure: all
locationsareinitialized to zero, A and B are co-located within the same memory line, P1isthe homefor A/B,
P2 isthehomefor FLAG, and P3initially maintainsacopy of line A/B. Consider adesign with eager exclusive
replies whereby the protocol allows a future writeto be serviced even though there are pending invalidations
for aline. Figure 5.16(b) depicts the sequence of network messages corresponding to the scenario described
below. P1 attempts to write to A, leading to an invaidation request to be sent to P3's copy. Assume the
invalidation request is delayed on its path to P3, for example, due to previous messages that are congesting
this path. With eager exclusive replies, P1 obtains the line in exclusive mode before the invalidation is
acknowledged. Meanwhile, P2'swriteto B generates aread-exclusive request whichissent to P1. SinceP1's
cache already has ownership of line A/B, it can surrender ownership to P2 even though invalidations are still
pending for the line. At this point, if P2 assumes its writeto B is complete, it can proceed with its write to
Flag. Therefore, it ispossiblefor P3 to read the new value for Flag and proceed to read its own stale copy of
B with the value O all before the invalidation request from P1 reaches it. This execution clearly violatesthe
PL1 modd.

The problem in the above example arises because P2 receives a line in dirty state while there are
invalidations pending to that line due to a previous write, and P2 is neither aware of these invalidation nor
able to detect their completion. Consequently, in a design with eager exclusive replies, a write request to
a block with pending invalidations must be handled in one of two ways: (&) the write must be delayed (by
buffering or forcing retry) until the invalidations are complete, or (b) if the writeis serviced, the requesting
processor must be notified about the pending invalidations and must be later notified of their completion.
The second option leads to a more complex design since the system must maintain pointers to the new
requesters and notify them when the pending invalidations are complete. The first option & so has the added
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benefit of trivially satisfying the serialization of writesthat is necessary for supporting cache coherence (see
Section 5.3.2). Supporting the first option is simple in designs that gather invalidation acknowledgements
at the home since the home can easily deny service to requests to lines with pending invalidations. For
designs that gather acknowledgements at the requester, such asin DASH, it is the requester awaiting for the
invalidation acknowledgements that must nack new requests; it is aso important to delay the writing back of
the line to the home node while invalidations are pending since this could otherwise expose awindow for a
futurerequest to be serviced at the home even though there are pending invalidations. The abovefunctionality
is supported by the remote-access-cache (RAC) in DASH [LLG190].28

Delaying the service of read requests to a line with pending invalidations also simplifies the design,
especially for supporting the third category of multiprocessor chains where we must maintain the illusion of
multiple-copy atomicity.?® At the other extreme, aggressive designsthat attempt to allow both read and write
requests to be serviced while aline has pending invalidations can get quite complex. For example, consider
awrite W1 by P1 with pending invalidations, followed by a read by P2 that obtains a cached copy of the
line, followed by awrite W2 by P3 to the line. To service W2, we not only have to notify P3 of when W1
completes, but we also need to invalidate the copy at P2 and notify P3 of the completion of thisinvalidation
that is caused by its own write.

Update-based protocols are aso greatly ssimplified if we delay the service of write requests to a line that
has pending updates. Consider awrite W1 by P1 with pending updates followed by awrite W2 by P2 to the
same line. Unlike invalidation-based protocols, W1 does not eliminate the copies, and therefore W2 must
also send update requeststo these copies. Allowing simultaneous pending updates from multiplewritesto the
same line gets complicated because we must notify each requester on the completion of itsupdates. Thus, an
aggressivedesign would requirea counter per outstanding writein addition to sufficient tagging of the updates
and acknowledgements to identify the requesting processor (and appropriate counter). Thisismore feasible
ina DASH-like design where acknowledgements are gathered at the requesting node since acknowledgement
messages are aready forwarded to the appropriate node and counter. Another issuein update-based protocols
isthat it isdifficult to disallow aread from observing the new value of awrite that has outstanding updates,
the protocol inherently updates (i.e. providesthe new value to) copies in a hon-atomic manner. This makes
it more difficult to support the illusion of multiple-copy atomicity for writesin update-based protocols.

Completion of a Set of Memory Operations The significant program orders for a given model can be
represented by a directed acyclic graph with the nodes representing memory operations from the same
processor and the edges representing the partial orders among these operations. For any given memory
operation O, an ideal implementation would be capable of tracking the completion of the set of operations
that are ordered before O inthisgraph. It may beimpractical to maintain such level of detail for some relaxed
models, however. In what follows, we describe both conservative and aggressive techniques for keeping
track of the completion of various sets of operationsfor different models. Choosing the appropriatetechnique
inherently depends on the mechanisms used for enforcing program orders, which is the topic of the next
section. For purposes of this section, we assume ordering is enforced by delaying the issue of an operation

28The DASH design actually supports a hybrid version of the (a) and (b) solutions above. Requests from processors on a different
cluster than the original requester are rejected. However, requestsfrom other processorsin the same cluster are serviced sinceitissimple
to later inform them about the completion of theinvalidations.

PItis actually alright to return the old value of the location to aread while invalidations are pending, but this old value should not be
cached since it constitutes a stale copy.
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until the appropriate set of previous operations are complete.

Sequentia consistency is the simplest model to support because it imposes virtually a total order on
operations from the same processor. This implies at most one outstanding memory operation at any given
time. Therefore, the only information we need iswhether the previousread or write operation has completed.
ThelBM-370, TSO, and PC models are also quite simpleto support since they alow at most one outstanding
read and one outstanding write operation at any time. On a read, the implementation can delay the issue
of al future operations until the read completes (e.g., blocking read implementations trivially satisfy this);
this alleviates the need to explicitly check for previous reads. Thus, an operation needs to at most check for
completion of the previous write operation.

Unlike the models above, the PSO model allows more than a single write to be outstanding at any
given time. As with the TSO model, the implementation can delay the issue of all future operations on a
read. However, PSO still requires a mechanism to check for the completion of potentially multiple previous
writes. One option is to keep a count of outstanding writes at each processor which is incremented when
a read-exclusive or exclusive request is generated and is decremented on the corresponding exclusive or
acknowledgement reply (depending on whether exclusive replies are delayed or eager, respectively; the two
replies are piggybacked in the eager case if the home does not generate any remote invaidations).*® Some
implementations may not require an explicit counter. For example, implementations with a pending write
buffer may simply wait for all entriesin the buffer to be flushed as asign that previouswrites have compl eted.
This latter technique may not be applicable if the protocol supports eager exclusive replies; a processor or
cache hierarchy that expects a single reply to a write may deallocate entries associated with the write upon
receiving the eager exclusive reply even though invalidations may be pending.

The remaining modelsall alow multipleoutstanding read and writeoperations. The simplest set of models
to support are WO, Alpha, and PowerPC, because the primary mechanism they require isto sometimes delay
al future operations until al previous read and write operations are complete3! For implementations
with blocking reads, there is no need to explicitly keep track of read operations. A simple solution for
implementationsthat support multiple outstanding reads isto keep a combined count of outstanding read and
write operations at each processor. As with PSO, some implementations may not require an explicit count.
For example, mechanisms such as a read transaction buffer (see Section 5.2.3) that are already used to keep
track of outstanding reads may be sufficient for detecting the completion of previous reads. Writes may still
require an explicit count if the protocol implements eager exclusive replies.

Aggressive support for the RMO mode is a little more complex than the above. RMO provides four
types of fence operations that may be combined to selectively order previous reads or writes with respect
to future reads or writes. Therefore, an aggressive implementation must keep track of previous read and
write operations separately, e.g., by implementing separate counters for each. However, the main source of
complexity arises from the occasiona need to wait for previous operationsof onetypewithout delaying future
operations of the same type. This scenario arises whenever the combination of fences requires waiting for
previous reads without delaying future reads or waiting for previous writes without delaying future writes.

Consider the example in Figure 5.17 with a fence from previous writes to future reads; the arcs show the

30For designsthat use counters, the size of the counter sets an upper limit on the number of outstanding operationsfrom each processor.
A subtleissuearisesin designsthat support eager exclusivereplies: supporting = outstanding requests by the processor typically requires
a counter that can keep track of more than » requests because even though only » may be waiting on the exclusive reply there may be
more than n requests with pending invalidations.

31The Alphamodel also requires program order to be maintained between read operationsto the same address.
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Figure 5.17: Difficulty in aggressively supporting RMO.

ordering imposed by RMO. Assume the implementation provides a count of outstanding write operations,
and that thewriteto A ispending (i.e., count=1) when the fence instructionisissued. Thus, theread to C will
be delayed until the count reaches zero. The problem isthat writes past the fence, such as thewritesto D and
E, can be issued and can increment the count of outstanding writes before the write of A actually completes
(an analogous problem arises with the read-to-write fence). This raises two issues: (i) the read of C may be
unnecessarily delayed for the completion of future writes, and (ii) theoretically, the read of C may be delayed
indefinitely since the count may never reach zero if the processor continuoudly issues write operations that
missinitscache. One possiblesolutionto thelatter problemisto limit the number of writesthat can beissued
past the fence if there are any operations waiting for the count to reach zero; the degenerate case of limiting
the number of such writesto zero actually eliminatesissue (i) aswell. Nevertheless, both solutions constrain
orderings beyond the minimum imposed by RMO.

More aggressive implementations of RMO can involve undue complexity. For example, a design based
on counters requires multiple counters corresponding to intervals between fence operations. Request and
reply messages may &l so need to be tagged with the corresponding interval in order to distinguish the counter
that should be incremented or decremented. Referring back to the examplein Figure5.17, such an aggressive
design would use separate counters to keep track of the writes before and after the fence, allowing the read
of C to be delayed for only the writes before the fence. However, the performance gains from such an
implementation may not justify the extracomplexity especially if we expect fence operationsto beinfrequent.

Compared to RMO, achieving aggressive implementations for RCsc, RCpc, and the three PL models
can be even more challenging. These models exhibit the same asymmetric behavior as RMO of waiting for
previous operations of a certain type without necessarily delaying future operations of the same type. The
additional complexity arises from the further distinctions of read and write operations. For example, the
PL1 model (whichisthe simplest among these models) distinguishes between competing and non-competing
reads and writes, leading to four distinct types of operations.

Consider the program ordersimposed by PL 1: (a) acompeting read isordered before any future operations,
(b) a competing write is ordered after any previous operations, and () a competing write is ordered before
a competing read (the first two conditions already imply read-read, read-write, and write-write order among
competing operations). Condition (a) can be easily satisfied by delaying the issue of al future operations
after a competing read until the read is complete. Condition (b) is more difficult to support aggressively
since while a competing write is delayed for all previous operations, an implementation is allowed to issue
future non-competing reads and writes. An aggressive implementation based on counters would require
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multiple counters corresponding to intervals between competing writes (along with message tags to choose
the appropriate counter) so that operations before and after a competing write can be tracked by separate
counters. Similar to RMO, conservatively using a single counter would require limiting the number of future
operations that can be issued when an operation is waiting for the count to decrease to zero. Condition (c)
is not as difficult to support aggressively since there can at most be one competing write outstanding before
the competing read (future competing writes are delayed for the read by condition (a)). Therefore, we need
to only determine whether the previous competing write has completed. More conservative implementations
may use the same counter(s) as for condition (b) which impliesthat the competing read may be unnecessarily
delayed for previous non-competing operations as well.

The PL2 model requires dightly more aggressive support since it further distinguishes competing op-
erations into sync and non-sync categories (sync reads and writes are referred to as acquires and rel eases,
respectively). Support for acquires and releases is virtually anal ogous to the support for competing reads and
writes (i.e., conditions (a) and (b)) in PL1: an acquire is ordered before any future operations and a release
is ordered after any previous operations. The ordering among competing operations limits the number of
outstanding competing operations to a most one. Therefore, before issuing any competing operation, we
need to know whether the previous competing operation (read or write, sync or non-sync) has completed.®?

The PL3 modéd further distinguishes competing sync operationsinto loop and non-loop categories. The
important optimization in PL3 is that the order from a competing write to a competing read does not need to
be maintained if either thewriteisaloop write or theread isaloop read. One simplification may beto ignore
the distinction between sync and non-sync operations (i.e., treat hon-sync as sync) if non-sync operations
are known to be infrequent in the target programs. With this simplification, keeping track of outstanding
operations for PL3 is no more difficult than for PL1. In fact, since condition (c) of PL1 can be reduced to
only maintaining an order from a non-loop write to anon-loop read (which are likely to be less frequent than
loop reads and writes), less aggressive implementations of this condition may be tolerablein PL3.

There is often a latency associated with detecting the completion of previous memory operations. In
some designs, this may be as simple as waiting for the MSHRs (or alternatively the pending-write buffer)
corresponding to write operations to become empty, and the latency for the check may be quite small if there
are no outstanding writes. In other designs, the latency for detecting completion of previous writes may be
substantialy larger. For example, in designs with eager exclusive replies, the counter that keeps track of
outstanding writes may actually be external to the CPU chip. Therefore, checking for write completion may
involveflushing any outgoing buffersto ensure that the counter is properly incremented by all previouswrites
and then waiting for the count to reach zero. Even when there are no outstanding writes, determining that
the appropriate queues are flushed and checking the external count may take along time. While thislatency
may not be directly or fully visibleto the processor, it ultimately affects therate at which write operationsare
retired especially if the counter must be checked often. Therefore, it does not make sense to support eager
exclusive replies with externa counters if our goal is to efficiently support a model like SC. However, for
models that enforce program order |ess frequently, the benefit of eager exclusivereplies may easily outweigh
the higher latency to check an external counter.

32There isasubtleissue with respect to protocolswith eager replies for writes when we wait for competing non-syncwrites. Consider
the sequence of a non-competing write followed by a non-sync write to the line. An eager exclusive or read-exclusive reply to the
non-competing write may make the non-sync write hit in the cache. Nevertheless, we cannot assume the non-sync write is complete
since the invalidations sent on behalf of the non-competing write may still be outstanding. This issue does not arise for a sync write
(release) since the write inherently waits for all previouswrites to complete.
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There are anumber of aternativesfor decreasing the latency to detect the compl etion of writesin systems
with counters that are external to the processor core. One aternative is to actually propagate the final
acknowledgement replies al the way up the cache hierarchy so that mechanisms such as counters can be
placed closer to the processor core. The trade-off here is the extraincoming messages propagated within the
cache hierarchy. Another alternative is to keep an external counter but provide a continuous signa to the
processor core as to whether the count is zero. Once the processor flushes the appropriate internal queues,
it can check the signal after a specified bounded time (i.e., allowing enough time for any flushed requests to
reach the counter and for the signal to be adjusted). This can reduce the latency for checking the counter
sinceit aleviatesthe round trip latency of sending an external message to read the counter and is especially
effective for quickly detecting zero counts.

Mechanismsfor Enforcing Order

Enforcing the ordering imposed by multiprocessor dependence chains typically requires two different mech-
anisms: (i) a mechanism to maintain specific program orders among operations, and (ii) a mechanism to
maintain the illusion of multiple-copy atomicity for specific write operations. The first is required for all
types of multiprocessor dependence chains, whilethe second isonly required for the third category of chains.
This section describes various methods of supporting the above functionality.

Maintaining Program Order  The previous section described techniques for keeping track of the comple-
tion of memory operations. This information can be used to enforce the appropriate partial orders among
operationsfrom the same processor. Aswith other implementation aspects, conservatively enforcing program
ordering constraintsfor amodel can in some cases lead to significantly smpler designs. There are effectively
two ways to delay future operations for the appropriate set of previous operations. The simplest mechanism
isto stall the processor until the previous operations complete. However, thisleads to a conservative imple-
mentation for most relaxed models since all future memory and non-memory instructions are delayed while
the processor isstalled. Thealternativeisto issue memory operationsinto one or more buffers and to enforce
the appropriate ordering by controlling how operations are retired from these buffers. To enforce SC, for
example, a combined read and write buffer can maintain sufficient order by retiring operations one at atime
and waiting for each operation to complete before retiring the next operation. Buffers can play an important
rolein enforcing program orders since they allow the processor to proceed with futureinstructions.

Some implementations may use a hybrid of the above techniques. For example, consider supporting
the TSO (or IBM-370 or PC) modd in a design with blocking reads. As aresult of blocking reads, the
processor inherently maintains the program order from reads to future read and write operations by stalling
on every read until the read completes. To maintain the required order among write operations, we can use a
write buffer that delays retiring the write at its head until the previously retired write is complete. Thus, the
processor does not directly stall on write operations, and isonly stalled if it attemptsto issue awriteto afull
buffer. By avoiding processor stallsin thisway, much of the latency associated with write operations can be
hidden even though the design maintains strict program order among write operations. The above example
asoillustrateshow a conservative design choice, such as blocking reads, inherently enforces a number of the
required program ordering constraints.

Memory operation buffers can be effective in enforcing the program order requirements for more relaxed
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modelsas well. Consider the ordering of writesin the PSO model, for example. PSO allowswrite operations
to be reordered unless there is an explicit write fence between them. The processor can issue both write
operations and write fence operations into a write buffer. The write buffer can retire writes in a pipelined
fashion (i.e., without waiting for awrite to complete before i ssuing the next write) until awrite fence reaches
the head of the buffer. A writefence at the head of the buffer stalls the retiring of writes until al previously
retired writesare complete. Thishasthe effect of ordering al writes before the write fence with respect to all
writes after the write fence.

An analogous mechanism can be used for ordering writes in a model like PL1. In PL1, a competing
write must be ordered after any previous read or write operations. The processor can issue writesinto awrite
buffer. The buffer can retire writes in a pipelined fashion until a competing write reaches the head of the
buffer. A competing write at the head of the buffer stalls the retiring of writes until all previous read and
write operations are complete. Again, note that delaying a competing write for previous operations does not
involve stalling the processor but is achieved through controlling the retiring of writes from the write buffer.
The above isa conservative implementation of PL1 since writes after (in program order) the competing write
may be unnecessarily delayed for the writes before the competing write. A more aggressive implementation
requires a substantially more complicated buffering structure since the competing write must be delayed
without delaying future non-competing writes;*® as discussed in the previous section, detecting completion
of operations also becomes more complex since we must separately keep track of operations before and after
a competing write.

The above has mainly discussed delaying a single operation or a select set of future operations for a set
of previous operations. Another common form of order is delaying future operations for a single previous
operation. Thistype of order isa so quitesimpleto support with buffers. Consider delaying future operations
for a competing read in PL1. After a competing read is retired from the head of the buffer, retiring the
remaining operationsin the buffer can be delayed until the competing read is complete.

For most models, conservative design choices aleviate the need for extra mechanisms to enforce the
appropriate program orders. As discussed before, blocking reads automatically maintain the order from
reads to future operations. Similarly, blocking caches or strict FIFO queues can aso automaticaly enforce
many of the required program orders. Another example, common in dynamically scheduled processors that
support precise exceptions, isthe conservative delaying of write operationsuntil al previousinstructionsand
operations are complete (rolling back write operations would be too complex). In an analogous way, models
that impose strict program ordering constraints aleviate the need for extremely aggressive implementations.
For example, a lockup-free cache design for models such as IBM-370, TSO, or PSO needs to support a
maximum of one read and one write operation outstanding at any given time.

Theimplementations described above enforcetherequired program ordering constraintsat theearly stages
inthe memory hierarchy. Oncethese orders are enforced, the lower components of the memory hierarchy can
safely exploit optimizationsthat lead to reordering of memory operations to different lines (as discussed in
the previous sections, some ordering requirements may still need to be guaranteed for operationsto the same
location or line). Therefore, the remaining part of the cache hierarchy on the outgoing path, the network, the
memory system, and theincoming path in the cache hierarchy can all exploit reordering optimizationsamong
messages to distinct memory lines.

3The conservative implementation is analogous to placing a write fence before a competing write instead of the more aggressive
immediate fence.
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P1 P2 P3 P1 P2 P3

al: A=1, a2: u=B; a3 v=C; ”Ege /aZ: u=B; a3 v=C;
b2: B=1; b2: C=1; b3: W=A; albl o AB=1; b2: C=1; — b3: W= A;
(a) merging writes to different locations; outcome (u,v,w)=(1,1,0) should remain disallowed
Pl P2 P3 P1 P2 P3
al: B=1, a2: u=B; a3 v=C; merge a2: u=B; a3: v=_C;
—
b2: B=2; b2: C=1; b3: w=B; abl o B=2; — b2: C=1; — b3: w=B;

(b) merging writes to same location; outcome (u,v,w)=(2,1,0) should remain disallowed

Figure 5.18: Merging writes assuming the PC model.

Bypassing, Merging, and Forwarding Buffering optimizations such as bypassing, merging, and forward-
ing must aso berestricted appropriately to satisfy program ordering constraintsimposed by a memory model
(anumber of these optimizationsapply to lockup-free caches as well asto buffers). Theinitiation, value, and
uniprocessor dependence conditions al ready impose constraints on such optimizations by imposing program
ordering on operationsto the same location. However, we must a so satisfy program ordering constraintswith
respect to operationsto different locations. For an operation O to bypass pending operationsthat are before
it in program order, reordering operation O with respect to those operations must be allowed by the moddl.
Similarly, for read forwarding, the read must be allowed to be reordered with respect al pending operations
that are before it in program order. Finaly, for merging operation O2 with an earlier operation O1, we must
determine whether it is safe to reorder operation O2 with respect to the pending operations between O1 and
02 (excluding O1 itself).3* For systems that support operation labels, merging also requires the resulting
operationsto inherit the more conservative label sfrom the constituent operations. For example, if wemergea
non-competing writewith acompetingoneinthe PL1 model, the merged operation should have the competing
label. Itisinteresting to note that limited forms of buffering, merging, and even read forwarding are actually
possible even with strict models such as SC. For example, in SC, writes to the same location can be merged
into a singlewrite as long as no other operations appear among these writesin program order.

Merging writes can create a subtle correctness issue for specific combinations of models and implemen-
tations. Consider the PC model, for example, with a couple of write merging scenarios shown in Figure 5.18.
Thefirst example involves merging a pair of writes with consecutive addresses within the same memory line
into a single write with larger granularity, while the second example illustrates merging of writes with the
same address. In both cases, the set of possible outcomes after write merging should be a strict subset of the
possible outcomes allowed by the model before the merging optimization. Aggressiveimplementationsof PC
may fail to satisfy the above requirement, however, if we allow write merging. The reason iswrite merging
in the above examples effectively transforms a category two chain (refer back to categorization earlier in this
section) into a category three chain, yet the system specification for PC does not require the order imposed

34For example, assuming the PL1 model, and given a non-competing write W1 followed in program order by a competing write W2,
it is possible to merge the two writes even though W2 is not allowed to be reordered with respect to W1. In effect, merging makes it
appear asif both writes happen at the sametime.
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by the category three chain to be upheld. Nevertheless, write merging is safe in any implementation of PC
that conservatively upholds multiple copy atomicity for al writes. Therefore, whether write merging is safe
depends both on the model and the specific implementation. Hereis alist of other models along with pairs
of writes that should not be merged if the implementation is sufficiently aggressive (i.e., does not support
multiple-copy atomicity for the second type of write in the pair): awrite followed by a competing write in
RCsc or RCpc, two writes separated by a fence in PowerPC, and awritefollowed by aloop writein PL3.

MaintainingMultiple-Copy Atomicity Aswediscussed earlier inthissection, enforcing thethird category
of multiprocessor dependence chains requires providing the illusion of multiple-copy atomicity in addition
to maintaining the program order among operations. This section describes the implementation of the two
techniques for enforcing multiple-copy atomicity (that were introduced earlier) in more detail.

Thefirst techniqueisto require the write to complete with respect to al other processors before allowing
a conflicting read from another processor to return the value of this write. Therefore, given a write W on
P; and aread R on adifferent processor P;, W(j) =% R(j) must imply W(k) =% R(j) for al k except k=i.
For invalidation-based protocols, the above condition can be enforced by simply disallowing a read request
from another processor (i.e., different from P;) to return the value of the write while there are invalidations
pending for the line. The simplest and most practical way to achieve thisisto delay (e.g., through nacking)
the read request if any invalidations are pending for the line®® This can be supported in an analogous way
to the implementations described earlier in this section for disallowing new write requests while there are
pending invalidations. As before, thisfunctionality can be supported either at the home for the line or at the
requester depending on where invalidation acknowledgements are gathered.

Depending on the given model, the above restriction may apply to only a subset of the write operations.
The functionality is not needed at al for the PC, RCpc, and PowerPC models since these models do not
enforce any category three multiprocessor dependence chains. For the SC, TSO, IBM-370, PSO, WO, RCsc,
Alpha, and RMO models, all writesmust be treated conservatively. Finaly, the PL1 and PL2 modelsimpose
this restriction on competing writes only, and the PL3 model is similar except it excludes competing loop
writes from thisrestriction.3® For the latter models, extrainformation must be communicated to the memory
system to distinguish writes that must be treated conservatively.

Thefirst techniqueismore difficult to apply to update-based protocolssince shared copies of alocationare
inherently updated at different times, alowing aread from a different processor to return the new value while
updates to other copies are pending. One solutionis to use a two-phase update protocol (a similar technique
is described by Wilson and LaRowe [WL92]). The first phase involves sending updates to the cached copies
and receiving acknowledgements for these updates. In this phase, a processor (other than the processor that
issued the write) must not alow itsreads to return the value of the updated location. In the second phase, a

35 Alternatively, we can service the read request by providing an uncached version of the old value for the line (i.e., value beforethe
current write is done). Note that providing the new value to a read-exclusive request from another processor can also cause problems
since a subsequent read on that processor can see the value too early; however, as we mentioned earlier in this section, most designs
delay read-exclusive requests while there are outstanding invalidationsin order to simplify detecting the completion of writes.

36There can be a subtle correctnessissue for aggressive implementations of PL2 and PL3 that do not delay a read from returning the
value of anon-competingwrite evenif the write has pendinginvalidations. The problem arisesif the implementation al so supports eager
exclusivereplies. Consider a non-competingwrite followed in program order by a competing write to the same cache block. With eager
replies, the reply to the non-competing write may make the competing write appear as a cache hit even though there are still pending
invalidations due to the non-competing write. Meanwhile, the memory system may be forwarding read requeststo this cache, allowing
them to see the new value of the competing write while there are outstanding invalidations. The solution for both PL2 and PL3 isto
delay a competing non-sync write for previous non-competing writes to complete (a sync write already satisfies this requirement).
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confirmation message is sent to the updated copiesto signal the receipt of al acknowledgements. A processor
can use the updated value from its cache once it receives the confirmation message from the second phase.
The processor that issued the write can consider the write complete at the end of thefirst phase since all stale
copies are eliminated.

Another solution for update protocolsis to use a hybrid two-phase scheme, with an invalidation phase
followed by an update phase. The first phase involves invalidating (instead of updating) the copies and
gathering the acknowledgements. Read requests are not serviced while invalidations are pending, similar to
the solution described for a pure invalidation protocol. After the invalidations are acknowledged, the second
phase sends updates with the new value to the copies (that were invalidated).®” The write is considered
complete once the invalidations are acknowledged; the update requests in the second phase do not require
acknowledgements since they simply congtitute data movement within the memory hierarchy.

The second technique for maintai ning multiple-copy atomicity alows the new value for alineto be read
while there are pending invalidations or updates, but alters the way program order is enforced. To enforce
the program order from aread to afollowing operation, thelatter operationis not only delayed for the read to
complete but isa so delayed for the write that provided the value for the read to complete with respect to all
processors (other than the processor that i ssues the write). Therefore, given W 2. R2% ¥ whereRand Y
are on a different processor than W on Py, the above condition enforces W(i) — Y (j) for all i,j except i=k
(the first technique discussed above enforces the stricter condition of W(i) == R(j) for al i,j except i=k).
Consider an invalidation protocol. The first phase involves invalidating al copies as usua. The memory
system must keep track of any processors whose read is serviced while there are pending invalidations to
the line and must notify those processors once the invalidations are complete. Furthermore, each processor
must appropriately keep track of read operations that expect the separate notification and must appropriately
delay for this notification when enforcing program order from these reads to future operations. The write
is considered complete as soon as the invalidations are acknowledged. The above technique can be easily
adapted to update-based schemes as well. The program orders that must be treated conservatively are model
dependent. For SC, IBM-370, TSO, and PSO, any R 2% Y must be treated conservatively. Here are the

spo

program orders that must be treated conservatively for the other models (— is defined differently for each
model): R 2%y for WO, Re 2% Y for RCsc, R 22% Y for Alpha, R 222 Y for RMO, Rc 20y (only if
R returnsthe value of aWc) for PL1 and PL2, and Rc il Y (only if R returnsthe value of aWc_nl_ns) for
PL3. Except for the PL models, the other models require al writes to support the second phase notification.
For PL1 and PL2, only competing writes, and for PL3, only competing non-loop or non-sync writes must
support the second phase notification.

Except for implementations of the first technique for invalidation-based protocols, the other implementa-
tionsare less practical since they incur extra design complexity and require extra messages to be communi-
cated. For thisreason, it istypically cumbersome and impractica to support update protocolsin a scaable
shared-memory system for models that require multiple-copy atomicity for writes. The properly-labeled
models allow a more efficient implementation of update protocols since non-competing writes (which are
typicaly much more frequent than competing writes) do not need to behave atomically in these models and
can be implemented using a simple single-phase update protocol; competing writes may be supported by
using either atwo-phase update scheme or a simple invalidation scheme.

37Depending on the granularity of valid bits in the caches, the invalidation and update requests may either be at the granularity of a
whole cacheline or asmaller portion of theline.
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5.3.6 Supporting the Reach Condition

Section 4.2 from the previous chapter describes the intuition behind the reach condition, while Appendices F
and | provide the formal definition for the reach relation (ﬂ) for both programmer-centric and system-
centric models. The reach condition applies only to models that relax the program order from read to write
operations; thisincludes WO, RCsc, RCpc, Alpha, RMO, and PowerPC among the system-centric models
and PL1, PL2, and PL3 among the programmer-centric models. While the programmer-centric models
specify the reach condition as a separate constraint, the system-centric models support the reach condition
more conservatively by incorporating the reach relation into the significant program orders that comprise the
multi processor dependence chains.

The main purpose for the reach condition is to disallow anomalous executions that arise if we alow
“speculative” write sub-operationsto take effect in other processors memory copies. The reach relation is
defined between certain R 22 W pairs and consists of two components. The first component captures the
notions of uniprocessor data and control dependence. Informally, aread operation reaches a write operation
(ie, R ek, W) that followsit in program order (R 22 W) if the read determines whether the write will
execute, the address accessed by the write, or the value written by it. The second component of reach is
particular to multiprocessors. A read operation R reaches awrite operation W if R controlsthe execution, or
address of, or value written (in case of a write) by another memory operation that is before W in program
order and must be ordered before W in the execution order (i.e., if we were to conservatively satisfy the
uniprocessor dependence condition or the multiprocessor dependence chains).

GivenR 2% W, thesimpl est way to satisfy thereach conditionisto delay thewritefor theread to complete.
The formal definition for the reach relation presented in Appendix F is quite complicated primarily because
we tried to provide an extremely aggressive set of conditions. However, most hardware implementations
end up trivialy satisfying the reach condition because of their conservative designs. For example, designs
with blocking reads trivially satisfy thiscondition since for any R 22 W, the read is guaranteed to complete
before the write. At the same time, even aggressive dynamically scheduled processors with non-blocking
reads may trivialy satisfy the reach condition since they may conservatively delay writes for all previous
instructions to complete as a smple way of supporting precise exceptions. Nevertheless, a key advantage
of our aggressive formulation for the reach condition is that it does not impose any order on future read
operations, thus allowing the processor to issue “speculative’ reads (e.g., issuing reads past a branch before
the branch isresolved).

The conditions presented in the appendix alow for more aggressive implementations. For example, a
processor can alow awrite W to complete even when there are outstanding reads beforeit aslong as (a) it is
known that W will indeed be executed (i.e., will not have to be rolled back) with the given address and value,
and (b) for any memory operation O before W in program order, whether O will be executed along with its
address and write value (in case of writes) are already resolved. Thus, awrite needs to only be delayed until
the control flow for the execution, and the addresses and values of any operations before the write and the
writeitself, areresolved. Even more aggressive hardware designs may be achieved by more closely matching
the specification in the appendix. However, the performance gains from doing thismay be marginal.
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5.3.7 Supporting Atomic Read-M odify-Write Operations

Read-modify-write operations are commonly used for implementing synchronization algorithms in shared-
memory multiprocessors. Examples include test-and-set, compare-and-swap, fetch-and-op, and the load-
locked and store-conditional instructions[Sit92] which have gained popularity more recently. Condition 4.7
from the previous chapter specifies the consistency requirements for supporting atomic read-modify-write
operations. Intuitively, thisconstraint requires conflicting write operationsfrom other processors to appear to
execute either before or after a read-modify-write.

The read-modify-write functionality may be supported either at the processor or a the memory. From a
performance point-of-view, operations supported at the processor can exploit reuse locality through caching.
On the other hand, supporting high contention operations at the memory can minimize serialization latencies
(e.g., consider afetch-and-increment used to implement barrier synchronization).

A read-modify-write operation consists of both a read and a write component. The read component is
allowed to complete as soon as the write component is serialized with respect to other writes (load-locked
and store-conditional operationswill be discussed later). Assuming an invalidation protocol with write back
caches, acache-based implementation can servicetheread component as soon asthe cache acquires ownership
for the line; with eager exclusive replies, this event can actually occur before invalidations caused by the
write component are complete. Of course, the read-modify-writeoperation can be serviced immediately if the
cache aready has exclusive ownership for the line. Memory-based implementations are simpler to support
if we guarantee that memory is aways the owner for the location by disallowing caches from maintaining a
dirty copy, or more conservatively any copy, of theline. In thisway, the read-modify-write can be seridized
with respect to other conflicting writes as soon as it arrives at the memory and we can respond to the read
component in parallel with sending out any invaidations.

Condition 4.7 is a reasonably aggressive specification since it only requires conflicting write operations
from other processorsto appear to execute either before or after the read-modify-write. A more conservative
specification could require any write operation (regardless of its address) to behave atomically with respect
to aread-modify-write. In fact, the original specificationsfor the SPARC V8 and V9 models (i.e., TSO, PSO,
and RMO) impose the more conservative semantics.®® Figure 5.19 provides an example that illustrates the
semantic difference between the aggressive and conservative specifications (with other constraints the same
as TSO or PSO). Assume al locations are initially zero. The test-and-set on each processor reads the value
zero and sets the value to 1, leading to (u,v)=(0,0) in all executions. Meanwhile, the outcome (w,x)=(0,0)
is allowed by the aggressive semantics and disallowed by the conservative one. The more conservative
specification, as used in TSO, PSO, and RMO, is less desirable since it disallows the servicing of the read
component until all invalidationor update requests generated by thewrite component are complete, making it
more difficult to implement the read-modify-write operations at the memory, or in caches that support eager
exclusivereplies.

Load-locked and store-conditional operations are dightly different from a typical read-modify-write.
The load-locked operation returns the value of a given location, which can be modified and written back
using the store-conditional operation. The store-conditional successfully modifies the location if no other

38The specifications for TSO, PSO, and RMO in Appendix | use the aggressive constraints for read-modify-writes and capture the
effect of the conservative constraints by imposing extra program orders.
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P1 P2

al: U = test&set(A); a2: V= test&set(B);
b2: w=B; b2: X =A;

Figure 5.19: Semantics of read-modify-write operations.

processor performs a conflicting write between the time the load-locked completes and the time the store-
conditional isretired. Otherwise, the store-conditional simply failswithout modifying the location. The store
conditiona’sreturn value indicates its success or failure; the |oad-locked/store-conditional sequence can be
simply repeated until the store-conditional succeeds. In thisway, the load-locked/store-conditional pair can
be used to implement an arbitrary set of atomic read-modify-write operations.

An implementation can support the above functionality by logically maintaining a lock-flag and a lock-
address register at each processor. A load-locked operation sets the lock-flag and stores the address for the
lock location in the lock-address register. Incoming invalidation and update requests from other processors
are monitored and matched against the lock-address register, and a successful match resets the lock-flag.
Therefore, thelock-flag isused as a conservativeindicator of whether another processor has performed astore
since the last load-locked operation. For correctness, thelock-flag is also cleared if the line corresponding to
the lock-address is replaced from the cache or if there is a context switch.®

Even though the above functionality seems simple to support, there are a number of subtle issues that
make correct implementationsof |oad-locked and store-conditional operationsquitechallenging. Appendix N
describes some of the implementation issues, including the complexity that arises from the need to avoid
livelock conditionswhereby no process can successfully complete aload-locked/store-conditional sequence.

There are also important efficiency issues associated with the use of 10ad-locked/store-conditional se-
guencesin scalable shared-memory systems. Performing aread-modify-writeto alocation that is not aready
cached by aprocessor leadsto at |east two misses, aread missfor theload-locked followed by awrite missfor
the store-conditional, both of which may involvelarge round-trip latencies. One possible optimizationisto
prefetch thelinein exclusive mode either before the sequence or at the same time theload-locked is serviced,
which incursjust asinglelong-latency miss. However, sequences that exploit this optimization must support
some sort of exponential back-off to reduce the probability of livelock.*

5.3.8 Comparinglmplementationsof System-Centricand Programmer-CentricM od-
els

The system specificationsfor the properly-labeled (PL) model sare more aggressivethan even themost rel axed
system-centric specifications (e.g., RCsc, RCpc), primarily because the multiprocessor dependence chainsare
more selective in the PL specifications. However, taking full advantage of the aggressive specificationsin a
hardware design can lead to excessive complexity and can have diminishing performance returns.** For this

39 replacement makesthe cacheunawareof futurewritesto theline. A context switchin themiddleof aload-locked/store-conditional
sequence can incorrectly allow the load-locked of one processto lead to the success of the store-conditional in another process.

4L ivelock may arise because grabbing the line in exclusive mode can lead to the failure of other processors sequences without a
guaranteethat this processor’s store-conditional will succeed.

“LFor example, Section 5.3.2 explained why an implementation may still uphold the coherencerequirement for all writes even though
PL specificationsrequireit for competing writes only.
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reason, practical hardware implementations of a programmer-centric model such as PL2 and an aggressive
system-centric model such as RCsc are often quite similar in performance and in the type of optimizations
they exploit. Nevertheless, programmer-centric models still enable afew extraoptimizations (not alowed by
the RCsc or RCpc specifications) that are relatively ssimpleto exploit in hardware.

One key advantage of the PL specifications compared to the RCsc specification is that non-competing
writes (and loop writes in PL3) do not need to appear atomic with respect to multiple copies. This is
especialy beneficia for update-based designs since non-competing and loop writes can safely use asimple
update protocol for maintai ning coherence among copies (Section 5.3.5 described the difficultiesof supporting
multiple-copy atomicity for updates). Even though the PC, RCpc, and PowerPC models allow al writes to
appear non-atomic, the PL1 and PL2 models are simpler to program (e.g., they do not require the extra
categorizations of PL3) and yet enable this optimization for the frequent write operations. Another potential
advantage of the PL specificationsisthat amore aggressive version of the termination condition may be used,
as discussed in Appendix H.42

In contrast to practical hardware designs, designsthat support cache coherence in software benefit more,
and can better tolerate the extra complexity, from exploiting the aggressive nature of the PL specifications.
Thisissueisfurther discussed in Section 5.6.

5.3.9 Summary on Maintaining Correct Order

The previous sections provided a detailed overview of variousdesign issuesrelated to correctly and efficiently
implementing a given memory model. Aswe saw, there is often a trade-off between design complexity and
supporting more aggressive reordering optimizations. Furthermore, there are numerous subtle issues in
mai ntaining correctness with the more aggressive optimizations.

54 More Aggressive Mechanisms for Supporting Multiprocessor De-
pendence Chains

This section describes three different techniques for achieving more efficient implementations for a given
memory model. The first technique exploits the aggressive nature of our specifications (i.e., the fact that
execution order is only imposed among conflicting operations) to enable the earlier acknowledgement of
invalidation and updaterequests. Thesecond techniqueinvol vesautomatic prefetching of val uesfor operations
that are delayed due to consistency model constraints. Finally, the third technique employs speculative
execution to speculatively service memory operations even though the consistency model would require
the operation to be delayed. Most of the ideas for the prefetching and speculative execution techniques
have been published in our previous paper [GGH91b]. All three techniques are applicable across the full
range of models, even though implementations of stricter models are expected to gain the most from these
optimizations. Furthermore, the latter two techniques allow usto exploit many of the hardware optimizations
that motivate the use of relaxed memory models while still maintaining theillusion of a stricter model such
as SC.

42 A more minor advantage of PL specificationsis mentioned in Section 5.4.1 in the context of ordering incoming requests whereby
an incoming non-competing update request is allowed to bypass previousupdate or invalidate requests.
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54.1 Early Acknowledgement of Invalidation and Update Requests

So far, we have assumed that invalidation or update requests are acknowledged only after al stale copies
of the line are eliminated from a processor’s cache hierarchy. Therefore, the acknowledgement reflects the
completion of the writewith respect to a given processor. To reduce thelatency for write acknowledgements
especialy in designs with deep cache hierarchies, a common optimization isto acknowledge an invalidation
or update request as soon as the request is placed in the cache hierarchy’s incoming queue which is before
al stale copies are actually eiminated.*®> This optimization also simplifies the buffer deadlock issues in
handling incoming invalidation or update requests within the cache hierarchy since an acknowledgement
reply isnolonger generated from within the hierarchy (see Section 5.2.3). However, naive applicationsof this
optimization can lead to incorrect implementations since an acknowledgement reply no longer signifies the
compl etion of thewritewithrespect tothetarget processor. This section describestwo distinctimplementation
techniques that enable the safe use of early acknowledgements.

To ssmplify discussing the above optimization, we introduce an additional set of physica events for a
write operation. A write operation currently consists of multiple completion events with respect to each of
the n processors. For each write, we a so define a commit event with respect to each processor. The commit
event correspondsto the time when the writeis either explicitly or implicitly acknowledged and precedes the
completion event with respect to a processor in cases involving an early acknowledgement. The commit and
completion events (with respect to a given processor) coincide in time if no invalidation or update requests
are exchanged, or if the early acknowledgement optimizationis not used.

In designs with early acknowledgements, the program order between awrite W and a foll owing operation
Y isenforced by waiting for W to commit with respect to every processor beforeissuing Y (thereisno longer
an explicit message that signals the completion of the write). This does not directly satisfy conservative
specifications (e.g., conditionsfor SC in Figure 4.4) which prescribe enforcing program order from awrite by
waiting for the write to complete with respect to every processor. Instead, such designs exploit the flexibility
of the more aggressive specifications (e.g., conditionsfor SC in Figure 4.7) whereby completion order isonly
enforced among the endpoints of a multiprocessor dependence chain and not at every program order arc.

Figure 5.20 shows an example to illustrate the issues related to early acknowledgements. Consider the
program segment in Figure5.20(a) withal locationsinitializedto zero. The outcome (u,v)=(1,0) isdisallowed
under the SC model. Consider an invalidation-based protocol with write-through caches. Assume Pl initially
caches both locations and P2 caches location A. Without early acknowledgements, P1 issues the writeto A,
waitsfor itto complete, and proceedstoissue thewriteto B. Therefore, the stale copy of A at P2 iseliminated
before P1 even issues its second write. Furthermore, as long as P2 ensures its reads complete in program
order, the outcome (u,v)=(1,0) will indeed be disallowed.

Now consider the scenario with early invalidation acknowledgements. P1’swriteto A causes an invali-
dation request to be sent to P2. Theinvaidation isqueued at P2 and an acknowledgement reply is generated.
At thispoint, thewrite of A iscommitted but has yet to complete with respect to P2 (i.e., P2 can till read the
old value of A). While the invalidation request remains queued, P1 can proceed to issue its write to B, and
P2 can issueitsread request to B. Figure 5.20(b) captures the state of P2'sincoming buffer at this point, with
both the invalidation request for A and theread reply for B (with the return value of 1) queued. A key issue

430ne reason we can acknowledgethe request before checking the state of the line in the cachesis that an update or invalidate request
sent to a clean cache copy is aways acknowledged (i.e., never nacked) even if the lineis no longer present in the cache hierarchy (e.g.,
dueto areplacement). In other words, it is trivial to service the request when the stale copy is no longer cached.
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Figure5.20: Exampleillustrating early invalidation acknowledgements.

isthat allowing the read reply to bypass the invalidation request in the buffer, which would be allowed in an
ordinary implementation, will violate SC because P2 can proceed to read the stale valuefor A out of its cache
after obtaining the new value for B.

Figure 5.21 depicts an aternative view of the above scenario by showing the order among completion
events. Write operations are shown with acompl etion event with respect to each of the two processors, while
read operationsare shown with asinglecompletion event with respect to theissuing processor. Figure5.21(a)
shows the scenario without early invalidation acknowledgements. As shown, P1 ensures the write to A
completes with respect to both processors before the write to B completes with respect to any processor, and
P2 ensures its two reads complete in program order. The fact that the read of B returns 1 implies that the
write of B completes with respect to P2 before the read of B completes. The above ordersimply that the write
of A completes with respect to P2 before the read of A completes, which correctly disallows the outcome
(u,v)=(1,0). Figure5.21(b) shows the scenario with early invalidation acknowledgements. For each write,
there is now also a commit event with respect to each of the two processors. The program order on P1 is
upheld by ensuring the write to A commits with respect to both processors before the write to B commits
with respect to any processor. The order imposed on P2 and the implied order between thewrite of B and the
read of B are the same asthosein Figure 5.21(a). These ordersimply that the write of A isindeed committed
with respect to P2 before the read of B or theread of A complete. However, to disallow (u,v)=(1,0), we need
to somehow ensure that the write of A completes with respect to P2 before the read of A completes (shown
as adashed arrow).

The first solution we discuss imposes ordering constraints among incoming messages with respect to
previoudy committed invalidationsand updates. Referring back to the example, this solutionwould disallow
theread reply from bypassing theinvalidationrequest, which forcesthe committed writeto A to completewith
respect to P2 before the read of B completes. The second solution does not impose any ordering constraints
among incoming messages. Instead, it requires previoudy committed invalidation and update requests to be
serviced anytime program order isenforced for satisfying amultiprocessor dependence chain. Inthe example,
thislatter solution would force the invalidation request to be serviced (e.g., by flushing the incoming queue)
as part of enforcing the program order from the read of B to the read of A. Thus, both solutions correctly
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Figure 5.21: Order among commit and completion events.

disalow the outcome (u,v)=(1,0). In what follows, we present each solution in more detail, discuss their
trade-offs, describe hybrid combinations of the two techniques, and aso compare them to previous work in
thisarea

Imposing Orders among Incoming M essages

Designs without early acknowledgements can safely reorder incoming messages to different memory lines;
theonly ordering constrai ntsareimposed among asubset of incoming messages that address the same memory
line (e.g., refer to Sections 5.3.2 and 5.3.3, and Appendix K). In contrast, arbitrary reordering of incoming
messages to different memory lines can violate correctness in designs that use early acknowledgements.**
One possible solutionisto impose atotal FIFO ordering among all incoming messages. However, as we will
see below, the actual ordering constraints required for correctness are much less restrictive.

Invalidation-Based Protocol Table5.1in Section 5.1.2 enumerates the typical set of incoming request and
reply messages used within a cache hierarchy. Consider an invalidation protocol with writeback caches. The
possibleincoming messages are as follows:

e incoming requests: read, read-exclusive, invalidate, and
e incoming replies: read, read-exclusive, exclusive, invalidate-ack.*®

To achieve correct behavior, it is sufficient to maintain the queue order from an incoming reply message to a
previousincoming invalidate request.*® No other ordering constraints are required for incoming messages to
different memory lines.#’

44|n our discussion, we implicitly assume that the ordering constraints imposed among incoming messages that address the same
memory line areidentical to thosein a design without early acknowledgements.

45|f the design maintains countersthat keep track of previouswrites, the response from checking the counter must be considered the
same as an invalidate-ack reply since it signals the fact that the write has been committed or completed with respect to all processors.
Replies to explicit fenceinstructions must be treated in a similar way.

%For designs with multiple paths for incoming messages, maintaining this order can be simplified by placing incoming invalidate
requests in the same path as incoming replies. This is possible because invalidate requests do not generate a reply from within the
hierarchy, thus alleviating the deadlock issues associated with general requests.

47In a cache hierarchy, an incoming read-exclusive request may generate an invalidation request when it reaches the top most write
back cache that has the dirty copy in order to eliminate any copies at the higher levels. At the same time, the request also generates
an outgoing read-exclusive reply typically merged with an implicit early invalidate-ack reply. The write is considered committed with
respect to the processor at this time and the newly generated invalidation request must not be reordered with respect to future incoming
replies that reach that point in the hierarchy.
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Figure 5.22: Multiprocessor dependence chain withaR —= W conflict order.

Therefore, incoming requests can be safely reordered with respect to one another, including the reordering
of two invalidation requests. Incoming replies can also be reordered with respect to one another. Incoming
read or read-exclusive requests can be reordered with respect to incoming replies. And finaly, incoming
invalidation requests can be reordered with respect to previous incoming replies. The above conditions are
model independent, at least for the models discussed in thisthesis. Therefore, even a design that supports a
strict model such as SC can exploit the reorderings discussed above.*®

We refer back to Figure5.21 to build someintuitionfor how sufficient order is maintained for correctness.
The fact that the read of B on P2 returns the value 1 implies that the read reply for B arrived at P2 sometime
after the write of B completes with respect to P2. Furthermore, we know that the write of A is committed
with respect to P2 beforethe above compl etion event. The abovetwo factsimply that theincoming invalidate
request for location A is queued at P2 before the reply for B arrives. Therefore, maintaining the order from
the reply to the previous incoming invaidate guarantees that the write of A completes with respect to P2
before the read of B completes, correctly disallowing the outcome (u,v)=(1,0).

Reasoning about the correctness of multiprocessor dependence chains consisting of R —— W conflict
ordersismorechallenging. Figure5.22 showsthebehavior of onesuch chain (samechain asin Figure5.14(b)).
The |eft side of the figure depicts the behavior in a system without early acknowledgements, which clearly
ensures that the write of A completes with respect to P2 before theread of A. The right side depicts a system
with early acknowledgements. To show that the chainis correctly upheld, we need tofirst show that the write
of A iscommitted with respect to P2 sometime before the read of A completes. Second, we need to show that
P2 receives an incoming reply after the write of A is committed with respect to it and consumes this reply
before the read of A completes. Along with the ordering constraints among incoming messages, the above
combination ensures that the write of A completes with respect to P2 before theread of A.

Figure 5.23 graphically showsthe steps involved in reasoning about the correctness of the example chain
from Figure 5.22. For each write operation, we have added an extra operation labeled as a misswith itsown
commit and completion events. For a write operation that misses in the cache, the “miss’ operation is the
same as the origina write operation. For cache hits, the extra operation represents the last operation that

“8The following trade-offs should be considered in exploiting the above flexibility. Delaying the service of incoming replies and
incomingread or read-exclusiverequestshasadirect effect on the latency of operationsfor this processor or other processors. Meanwhile,
delaying the service of incoming invalidate or update requests does not directly affect the latency of any processors' operations since
an early acknowledgement is sent for these requests. In fact, delaying incoming invalidation requests can have a positive effect by
reducing the amount of false sharing [DWB™ 91]; however, delaying invalidation or update messagesfor too long can hurt performance
by delaying the time when the processor observes the most recent value for alocation (e.g., if a processor iswaiting for alock or flag to
be released).
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Figure 5.23: Reasoning with a chain that containsaR —~ W conflict orders.

fetched adirty copy of thelineinto the cache (e.g., dueto an earlier writeto the sameword, or adifferent word
in the same line); the cache hit itself does not lead to external communication. We need to consider the miss
event because it is the reply to this operation that pushes previously committed invalidationsto completion.
The dashed box enclosing the miss operation and the actual write operation on each processor denotes the
atomicity relationship between the two events; by definition, aread or write event from a different processor
to the same line may not be ordered between these two operations, otherwise the line would not remain dirty
in the cache.

Consider the reasoning for the above chain. Assume the miss operation on P2 commits with respect to P1
either before the miss operation on P1 commits with respect to P1 or before the latter commits with respect
to P2. The above implies that the miss operation on P2 completes with respect to P1 before the read of B
completes, which further implies (by the atomicity relationship between the miss and write operations) that
the write of B completes with respect to P1 before thisread. This leads to a contradiction with an aready
existing order from the read of B to the completion event for the write of B. Therefore, it has to be that the
miss operation on P2 commits with respect to P1 after the miss operation on P1 commits with respect to P1
and P2, as depicted by the dashed arrow labeled (1). Given this order, the second dashed arrow labeled (I1)
follows based on theincoming message orders. Finaly, the third dashed arrow labeled (111) followsfrom the
second one based on the atomicity rel ationship between the miss and write operations on P1.

Appendix O providesanumber of other examples and further intuition about the above technique.

Update-Based Protocols The relevant incoming messages for an update-based protocol are listed bel ow:
e incoming requests: read, update-read, update, and
e incoming replies: read, read-exclusive, update, update-exclusive, and update-ack.

Similar to the case for invalidation protocols, an incoming reply must be ordered with respect to a previous
incoming update request. In addition, there is an extra requirement that incoming update requests may not
bypass one another.*® To illustrate the importance of this latter constraint, Figure 5.24 illustrates the same
scenario asin Figure 5.20 except with updates instead of invalidations. P2 isassumed to initially have copies
of both A and B. As shown, the updates dueto the writes of P1 are queued in order and maintaining thisorder

“9The incoming update-read request behavesin an analogousway to the read-exclusiverequest in a hierarchy of caches.
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Figure 5.24: Exampleillustrating early update acknowledgements.

isimportant for correctness since P2 may otherwise read the new value for B and later read the old value for
A.

In systems with hybrid invalidation and update protocols, the sufficient condition is a combined version
of the conditionsfor each type of protocol: an incoming reply or an incoming update request must be ordered
with respect to a previousincoming invalidate or update request.>

The order from an incoming update request to previous incoming invalidate or update requests may be
relaxed for the PL models due to the aggressive specification of multiprocessor dependence chains in these
models: any conflict order within a chain is between a pair of operations labeled as competing. The above
may be exploited if incoming update requests carry a label to distinguish whether the write is competing or
non-competing. Given such information, it is sufficient to only ensure the order from an incoming competing
updaterequest to previousincoming invalidate or update requests. |n other words, anincoming non-competing
update request is alowed to bypass previous update or invalidate requests.

The techniques described above for invalidation and update protocols can be easily extended for usein
multi-level cache hierarchies. The ordering among messages in the incoming queues isthe same as described
above. Furthermore, areply fromalevel i cache (i.e, if the cache services an outgoing request) is placed into
the incoming queue for the level i-1 cache asusua. Thisreply stays ordered with respect to any invalidation
or update requests that are aready in the incoming queues for the level i-1 cache and above. The relaxed
ordering constraints on incoming messages can a so be beneficia in designswith interleaved or multi-banked
caches for exploiting the overlap of operations among multiple banks.

Related Work on Imposing Orders among Incoming Messages Afek et a. [ABM89, ABM93] proposed
the idea of lazy caching for supporting sequential consistency. The implementation they propose uses a
bus-based update protocol for maintaining cache coherence. When a processor issues awrite, it only waitsfor
the updates of itswrite to be queued into the FIFO incoming queues of the other processors and can continue
with its next operation as soon as the reply from the bus comes back to it which may be before the updates
actually take effect in the other processors caches. The authors prove that this implementation satisfies
sequential consistency. However, thiswork has several major limitations. First, the algorithm depends on the
broadcast mechanism of a bus interconnect and does not apply to systems with general interconnects where

S0Early acknowledgement of incoming update requests can create subtle correctnessissuesif a protocol sends an update request to a
dirty cached copy mainly because of arace with the possible writing back of the line. The protocol we have discussed avoids this by
aways sending an update-read request to a dirty copy; the update-readis implicitly acknowledged only after it findsthe dirty copy in the
hierarchy and a negative acknowledgement is sent if the line has already been written back.
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writes to different addresses may commit in a different order with respect to different processors. Second,
the algorithm assumes that every write goes to the bus and comes back through the incoming queue, thus
effectively flushing the incoming queue on every write before the processor can continue with a read. This
fallsto handle designs that maintain a dirty state in awrite back cache, and in effect disallows the processor
from executing reads in isolation (i.e., without servicing the incoming queue) after a write. Third, the fact
that write back caches are not handled implies the incoming queue for a processor never receives a read
or read-exclusive request from another processor and also the cache never needs to reply to such a request.
Finally, the algorithm assumes a single level of caching.

Scheurich proposes a similar idea to lazy caching for supporting SC in a bus-based system [Sch89].
Although Scheurich does not make the same restrictive assumptions as in the lazy caching work, hisimple-
mentation still depends on the broadcast mechanism of a bus and on FIFO ordering among incoming and
outgoing messages. Furthermore, the description of the implementation is sketchy and informal.

Our work provides a completely general solution that alleviates the limitations discussed above. We
show that a strict FIFO ordering among incoming messages is not necessary for correctness. 1n addition, our
technique applies not only to SC, but to al other relaxed models. Section 5.5 describes how this technique
can aso be adapted to systems with restricted interconnects such as buses.

Servicing Incoming M essages when Enforcing Program Order

As an dternative to imposing extra constraints on the order of incoming messages, it is possible instead
to require invaidation or update requests that are in the incoming queues to be serviced whenever the
implementation enforces certain program ordersthat are part of a multiprocessor dependence chain.

Given X 2% Y is part of a chain, the program order can be enforced by delaying Y’s completion or
commit events until X completes or is committed with respect to all processors (depending on whether X is
aread or awrite, respectively). Conservatively, Y may aso be delayed for the service of any invalidation
or update requests that have entered the incoming queue before X completes (or commits with respect to al
processors, if X isawrite). One way to do this is to force the incoming queue to be flushed.5* The above
forces any writesthat have committed with respect to this processor before X to complete with respect to the
processor before Y isissued. Referring back to the examplein Figures5.20 and 5.21, the write of A commits
with respect to P2 before the read of B completes and the read of A isdelayed for theread of B to complete.
Therefore, the above solutionindeed guarantees that thiswrite completes with respect to P2 sometime before
theread of A isallowed to complete.

Reasoning about the correctness of chains with the above optimization is much simpler than with the
optimization discussed in the previous section. Consider the example chain from Figures 5.22. Figure 5.25
shows the reasoning for the chain pictorially. The dashed arrow labeled (1) can be shown to be true by
contradiction (with similar arguments to those used for the example in Figure 5.23). Given that the write of
A commits with respect to P2 before the write of B is committed with respect to all processors, flushing the
incoming queue ensures that the write of A aso completes with respect to P2 before theread of A. Compared
to the reasoning steps in Figure 5.23, there is no need to introduce the miss operationsin this case because
enforcing a program order already forces incoming invalidationsto be serviced; Appendix O shows another
exampletoillustratethe above point.

51The only requirement is to service the invalidation and update requests that are already in the incoming queue.
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In contrast to the solution discussed in the previous section, the efficiency of the above solutionis heavily
dependent on the model. For SC, the incoming queue must be flushed after almost every memory operation
sincevirtually al program orders are enforced. The frequency of flushes can be much lessin amodel such as
PL1. Theonly program orders that must be enforced for multiprocessor dependence chains are Xc 22 Yc,
Rc 22 Y, and X 22 Wc, making it sufficient to flush the queue after a competing read, before acompeting
write, and between a competing write followed by a competing read.>? More conservatively, the queue can
be flushed before and after every competing operation. Even so, the frequency of flushes will be proportional
to the frequency of competing operationswhich islow in most applications.

Thereareanumber of optimizationsto theabove solutionthat can further reduce thefrequency of checking
for or flushing incoming invalidation and update requests. The first optimization is based on the following
observation: it is sufficient to force aflush only on program orders where the second operationisaread (i.e.,
X 22 R). Therefore, SC can beimplemented by only forcing aflush before every read. For PL1, therelevant
program ordersare Rc 2= R and Wec 22 Rc. Thefirst program order can be satisfied by flushing after every
competing read. To satisfy the second program order, the implementation can aggressively perform a flush
only between a competing write followed by a competing read, or more conservatively do the flush either
before every competing read or after every competing write (e.g., if competing writes are less common).

The second optimi zation uses the intuition behind the sol ution described in the previous section to further
reduce the frequency of checking or flushing the incoming queue. Specifically, there is no need to check or
flush the incoming queue if the processor (i.e, first level cache) has not serviced any incoming replies (or
incoming update requests) sincethelast flush. For amode like SC, this optimization can substantially reduce
the frequency of checking and possibly flushing the incoming queue; the number of flushes goes from being
proportional to the number of reads to being proportional to the number of cache misses (and updates). The
optimization is not as effective for a model like PL1 since flushes are dready infrequent (e.g., likely to be
less frequent than cache misses); therefore, thereis a high likelihood that the processor will have serviced an
incoming reply (or incoming update request) since the last flush.

Finally, the third optimization tries to make the flushes more efficient when the first operation of the
enforced program order isa cache miss (i.e., X 2= Risenforced and X isamiss). The conservative way to
achievetheflushistofirst wait for the processor to receivethereply for X and to then service any invalidation
or update requests that are present in the incoming queue. A dightly more aggressive option is to flush of
the queue while the processor waitsfor thereply to X. The implementation must still check for and flush any
new invalidation or update requests that enter the incoming queue before the reply gets back; however, there

52The design can maintain a single bit that keeps track of whether a competing write has occurred and can clear the bit every time a
flush is done. This bit can be used to determine whether a flush is necessary before a competing read.
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may often be no new invalidations and updates during this period. A third option is to specially designate
thereply for X to disallow it from bypassing incoming invalidation or update requests that are queued before
it. Thislast option aleviates the need for explicitly flushing the queue in cases where the first operation in
the program order pair misses. For amodel such as SC, every reply must be specialy designated to disallow
bypassing. The optimization is more effective for a model like PL1 since it is sufficient to only designate
repliesto competing reads and competing writesin thisway.

The above techniques can be easily extended to deal with multi-level cache hierarchies. The conservative
approach would be to flush any incoming invalidation or update requests within the whole hierarchy every
time a relevant program order is enforced. Extending the optimizations described above can lead to more
efficient solutions. For example, the second optimization can be used as follows: if a cache at level i has
not serviced an incoming reply or update request since the last flush of the incoming queues below it, the
implementation can avoid checking or flushing those queues.

Related Work on Servicing Incoming M essages when Enforcing Program Order  Duboiset a. propose
an implementation of release consistency called delayed consistency [DWB*91] that delays servicing the
invalidationsat a destination cache until the destination processor completes an acquire operation. Thisidea
is similar to the idea of flushing an incoming queue when enforcing certain program orders. In contrast
to our work, however, the delayed consistency work assumes that locations used for synchronization are
digoint from locations used for data and seems to implicitly assume that a different mechanism is used to
maintain the order among synchronization operations. For example, to correctly support the RCsc model,>
the implementation must service all committed invalidations not only after an acquire, but also in between
arelease followed by an acquire. The work on delayed consistency does not expose the need for servicing
invalidationsin the latter case. In contrast, our work clearly outlines the requirements for correctness and
explores severa important optimizations.

Comparing the Two Early Acknowledgement Techniques

Therelativeefficiency of thetechniquesdiscussed inthe previoustwo sectionsisextremely model dependent.
The first technique is better suited for strict models such as SC where the frequency of enforcing a program
order (for supporting multiprocessor dependence chains) is much higher than the frequency of cache misses.
On the other hand, the second techniqueis better suited for more relaxed models where enforcing a program
order occurs less frequently. Both techniques provide fast service of incoming requests; for more relaxed
models, the second technique may provide faster servicing of incoming replies by alowing them to bypass
previousinvalidate and update requests.

Multi-level cache hierarchies may reducethere ative advantage of using the second techniquefor support-
ing relaxed models. Even though flushing of the incoming queues may be infrequent, it may be cumbersome
to check and clear incoming queues throughout the hierarchy. This motivates a hybrid design that employs
the first technique at the lower levels and the second technique at the higher levels of the cache hierarchy.
Consider a two-level cache hierarchy with an incoming queue for each level. The incoming queue to the
second level cache can use thefirst techniqueto disallow repliesor update messages from overtaking previous

53Asin the delayed consistency work, the distinction between sync and non-sync operationsisignored (i.e., all operations are treated
asasync).
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invalidations or updates. This aleviates the need to explicitly flush thisincoming queue. Meanwhile, the
incoming queueto the first level can use the second technique to relax the ordering from repliesto previous
incoming messages by requiring explicit flushes at program ordering points. The above hybrid solution has
acouple of other desirable properties. The number of second level missesistypically much smaller than the
number of first level misses, making thefirst technique more suitable at the lower levels. Furthermore, since
the first level cache istypically occupied by processor accesses, there is a higher possibility of build up of
incoming invalidations and updates in its incoming queue. Therefore, allowing incoming replies to bypass
previousincoming messages can have a bigger impact at the higher level caches.

Section 5.5 describes other designs based on restricted network topol ogies where the above techniques
can be used to efficiently support early acknowledgements.

54.2 Simple Automatic Hardware-Prefetching

Section 5.3.5 described the conventional mechanism for enforcing program order whereby the servicing
of an operation is delayed until a previous operation completes (or is committed in case of writes with
early acknowledgements) with respect to all processors. The prefetching technique described in this section
providesone method for increasing performance by partially proceeding with the servicing of the an operation
while the previous operation is still pending. The following subsections describe this prefetch technique and
provideinsight into its strengths and weaknesses.

Description of the Prefetch Technique

Prefetching can be classified based on whether it is binding or non-binding, and whether it is controlled by
hardware or software. With a binding prefetch, the value of alater reference (e.g., aregister load) is bound
at the time the prefetch completes. This places restrictions on when a binding prefetch can be issued, since
the value will become stale if another processor modifies the location during the interval between prefetch
and reference. Hardware cache-coherent architectures can provide prefetching that is non-binding. With a
non-binding prefetch, the datais brought close to the processor (e.g., into the cache) and is kept coherent until
the processor actually reads the value. Thus, non-binding prefetching does not affect correctness for any of
the consistency models and can be simply used to boost performance. The technique described in this section
assumes hardware-controlled non-binding prefetch. Section 5.8 covers the interaction between prefetching
and memory modelsin more detail .

Automatic prefetching can be used to enhance performance by partially servicing large latency accesses
that are delayed due to program ordering constraints. For a read operation, aread prefetch can be used to
bring the datainto the cache in a clean state whilethe operation is being delayed for ordering purposes. Since
the prefetch is non-binding, we are guaranteed that the read operation will return a correct value once it is
allowed to compl ete, regardless of when the prefetch completed. Inthemajority of cases, we expect the result
returned by the prefetch to be the correct result. The only time the result may be different isif the location
is written to between the time the prefetch returns the value and the time the read is allowed to complete, in
which case the prefetched copy will either be invalidated or updated appropriately.

For a write operation, a read-exclusive prefetch can be used to acquire exclusive ownership of the line,
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enabling the write to be serviced quickly onceit isallowed to complete>* A read-exclusive prefetch isonly
applicable for invalidate protocols; in an update protocol, it is difficult to partialy service a write operation
without making the new valuevisibleto other processors.>® Similar to theread prefetch, thelineisinvalidated
if another processor writes to the location between the time the read-exclusive prefetch completes and the
actua write operation is alowed to proceed. In addition, exclusive ownership is surrendered if another
processor reads the location during thistime.

Implementation of the Prefetch Technique

The conventiona way to enforce program ordering is to delay the issue of an operation in the processor’s
buffer until certain previous operations complete. Prefetching can be incorporated in this framework by
having the hardware automatically issue a prefetch (read prefetch for reads and read-exclusive prefetch for
writes) for operationsthat are in the processor’sread or write buffer, but are delayed dueto program ordering
constraints.

The prefetch request behaves similarly to an ordinary read or write request from the memory system
point of view. The prefetch first checks the cache hierarchy to see whether the lineis aready present in the
appropriate state. If so, it is discarded. Otherwise, the prefetch is issued to the memory system. When the
prefetch reply returnsto the processor, itisplaced inthe cache. Whileaprefetch isoutstanding, futurerequests
to the same line can be combined with the prefetch request (using techniques similar to those described in
Section 5.2.3) so that a duplicate request is not sent out.

One of theissueswith prefetching isthat the caches will be more busy since references that are prefetched
access the cache twice, once for the prefetch and another time for the actua reference. As previoudy
mentioned, accessing the cache for the prefetch request is desirable for avoiding extraneoustraffic. Overall,
wedo not believe that the double access will be amajor issue since prefetch requests are generated only when
ordinary operations are being delayed due to consistency constraints, and it is likely that there are no other
requests to the cache during that time.

Lookahead in the instruction stream isa so beneficial for hardware-controlled prefetch schemes. Aggres-
sive lookahead is possible with processors that support dynamic instruction scheduling, branch prediction,
and speculative execution past unresolved branches. Such lookahead can provide the hardware with several
memory requests that are being delayed in the load and store buffers due to consistency constraints (espe-
cialy for the stricter memory consistency models) and gives prefetching the opportunity to overlap such
operations. The strengths and weaknesses of hardware-controlled non-binding prefetching are discussed in
the next subsection.

Strengths and Weaknesses of the Prefetch Technique

Figure5.26 presentstwo example code segmentsto provideintuitionfor the circumstances where prefetching
boosts performance and where prefetching fails. We make the following assumptions to make the examples
more concrete. We assume a processor with non-blocking reads and branch prediction machinery. The caches

% Depending on the state of the cacheline, aread-exclusiveprefetch leadsto either no request, an exclusiverequest, or aread-exclusive
request.

55 A two-phase hybrid scheme similar to the one described in Section 5.3.5 may be used for update protocols. In the first phase, the
prefetch caninvalidate all copies, which completesthe write from a consistency point of view. Issuing the actual write leadsto updating
the same copies; no acknowledgementsare needed for these updates.
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lock L (miss)
read C (miss)
read D (hit)
read E[D] (miss)
unlock L (hit)

lock L (miss)
write A (miss)
write B (miss)
unlock L (hit)

Example 1 Example 2

Figure 5.26: Example code segments for hardware prefetching.

are assumed to be lockup-free with an invalidation-based coherence scheme. We assume acache hit latency
of 1 cycle, acache misslatency of 100 cycles, and amemory system that can accept an access on every cycle.
Finally, we assume that no other processes are writing to the locations used in the examples and that the lock
synchronizations succeed (i.e., thelock isfree).

First consider the code segment on the left side of Figure 5.26. This code segment resembles a producer
process updating the values of two memory locations. Given a system with sequential consistency, each
operationisdelayed for the previous operation to complete. Thefirst three operationsmissin the cache, while
the unlock operation hits due to the fact that exclusive ownership was gained by the previouslock operation.
Therefore, thefour operationstake atotal of 301 cyclesto perform. In asystem with arelaxed model such as
PL1 or release consistency, thewrite operationsare delayed until thelock operation completes, and the unlock
operation is delayed for the write operations to complete. However, the write operations can be overl apped.
Therefore, the operations take 202 cycles.

The prefetch technique described in this section boosts the performance of both the strict and the relaxed
model. Concerning the loop that would be used to implement the lock synchronization, we assume the
branch predictor takes the path that assumes the lock synchronization succeeds. Thus, the lookahead into
the instruction stream alows locations A and B to be prefetched in read-exclusive mode. Regardless of the
consistency model, the lock operation is serviced in parale with prefetch of the two write accesses. Once
the result for the lock operation returns, the two write accesses will be satisfied quickly since the locations
are prefetched into the cache. Therefore, with prefetching, the accesses complete in 103 cycles for both SC
and PL1. For this example, prefetching boosts the performance of both SC and PL1 and also equalizes the
performance of the two models.

We now consider the second code segment on the right side of Figure 5.26. This code segment resembles
a consumer process reading several memory locations. There are three read operations within the critical
section. As shown, the read to location D is assumed to hit in the cache, and the read of array E depends
on the value of D to access the appropriate element. For simplicity, we will ignore the delay due to address
calculation for accessing the array element. Under SC, the operations take 302 cycles to perform. Under
PL1, they take 203 cycles. With the prefetch technique, the operations take 203 cycles under SC and 202
cyclesunder PL1. Althoughthe performance of both SC and PL1 are enhanced by prefetching, the maximum
performance is not achieved for either model. The reason is simply because the address of the read access
to array E depends on the value of D and athough the read access to D is a cache hit, this access is not
allowed to perform (i.e., the value cannot be used by the processor) until the read of C completes (under SC)
or until thelock access completes (under PL1). Thus, while prefetching can boost performance by pipelining
severa accesses that are delayed dueto consistency constraints, it failsto remedy the cases where out-of-order
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consumption of return values isimportant to allow the processor to proceed efficiently.

In summary, prefetching is an effective technique for pipelining large latency references when the refer-
ence is delayed for ordering purposes. However, prefetching fails to boost performance when out-of-order
consumption of prefetched valuesisimportant. Such cases occur in many applications, where accesses that hit
in the cache are dispersed among accesses that miss, and the out-of-order use of the values returned by cache
hitsis critica for achieving the highest performance. The next section describes a specul ative technique that
remedies this shortcoming by allowing the processor to consume return values out-of-order regardless of the
consistency constraints. The combination of prefetching for writes and the speculative execution technique
for reads will be shown to be effective in regaining substantial opportunity for overlapping operations even
for strict models such as SC.

5.4.3 Exploitingthe Roll-Back M echanism in Dynamically-Scheduled Processor s

This section describes the specul ative execution technique for read operations. An example implementation
ispresented in Appendix P. Aswewill see, thistechniqueisparticularly applicableto dynamically-scheduled
processors which aready support aroll-back mechanism for branch misprediction.

Description of the Speculative Execution Technique

The idea behind speculative execution is simple. Assume « and v are two operations in program order,
with u being any large latency access and v being a read operation. In addition, assume the program order
congtraints for the model require the completion of » to be delayed until « completes. Speculative execution
for read operationsworks as follows. The processor obtainsor assumes areturn value for operation v before
u completes and proceeds. At the time « completes, if the return value for v used by the processor is the
same as the current value of v, then the speculation is successful. Clearly, the computation is correct since
even if v was delayed, the value the operation returns would have been the same. However, if the current
value of v is different from what was speculated by the processor, then the computation isincorrect. In this
case, we need to throw out the computation that depended on the value of v and repeat that computation.
The implementation of such a scheme requires a speculation mechanism to obtain a speculated vaue for the
access, a detection mechanismto determine whether the speculation succeeded, and a correction mechanism
to repeat the computation if the speculation was unsuccessful.

Let us consider the speculation mechanism first. The most reasonable thing to do is to complete the read
operation and use the returned value. In case the access isa cache hit, the value will be obtained quickly. In
the case of a cache miss, athough the return value will not be obtained quickly, the operation is effectively
overlapped with previous operationsin away similar to prefetching. In general, guessing on the value of the
access is not beneficial unlessthe value is known to be constrained to a small set (e.g., lock operations).

Regarding the detection mechanism, a naive way to detect an incorrect speculated value is to repeat the
access when the memory model would have allowed it to proceed under non-specul ative circumstances and
to check the return value against the speculated value. However, if the speculation mechanism performs the
speculative access and keeps the location in the cache, it is possible to determine whether the speculated
value is correct by simply monitoring the coherence transactions for that location.®® Thus, the speculative

5%The above statement implies that the location is cached. Therefore, the speculative read technique does not apply to uncached
operations since no coherencetransactionswill be sent to the requesting processor.
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execution technique can be implemented such that the cache is accessed only once per access versus the two
times required by the prefetch technique. Let us refer back to accesses v and v, where the memory model
requiresthe completion of read operation v to be delayed until « completes. The speculativetechniqueallows
access v to beissued and the processor is allowed to proceed with the return value. The detection mechanism
isasfollows. Anincoming invalidationor update request for location v before u has completed indi cates that
the val ue of the access may beincorrect.5” In addition, the lack of invalidation and update messages indicates
that the speculated value is correct. Cache replacements need to be handled properly also. If location v is
replaced from the cache before v completes, then invalidation and update requests may no longer be sent to
the cache. The speculated valuefor v isassumed stalein such acase (unless oneiswillingto repeat the access
once u completes and to check the current value with the speculated value). Appendix P provides further
implementation details for this mechanism.

Once the speculated vaue is determined to be wrong, the correction mechanism involves discarding the
computation that depended on the specul ated val ue and repeating the operation and thefollowing computation.
This mechanism is amost the same as the correction mechanism used in processors with branch prediction
machinery and the ability to execute instructions past unresolved branches. With branch prediction, if the
prediction is determined to be incorrect, the instructionsand computation following the branch are discarded
and the new target instructionsare fetched. Inasimilar way, if aspecul ated valueisdetermined to beincorrect,
the read operation and the computation following it can be discarded and the instructions can be fetched and
executed again to achieve correctness.

The specul ative techni que overcomes the shortcoming of the prefetch technique by allowing out-of-order
consumption of speculated values. Given specul ative execution, read operations can be issued as soon asthe
address for the access isknown, regardless of the consistency model supported. Referring back to the second
example in Figure 5.26, let us consider how well the speculative technique performs. We still assume that
no other processes are writing to the locations. Specul ative execution achieves the same level of pipelining
achieved by prefetching. In addition, the read operation to D no longer hinders the performance since its
return value is allowed to be consumed while previous operations are outstanding. Thus, both SC and PL1
can complete the operationsin 104 cycles.

The speculative read technique described above can aso be easily adopted to efficiently support the
initiation condition between a conflicting writefollowed by aread. Given awritewith an unresolved address,
the processor can allow reads that follow it to be speculatively issued and completed. Once the address of
the writeis resolved, it can be matched against the address of the speculative reads. In case of a match, we
can use the correction mechanism described above to retry the matching read and any computation that used
itsvalue.® This optimization is also applicable to uniprocessors since aread is required to return the value
of the latest conflicting write that is before it in program order.

Appendix P describes an example implementation of the speculative read technique.

5There are two caseswhere the speculated value remains correct. Thefirst isif the invalidation or update occurs due to false sharing,
that is, for another location in the same cache line. The second is if the new value written is the same as the speculated value. We
conservatively assume the speculated value is incorrect in either case.

58A similar optimization can be used for the Alpha memory model which requires reads to the same address to appear in program
order. The latter read can be performed speculatively, and in case the former read is to the same address, either the latter read can be
retried or its return value can be supplied to the former read.
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Related Work on Speculative Reads

We recently became aware of a couple of related patents in this area. There is an IBM patent from 1993
by Frey and Pederson [FP93] that describes a similar idea to that presented in our earlier publication from
1991 [GGH91b] regarding the use of speculative reads and rolling back in case a correction is needed. An
earlier IBM patent from 1991 by Emma et al. [EKP*T91] describes a mechanism for detecting speculative
reads that may have returned incorrect data. However, the detection mechanism described in the 1991 patent
is extremely conservative since it treats a specul ative read as incorrect not only on an incoming invalidation
but also on any cache miss. Such a conservative detection mechanism can substantially reduce the benefits of
speculative reads since it essentially prohibitsthe benefits of overlapping multiple misses and can aso lead
to frequent false detection and rollback. Neither patent describes the automatic write prefetching technique
which complements specul ative reads in an advantageous way.

5.4.4 Combining Speculative Readswith Hardware Prefetching for Writes

The combination of speculative reads with hardware prefetching for writes provides significant opportunity
to overlap memory operations regardless of the memory model supported. Consequently, the performance of
any consistency model, even the most relaxed models, can be enhanced. More importantly, the performance
difference among the various models is reduced. This latter result is noteworthy in light of the fact that
relaxed models are accompanied by a more complex programming model.

The main idea behind the prefetch and speculative read techniques is to service operations as soon as
possible, regardless of the constraintsimposed by the memory model. Of course, since correctness needsto be
maintained, the early (and speculative) service of the operationsis not always useful. For these techniquesto
provide performance benefits, the probability that a prefetched or speculated valueisinvalidated (or updated,
in case of a speculative read) must be small. There are severa reasons for expecting such invalidationsto be
infrequent. Whether prefetched or specul ated locationsareinvalidated |oosely depends onwhether itiscritica
to delay such operationsto obtain a correct execution. If the supported consistency model is arelaxed model
such as PL1, delays are imposed only at synchronization points. In many applications, the time at which one
process rel eases a synchronizationislong beforethe time another process triesto acquire the synchronization.
Thisimpliesthat no other processis simultaneously accessing the locations protected by the synchronization.
Correctness can be achieved in this case without delaying the accesses following a competing read until the
read completes or delaying a competing write until its previous operations complete. For cases where the
supported consistency mode is strict, such as SC, the strict delays imposed on operations are aso rarely
necessary for correctness. As discussed in Chapter 3, the actual frequency of competing operationsis quite
low inmost programs. Therefore, most of the delaysimposed by atypical SCimplementation are superfluous.
Nevertheless, it isimportant to substantiate the above observations in the future with extensive simulation
experiments.

Both the specul ativeread and the write prefetching techniques provide higher performance gains (relative
to aless aggressive implementation) when there is a higher frequency of long latency operations (i.e., cache
misses). With infrequent long latency operations (i.e., large number of instructions separating each cache
miss), limitations in buffer resources often disallow the processor from overlapping multiple long latency
operations due to the limited lookahead capability. Fortunately, such applicationsalready perform efficiently
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and optimizing the communication latency islessimportant.

A major implication of the techniques proposed isthat the performance of different consistency modelsis
somewhat equalized once these techniques are employed. Therefore, the choice of the consistency model to
be supported in hardware becomes lessimportant if oneiswillingto implement these techniques. The cogt, of
coursg, isthe extra hardware complexity associated with theimplementation. Whilethe prefetch techniqueis
simpleto incorporateinto cache-coherent multiprocessors, the specul ative execution technique requires more
sophisticated hardware support. Neverthel ess, the mechanisms required to implement speculative execution
are present in many current and next generation commercia processors. In particular, we showed how the
specul ativetechnique could beincorporated into one such processor design with minimal additional hardware.

Dynamically schedul ed processor designs have gained enormous popularity since 1991 when weoriginally
published the ideas on speculative reads and hardware prefetching for writes [GGH91b]. Furthermore,
to provide more efficient support for stricter memory models, several of the next generation commercial
processors have actually adopted either one or both of these techniques in their designs. The Metaflow
Thunder Sparc processor claims multiple specul ative memory reads while maintaining “ strong consistency”
(probably means TSO in the context of the Sparc architecture) [Lig94]. The MIPS R10000 uses both
speculative reads and hardware prefetching for writes to support sequential consistency. Finaly, Intel’s
Pentium Pro (or P6) seems to be using at least the speculative read technique for supporting sequential
consistency.

545 Other Related Work on Aggressively Supporting Multiprocessor Dependence
Chains

There have been a number of other techniques proposed for aggressively supporting multiprocessor de-
pendence chains that do not directly relate to any of the optimizations discussed in this section. In what
follows, we will focus on three separate implementations proposed by Adve and Hill for supporting either
the sequential consistency or the data-race-free models [AH90a, AH90b, AH93]. All three implementations
exploit the aggressive form of the specifications since they do not maintain completion or commit order at
the intermediate pointsin achain.

Adve and Hill [AH90a] have proposed an implementation for sequentia consistency that is potentially
more efficient than conventional implementations. The scheme depends on an invaidation-based cache
coherence protocol with write back caches and eager exclusivereplies. Instead of delaying the next operation
until apreviouswritecommitsor completeswith respect toall processors, themore aggressiveimplementation
delays the next operation only until the previous write is seridized (i.e., gets ownership). In case the next
operation is a write, the new value written by the write is not made visible to other processors (or written
back) until al previous writes by this processor have completed. In case the next operation is a read, the
processor can proceed to complete the read either if the read is a cache miss or if the read is a cache hit
to a dirty copy. However, aread to a clean copy may not proceed until al previous writes are complete;
the alternative is to aways treat the read as a cache miss. The gains from this optimization are expected to
be limited because of the following reasons: (a) only writes to lines with other shared copies benefit from
the optimization, (b) the latency for obtaining ownership may be only slightly smaller than the latency for
the write to commit with respect to all processors, and (c) a following read to a clean cache line cannot be
serviced quickly. Furthermore, as we discussed in the previous sections, using eager exclusive replies for
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strict model s such as SC compli cates the implementati on without much performance benefit. Finally, holding
back visibility of alinein acache for previous operationsto compl ete requires complex hardware support. In
contrast, the combination of the early acknowledgement, write prefetching, and speculative read techniques
discussed in this section can lead to a substantially higher performance implementation of SC.

Adve and Hill have also proposed an implementation for the data-race-free-0 (DRFO) model that exploits
the aggressive specification of multiprocessor dependence chains[AH90b]. Instead of delaying the service of
a synchronization write (ana ogous to a competing writein PL1) until previous data operations are compl ete,
the processor proceedsto service the synchronizationwrite by obtai ning ownershipfor thelineand performing
the write. However, a synchronization read (analogous to competing read in PL1) from any processor must
be disallowed from observing the val ue of this synchronization write until the operations preceding the write
complete. A synchronization write from any processor or the writing back of the line must also be delayed
in a similar fashion. To avoid deadlock, however, data requests to this line from other processors must
be serviced using the “remote service” mechanism [Adv93] which involves servicing aread or write from
another processor without giving up ownership for the line. For a read, an uncachable copy of the selected
word is sent back to the requesting processor. For a write, the new data must be merged into the current
copy at the destination cache and only an acknowledgement is sent back, thus disallowing the requesting
line from obtaining either a clean or dirty copy of the line. Overal, the performance gain from using the
above technique over a conventional design is likely to be minimal. A conventional design uses the write
buffer to delay synchronization writes, allowing the processor to proceed without stalling. Since thislatency
isalready not visibleto the processor, servicing thewrite lightly earlier should not affect performance much.
Therefore, the performance advantage will most likely not justify the substantial complexity in supporting
the remote service mechanism and holding back visibility of the write.

Finally, the most aggressive implementation proposed by Adve and Hill is for supporting the data-race-
free-1 (DRF1) model [AH93]. Thisimplementation ismore aggressive than the onedescribed in the previous
paragraph because a synchronization writeisnot only allowed to be serviced early, but asynchronization read
from another processor is alowed to read the new value before operations previous to the synchronization
write are complete. To achieve correctness, the writing processor informs the reading processor of any of
its incompl ete operations before the synchronization write. In turn, the reading processor must ensure not to
access the locations that are on the incomplete list until those operations complete. In effect, thisis a very
aggressive way of implementing a multiprocessor dependence chain by enforcing completion orders only
at the two end points in the chain. However, supporting this functionality in hardware is overwhelmingly
complex and does not map well to current system designs. Furthermore, the gains from these optimizations
will likely be minimal in efficient hardware designs.

Overal, the implementation techniques suggested for DRFO and DRF1 are more illustrative of the fact
that program-centric specifications alow more aggressive implementations compared to hardware-centric
specificationssuch asWO or RCsc. However, the techniquesdo not seem to provideasubstantial performance
gain over conventiona hardware designs and may in fact be impractical due to their complexity. Aswe will
discuss in Section 5.6, techniques similar to those proposed by the DRF1 implementation can be beneficia
in the context of software-based shared memory systems where the complexity is managesable and the extra
flexibility can actually provide noticeable performance gains. In fact, some of the techniques used in designs
such as LRC [KCZ92, DKCZ93] are more aggressive than the DRF1 implementation.
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5.5 Restricted I nterconnection Networ ks

A restricted network such asabusprovideslower connectivity among nodesas compared to ageneral network,
which typically trandatesinto lower scalability and performance aswell. For thisreason, restricted networks
are often used for connecting only asmall number of nodes. There are anumber of different restricted network
topologies including buses, rings, and hierarchies of the above. Restricted networks may also be used in
combination with genera networks; for example, the DASH design uses atwo-dimensional mesh network to
connect multiple clusters, with each cluster consisting of multiple processors connected by a bus.

From amemory model implementation perspective, thelower connectivity in restricted networkstypically
trand atesto more ordering guarantees among messages. This section describes how such ordering guarantees
may be exploited to achieve smpler and more efficient designs. As we will see, such designs benefit from
the aggressive form of the system requirement specifications presented in Chapter 4.

55.1 Broadcast Bus

Broadcast buses are the most popular form of restricted networks. The key characteristics of a busthat can
be exploited for implementing a cache consistency protocol are: (a8) a message is seen by all nodes on the
bus, and (b) the bus serializes all messages into a single total order. This section describes how the above
characteristics affect the design assuming a snoopy protocol; the discussion can a so be extended to adirectory
protocol implemented on a bus.

A broadcast bus greatly simplifies the support for multiprocessor dependence chains relative to the more
genera techniques described in Section 5.3.5. Consider the way write operations are handled assuming an
invalidation-based protocol. Virtually al bus-based designs use the early acknowledgement optimization
discussed in Section 5.4.1. There are two types of requests generated by a write: an exclusive or a read-
exclusive request. The exclusive request commits with respect to al processors as soon as it appears on
the bus; it immediately turns into an incoming invalidation request at every cache. The exclusive reply is
generated implicitly by the requester’s bus interface and does not appear on the bus; the early invalidation
acknowledgement is implicitly piggy-backed on this reply. The outgoing read-exclusive request behaves
differently. This request turns into an incoming read-exclusive request at other processors caches and at
the memory. The cache (or memory) that is the current owner of the line responds with a read-exclusive
reply; non-owner caches treat the read-exclusive request simply as an incoming invalidation request. The
read-exclusive request is guaranteed to be committed with respect to all processors by the time its reply
appears on the bus. Again, the invalidation ack is implicitly piggy-backed with the read-exclusive reply.
Writes are handled in an analogous way in update protocols.

Compared to the general case described in Section 5.3.5, detecting write completion is much simpler
since a single implicit invaidation acknowledgement signals that the write is committed with respect to
every processor. Therefore, there is no need to keep a count of pending invalidations for each outstanding
write. Furthermore, exclusive and read-exclusive replies are inherently delayed (i.e., they are not eager);
they implicitly signal that the write is committed with respect to all processors. Supporting category three
multi processor dependence chainsis also simplified greatly because writes are inherently atomic with respect
to multiple copies due to the broadcast nature of the bus: awrite is committed with respect to al processors
before a read from another processor can read its value. This same behavior aso holds for updates, making
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Figure 5.27: Bus hierarchies and hybrid designs.

it trivial to support category three chains with update writes.

Dueto thelack of multiplepathsand lack of message reordering, abus-based design can a so significantly
reduce the number of subtle corner cases relative to thosein a general network (see Appendix K). Therefore,
the design can be simplified by maintaining sufficient order anong messages (to the same line) in the cache
hierarchy and performing sufficient cross checks among the incoming and outgoing queues.>® For example,
thereisno need for negative acknowledgement replies, or the corresponding mechanismsfor retrying requests,
in most bus designs. Single transaction buses, which alow only a single outstanding request on the bus,
eliminate more transient cases especially those resulting from simultaneous operations on the same line. For
example, it is inherently impossible for incoming invalidation or update requests (from an earlier or later
write) to arrive a a cache while it has an outstanding request to the same line. This alleviates the need for
supporting structures for detecting the transient conditionsdescribed in Appendix K. Split-transaction buses,
which alow multiple outstanding requests on the bus, can guarantee an ana ogous behavior by disallowing
a new request from issuing on the bus if it is to the same line as a previous outstanding request from any

processor.

5.5.2 Hierarchiesof Busesand Hybrid Designs

Hierarchical designs based on restricted networks also exhibit special message ordering guarantees. Fig-
ure 5.27(a) shows an example design with a hierarchy of buses, while Figure 5.27(b) shows a hybrid design
with a small number of processors connected hierarchically to form a cluster and clusters connected using
a genera network. The following describes how the message ordering guarantees can be exploited for
efficiently supporting various memory models.

A hierarchica design such as the one shown in Figure 5.27(a) shares a lot of similarities to a cache
hierarchy (except that a given cache may be shared by multiple processors). As in a cache hierarchy, the
subset property is often enforced so that a higher level cache contains a strict subset of the data in a lower
level cache. Incoming and outgoing messages are appropriately filtered by the caches in the hierarchy. An

590f course, there is a trade-off since cross checking and maintaining a stricter order within the hierarchy can themselves lead to
higher complexity and lower performance.
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Figure 5.28: Simple abstraction for a hierarchy.

outgoing processor request traverses down the hierarchy until it is serviced, which may sometimes involve
traversing up in a separate trunk to find the data. As shown in the figure, physica memory may be placed
either close to the processors or near the bottom of the hierarchy.

Figure 5.28 shows a simple abstraction of the hierarchy. We use the concept of a root node for a given
memory lineto be the highest parent nodein the hierarchy that covers the set of nodesthat have a copy of the
line. For example, if P1 and P2 are the only two processors that have acopy of amemory line, R.1 istheroot
node for the line. However, if P3 also maintains a copy, then the root node is R. The root node designation
for alinemay changes as copies of the location are dynamically created and eliminated within the hierarchy;
the cache states at each level provide sufficient information to determine the root node as a request traverses
down the hierarchy.

A key implementation issue in a hierarchical design such as the one described above is how writes
are committed with respect to other processors. Consider the case where a location is cached by multiple
processors. For simplicity, assume the writing processor aready has a clean copy of the line. To invaidate
other copies of the linge, the outgoing exclusive request traverses down towards the root node for the line.
On receiving this request, the root node emanates incoming invalidation requests to all the child nodes that
may have a copy. The write can be considered committed with respect to al processors at this point, and
the exclusive reply that is sent back to the requesting node implicitly signals the acknowledgement for the
invalidations. Since the above exploitsthe early acknowledgement technique, extra order must be maintained
among incoming messages (i.e., those moving upward in the hierarchy) to correctly support multiprocessor
dependence chains. The constraints on incoming messages are virtualy identical to those for an ordinary
cache hierarchy as discussed in Section 5.4.1: the order from an incoming reply message to a previous
incoming invalidate request must be maintained. Furthermore, the writing processor must disallow other
processors from observing the new value until it receives the implicit acknowledgement reply from the root.
Thislatter conditionisespecially important for supporting model sthat maintain category three multi processor
dependence chains.

The following provides some intuition for why the above implementation behaves correctly. Consider
a processor Pi that communicates with a processor Pj. Such communication involves a message that is
guaranteed to traverse from the common root of Pi and Pj up towards Fj. By maintaining the appropriate
order among incoming messages, any incoming invalidation messages that had previoudy arrived at the
common root are guaranteed to be pushed towards Fj by the later communication message. Therefore, any
writesthat were committed with respect to Pi (before Pi sends out the message to Pj) a so get committed with
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Figure 5.29: Ringsand hierarchies of rings.

respect to Pj and any other nodesthat are traversed on the way from the common root to Fj.

Update protocols can be implemented in an analogous manner, with the requirement that an incoming
reply or an incoming update request must be ordered with respect to a previousincoming invalidate or update
request. The implementation for invalidation-based protocols can be modified dightly to allow incoming
invalidaterequeststo be sent to the child nodes as the outgoi ng exclusiverequest traverses down the hierarchy
toward the node (instead of delaying the sending of invalidations until the request reaches the root node),
with the acknowledgement <till generated at the root. However, this aternative is not applicable to update
requests since the order among updates to the same location isimportant and the root node playsan important
rolein seriaizing the updates.

Even though restricted networks such as hierarchies of buses do not scale well, they can be effective for
connecting a small number of processors together. For this reason, some designs may use a hybrid mix of
restricted and genera networks as shown in Figure 5.27(b). In such a design, each cluster of processors
connected with arestricted network can be treated as a single cache hierarchy, with the difference that some
inter-processor communication occurs completely within a cluster. Outgoing exclusive requests that reach
the root node at the interface with the general network lead to invalidation messages that are sent to other
clusters with a copy. Each invalidation request is acknowledged as soon as it is propagated (through the
general network) to the bottom root node of its destination cluster and the requesting cluster receives a
final invalidation acknowledgement (implicit in case of delayed exclusive replies) after al invalidationsare
acknowledged. For update-based protocols, supporting category three multiprocessor dependence chainsis
difficult in a hybrid design for the same reasons discussed in Section 5.3.5.

5.5.3 Rings

A ring is another example of a restricted network whose ordering properties can be exploited to efficiently
support a memory model. Figure 5.29(a) shows an example of a single ring, while Figure 5.29(b) shows
multipleringsconnected into ahierarchy. A ringmay either be unidirectional or bidirectional; aunidirectional
ring requires all messages to traverse the ring in the same direction (e.g., clockwise). The discussion below
assumes rings with a snoopy coherence protocol; many of the issues apply to directory protocolsas well.
Invalidation-based protocols can be implemented on aring using conventional techniques. For example,
assume an exclusive request isissued from node 3 in the ring in Figure 5.29(a). The exclusiverequest travels
around thering (e.g., from 3to 4 to 1 to 2 to 3) and commits an incoming invalidation at each node along
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the way. Therefore, by the time the request gets back to node 3, the write has been committed with respect
to al nodes on the ring. Node 3 must disallow any other processor from reading the value of its write until
the exclusive request makes the loop around the ring. No other message ordering constraints are required
and except for invalidationsthat must make the full loop, other messages may travel in either direction on the
ring.

Update-based protocols are a little bit more chalenging. To implement updates, a single node must be
chosen as the root node in the ring. The root node acts as a serialization point for update requests. Assume
node 1 is the root node and consider an update request generated by node 3. The update request must first
travel from node 3 to the node 1 without affecting any nodes a ong the way. Once the request reaches the root
node, it traversesthering onceinasingledirection (i.e., same direction as other updates emanated by the root
node) and generates an incoming update request at every node a ong theway. Update requestsare not allowed
to bypass one another as they loop back towards the root node. Node 3 can consider the update request
acknowledged when the regquest reaches it; it should also not provide the new value to any other processors
until this happens. Note that node 3 considers the update acknowledged even though the update has not yet
been committed with respect to node 4. Correctnessis still maintained because of the following constraints
on reply messages. Assume all update requests travel in the clockwise direction; therefore, starting at the
root, the node numbers as depicted in Figure 5.29(a) increase in thisdirection. To ensure correctness, areply
that is generated by node ¢ and destined for node j must travel from node ¢ to node j in the same direction as
update requests (i.e., clockwise) if ¢ < j. Furthermore, reply messages cannot overtake updaterequestsin the
clockwise direction. The above ensures that areply from node i pushes all updates seen by node i to node j
and any other nodes a ong theway. The reason thefirst constraint isnot necessary when: > j isbecause any
updates received by i have already been received by j given j is“upstream” fromi. Therefore, areply from
node 4 to node 3 can indeed exploit the shorter path by traveling counter-clockwise. The above technique
can also be used to implement invalidation-based protocols; however, the implementation described in the
previous paragraph is simpler and more efficient since it does not impose any message ordering constraints
around the ring.

The above techniques can be easily extended to a hierarchy of rings. Figure 5.29(b) shows a two-level
hierarchy with four rings at the first level of the hierarchy connected by a single ring at the second level.
Within the rings at thefirst level, the root node is the node that interfaces to the second level (node 1 in each
ring). In addition, one of the nodes at the second level must be chosen as the root node at that level; assume
node A istheroot in the discussion below. Just as in a cache hierarchy, messages can filtered at theinterface
between the rings to decide whether the message must be sent up or down to the next level. Consider an
exclusive or update request issued by node 2 on the rightmost first level ring (connected to node C at the
second level). Thisrequest must first traverse to the root node (node 1) onits own ring without affecting any
nodes on its path. At the root node, the implementation must determine whether any copies of the location
exist outside thisring. If there are no such copies, then the same technique described above for asinglering
can be used for handling the request. Otherwise, the request must go onto the second level ring and travel to
the root node at that level (node A) again without affecting any nodes on its path. Once it reaches the root
node, the update or invalidate request must traverse the nodes on the second leve ring in asingle direction
(i.e, same direction as any other requests emanated from the root node). Assume the direction is clockwise
for this discussion. As the request visits each node, the interface at the node must decide if an update or
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invalidaterequest must be generated for thefirst level ring attached to that node based on whether any copies
of the line are present on that ring. When arequest is sent to the first level ring, the root node (node 1) on
that ring sends the request around in asingle direction (again assume thisis clockwise). The requesting node
can consider the write acknowledged when the request makes it back to it and it must hold back the new
value from other processors until thisevent occurs. The following constraints must be upheld for correctness.
Update requests that emanate from a root node on any ring may not bypass previous invalidate or update
requests asthey travel clockwise on that ring. Asbefore, thereisalso a constraint on reply messages that isa
simple extension of therequirementsin asinglering. If areply isdestined from node i to node j on agiven
ring, it has to travel clockwise if ¢ < j. In addition, it cannot bypass any previous invalidation or update
requests on thering as it travels clockwise. For example, if areply is sent from node 2 on ring A to node 2
onring C, thereply can travel counter-clockwiseto node 1 onring A, then clockwise from node A to node C
on thelevel 2ring (since A < C), and then clockwise from node 1 to node 2 on ring C. Again, the intuition
behind the above requirement is that replies appropriately push previous invalidate and update requests as
they go around the rings.

554 Reated Work on Restricted I nterconnection Networ ks

There are a number of previously proposed schemes for exploiting the extra ordering guarantees in restricted
interconnection networks to implement various memory models. We briefly cover afew of these schemes
below.

Landin et a. [LHH91] proposeimplementationsof the SC and PC model s on so called race-free networks.
They define arace-free network as follows:

o A race-free network is a network with the topology of any acyclic undirected network graph.
o Transactions propagate on the arcs in the network without the possibility of overtaking each other.

o Transactions may be buffered in the network nodes but buffers must maintain a strict FIFO order
between transactions.

Landin et a. describe three different implementations. The first is an implementation of SC and is similar
to the implementation for hierarchies of buses described in Section 5.5.2: a write request traverses to the
root node for the memory line and sends invalidationsto al copies from the root; the root node aso sends
an acknowledge reply to the writing processor. The second implementation supports the PC model. This
implementation takes advantage of the order among outgoing messages to pipeline writes. After issuing a
write that misses, the processor can issue a subsequent write before the previous writeis acknowledged. The
write is acknowledged by theroot in a similar way to thefirst scheme, and the value of the write is not made
visibleto any other operationsuntil thewriteis acknowledged.®° We do not describethe thirdimplementation
proposed by Landin et a. since it does not enforce the coherence requirement for writes, and therefore fails
to support the semantics of the PC moddl asit is defined in our work.

One problem with the concept of race-free networksisits restrictiveness. For example, even processors
connected on a shared bus do not satisfy the required restrictionsif the cache hierarchy is considered as part

80The definition of PC used by Landin et al. for thisimplementationis stricter than that used in this thesis becauseit maintain category
3 chains. Even with the stricter definition, they could relax the above condition to allow the write to be visible to reads from its own
processor.
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of the network. Thisis because most commercial processors use multiple paths for incoming and outgoing
messages within the cache hierarchy which allows messages to get reordered; for example, an outgoing
reply is often allowed to bypass previous outgoing requests from within the cache hierarchy. Therefore,
an implementation such as the one for PC that depends on al messages being maintained in order on the
outgoing path fails to work; the processor must wait for the write to at least reach the bus before issuing the
next write. Landin et al. correctly observe that the first implementation of SC is robust in this respect and
does not depend on FIFO ordering among outgoing messages. However, in contrast to our solution, they still
impose FIFO ordering among incoming messages (i.e., sent from aroot node to its children).

Our suggested implementationsfor buses or hierarchies of buses are more general than the race-free work
in several ways. The primary difference arises from the observation that FIFO ordering is not necessary
in either the outgoing or the incoming path. For example, the only requirement on the incoming path (for
an invalidation protocol) is to maintain the order from an incoming reply to a previous incoming invalidate
request. This makes the implementation technique applicable to a much larger set of designs where FIFO
ordering may not be maintained. Furthermore, the techniques described here are applicable to any of the
relaxed models described in thisthesis.

Several researchers have studied the ordering properties in rings for supporting various memory consis-
tency models. Collier [Col92] describesa conceptua singlering system that maintainsafull copy of memory
at every node and uses updates to provide coherence among the copies. Collier observes that a root node
can be used to serialize all writes by requiring updates to traverse in the same direction, and that the writing
processor can consider the write “complete” when the update message reaches it. However, because each
nodeis assumed to maintain afull copy of memory, Collier’ssolution does not deal with any read requests or
corresponding read replies on the ring. In contrast, our solution for updates on a single ring is more genera
and prescribes the ordering constraints between updates requests and other messages such as read repliesthat
are required for correctness in a redlistic system. Furthermore, our solution for invalidationsin a singlering
environment is more efficient since it does not require writesto be serialized at aroot node. Keith Farkas et
al. [FV S92] describe a protocol for supporting sequential consistency in ahierarchy of ringsin the context of
the Hector multiprocessor. Their design assumptions are quite different from the implementations discussed
here; furthermore, their design does not fully exploit the ordering properties of rings for supporting update
protocols.

5.6 Systemswith Software-Based Coherence

As an dternative to hardware cache coherence, loosely coupled multicomputers, such as workstations con-
nected by a fast local area network, may support the single address space model in software and provide
caching through replication of shared data in the local main memory of each node. To amortize the high
software overhead and large latency of communication, loosely coupled systems require transfer of datato
be done at larger granularities. Thus, the granularity for communication is typically chosen to be either that
of fixed size pages of severa kilobytes or large variable size objects. The flexibility provided by relaxed
memory models can be used to boost performance in both types of designs. Compared to hardware designs,
software designs exhibit an extremely large overhead and latency for communication. Therefore, in contrast
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to hardware designs where relaxed models are primarily used to hide the latency of communication, soft-
ware designs also exploit relaxed models to both delay and reduce (e.g., through coaescing) the number of
communicated messages. Below, we providea brief overview of severa software systems.

Ivy isamong the first systems that implemented a page-based distributed shared memory (DSM) proto-
col [LH89]. Ivy alows pages to be replicated among multiple readers and exploits conventional memory
management hardware to maintain coherence among the multiple copies. The protection status for each page
is manipulated to trigger faults on references to invalid pages and on writes to read shared pages. The fault
handlers in turn generate the appropriate coherence operations. vy maintains the sequentia consistency
model which allowsthe system to execute any shared memory program without modifications. However, the
large coherence granularity of pages makes false sharing a major problemin Ivy.

Thefal se sharing problemsin page-based designscan bepartially aleviated by exploiting relaxed memory
models. For example, Munin [CBZ91] exploitsamode similar to release consistency to efficiently support
multiple writers to a single page by delaying the propagation of invalidation or update transactions due to
writes until a rel ease synchronization (e.g., unlock). In a hardware design, this optimization is conceptually
analogousto gathering write operationsin awrite buffer and flushing the buffer on arelease. To ensure that
the page returnsto a consistent state, each processor is required to keep track of the changes it makes to its
local copy. Munin accomplishes this by duplicating a page before modifying it and comparing the dirty page
to the origina duplicate. These computed changes or diffs are then communicated to other copies at the next
release synchronization. Delaying the communication of write operations and coalescing several writesinto
a single message improves performance in two ways: (a) the extra communication induced by false sharing
isreduced, and (b) fewer messages are communicated due to the coalescing.

Lazy release consistency (LRC) [KCZ92, DKCZ93] is a more aggressive implementation technique for
page-based systems that further exploits optimizations enabled by relaxed models such as PL1.* Instead
of eagerly propagating changes to all copies a each release synchronization as in Munin, LRC delays
communication until a processor with a copy attempts to acquire a synchronization variable (e.g., through a
lock). This correspondsto an aggressive implementation of the multiprocessor dependence chainsin amodel
such as PL1 where the completion of a write at the head of a chain (with respect to the last processor in
the chain) is delayed until just before the conflicting operation at the tail of the chain. The more advanced
optimizations in LRC lead to a more complex and higher overhead protocol than Munin. Nevertheless,
simulation results have shown that reduction in the number and size of messages can lead to an overdl
performance gain [KCZ92, DKCZ93].

The main difficulty with software page-based systems is the mismatch between the fixed size coherence
granularity and the inherent grain of sharing and communication in an application. The ability to maintain
coherence at a variable grain size has the potential of alleviating many of the problems (e.g., false sharing)
that arise from such a mismatch. Midway [BZ91, BZS93] is an example of a software system that allows
the coherence grain to be defined at thelevel of arbitrary programmer-defined regions. The Midway protocol
is based on an extension of release consistency called entry consistency (EC). Entry consistency extendsthe
rel ease consi stency model by requiring the programmer to explicitly associate shared datawith synchronization
variables. Similar to LRC, EC alows communication to be delayed until a processor attempts to acquire a
synchronization. Instead of maintaining duplicate copies and computing diffsasin Munin and LRC, Midway

61The LRC implementation is more relaxed than a release consistent system because it enforces a multiprocessor dependence chain
only if al the constituent conflict orders are among pairs of competing operations (e.g., asin the PL1 model).
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associates a version number with finer grain sub-regions within each region. The compiler is required to
generate extrainstructionsfor each shared store to modify the appropriate version number. By comparing the
version numbers of the two copies, the system can identify the sub-regions that must be communicated. EC
provides an advantage over LRC since it can exploit the information associated with each synchronization
to limit the communication to only the data regions protected by that synchronization. Thisis a classic
example of an optimization that can be beneficial in a software design, and yet istoo complex and probably
not worthwhileto support in a hardware design.

One disadvantage of Midway compared to Munin and LRC isthat the programmer is required to provide
additional informationto associate datawith synchronizations. Theorigina Midway proposal [BZ91] required
all shared data to be explicitly associated with synchronizations. Since annotating every use of every shared
data can become burdensome for programmers, a follow-on proposal [BZS93] prescribes supporting default
conservative information whereby entry consistency intuitively degenerates either to release consistency or
to processor consistency for certain operations depending on the amount of information provided by the
programmer. This approach allows the programmer to selectively provide usage information for only the
subset of data regions that should be kept coherent through entry consistency. The remaining data regions
are kept coherent using a page-based approach with updates that adheres to either the processor or release
consistency semantics.

Software systems such asMunin, LRC, and Midway providetheir own stylized synchronization primitives
such aslocks and barriers. These synchronization primitivesare usually implemented using explicit message
passing (i.e., primitivesare not implemented on top of ashared memory abstraction). Furthermore, programs
are required to only use the provided primitives for synchronization and sufficient synchronization must be
used to avoid competing data operations. This leads to a restrictive programming model since programmers
cannot define their own synchronization primitives. However, the restrictive nature of the programs greatly
simplifies the implementation of these systems. Unlike general models such as PL 1, the only multiprocessor
dependence chain that involves data operations is a category two chain that starts and ends with a pair of
conflicting data operations, with al its constituent conflict orders being “write-read” pairs of synchronization
primitives (e.g., an unlock-lock pair). Similarly, a data location cannot be accessed by a synchronization
primitive, so data locations are aways accessed by non-competing operations. Furthermore, these systems
typically exploit the fact that neither the coherence requirement nor the termination condition need to be
supported for data write operations (similar to non-competing writesin PL1, for example). Finally, they do
not support atomic read-modify-write operations on datalocations.

5.7 Interaction with Thread Placement and Migration

So far, we have implicitly assumed that every thread or process executes on its own dedicated physica
processor. However, an actual system may map multiplethreadsor processes onto asingle physical processor.
Furthermore, threads or processes may be dynamically migrated to different physical processors during their
execution. Thread placement and migration may interact with the memory behavior of a programif they are
not carefully implemented. In this section, we describe various techniques for transparently supporting this
type of resource scheduling.
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Figure 5.30: Example of thread migration.
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Figure 5.31: Example of a category 1 chain transformed to a category 3 chain.

5.7.1 Thread Migration

Figure 5.30 showsasimple program before and after thread migration. Asshown in Figure5.30(b), thethread
executing on P1 is preempted after issuing itsfirst operation, is placed on the task queue and removed from
the queue by P2, and finally resumes its execution on P2. The overhead of achieving thread migration varies
depending on how light-weight the threadsare. Even initssimplest form, however, thread migrationinvolves
saving a minimum amount of context (such as registers on the source processor) and restoring this context
on the target processor. There are numerous mechanisms and policies for thread migration. Regardless of
how migration is achieved however, some form of communication is required between the source and target
processors. For simplicity, our examples conceptually depict this communication through the write and read
operationsto the task queue.

Consider how thread migration can interact with memory behavior. Assumethe programin Figure5.30(a)
is written for the sequential consistency model, thus requiring the read of A to return the value 1 in al
executions. For thread migration to be transparent, the above condition must also be upheld after migration.
Such transparency is present if the implementation maintains the multiprocessor dependence chain from the
write of A on P1 to the read of A on P2 with the intermediate conflict order between the write and read of
the task queue. Since this chain is maintained by any SC implementation, the above migration is indeed
transparent.

In the example above, migration transforms a simple program order relation between two conflicting
operationsinto a category 2 multiprocessor dependence chain. Similarly, a category 1 chain may be trans-
formed into a category 3 chain, for example as shown in Figure 5.31. Finaly, migration transforms category
2 and category 3 chainsinto longer chains of the same category. And in all cases, migration introduces extra
operationsto new addresses (e.g., operations to task queue) within the chain.
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As discussed above, transparent thread migration requires any execution outcomes that are disallowed
before migration to remain disallowed after migration. The above condition is trivialy satisfied for imple-
mentations of the SC, IBM-370, and TSO model s because these model s enforce the resulting multi processor
chainsthat arise due to migration. However, implementations of other modelstypically require extra precau-
tionsto satisfy thiscondition. For example, consider an implementation of the PSO model with the example
in Figure 5.30. Since the outcome (u=0) is disallowed before migration, it must remain disallowed after.
However, the program as shown in Figure 5.30(b) may yield the (u=0) outcome under PSO since the writeto
thetask queueisalowed to complete before the write of A. To remedy this, the writeto the task queue on P1
must be proceeded with a write fence (the store barrier for PSO) to ensure the chain from the write of A to
theread of A isupheld. This can be easily achieved by appropriately modifying the preemption code aong
with the code that performs the thread migration.

Other models require similar modifications to the preemption and thread migration code to ensure cor-
rectness. For example, WO requires both the write and the read operation to the task queue to be labeled as
synchronizationsin the example in Figure 5.30. The RCsc and RCpc models require the two operation to be
labeled as release and acquire respectively. Alpha, RMO, and PowerPC all require the write to be preceded
by and the read to be followed by afence.®? Finally, PL1 requires competing labels, and PL2 and PL3 require
sync labels for both operations.

The requirements described above may be insufficient for achieving transparency in aggressive imple-
mentations of the PC, RCsc, RCpc, and PL3 models.% The problem arises due to certain category 1 chains
that are enforced before migration, but are transformed to unenforced category 3 chains after migration.®®
Figure 5.31 shows a canonical example where a category 1 chainis transformed into a category 3 chain as a
result of migration. Consider the PC model as an example. Given the origina program in Figure 5.31(a), the
outcome (u,v)=(1,0) isdisallowed. However, PC alowsthe (u,v)=(1,0) outcomefor the transformed program
after thread migration since the resulting category 3 chain isnot enforced. The RCsc, RCpc, and PL3 models
can lead to analogous problems.%® Whether an implementation exhibits the above problem depends on how
aggressiveit is; e.g., implementations that conservatively support multiple-copy atomicity for al writes (or
in case of PL3, for all competing writes) do not exhibit the anomal ous behavior described above.

Even though the example in Figure 5.31 may seem contrived, this type of interaction can easily arise
in practice. Figure 5.32 shows an example program where P1 modifies the fields of a record and then sets
Rec_Ptr to point to the record, and P2 waits for the pointer to become valid before reading the fields of the
record. The competing operations are shown in bold (labeled as rel ease and acquire for RCpc, and as loop
for PL3). The above program provides sequentialy consistent results if executed on a PC, RCpc, or PL3

62RM O requires a membar(RW,WW) fence before the write and a membar(RR,RW) fence after the read.

63The operations can be conservatively |abeled as non-loop syncsin PL 3; the more aggressive loop label can be usedif the operations
satisfy the requirementsfor thislabel.

64The addition of the third multiprocessor dependence chain in the sufficient conditions for PL1 and PL2 (Figures 4.14 and 4.15,
respectively) presented in Chapter 4 ensures that the above two models do not exhibit the problem described here.

65Even though PowerPC does not support any category 3 chains, it also does not support any category 1 chains so the above problem
doesnot arise. A similar problem can arise for ports of PL3 programs, as specified in Section 4.4 of the previous chapter, to a sufficiently
aggressive implementation of PC or RCpc; one way to remedy this problem is to use a more conservative port, such as the same port
used for PL2 programs.

66Examples that lead to the above problem in aggressive implementations of RCsc are a bit more subtle. Consider the program in
Figure 5.31(a) with all operations labeled as non-competing, and insert a release to location B and an acquire to location C between
the two reads of A on P2. In this example, the category 1 chain from the write of A to the second read of A is upheld under the RCsc
model, but the category 3 chain for the transformed program (e.g., assuming the migration point is right before the second read of A)
is not guaranteed to be enforced even if the operationsto the task queue are appropriately labeled according to the rulesin the previous
paragraph.
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Initially Rec_Ptr = nil

P1 P2
al: tmp_ptr—>fieldl = 1; a2: while (Rec_Ptr == nil);
b1l: tmp_ptr—>field2 = 2; _>b2: u = Rec_Ptr—>field1;
cl: Rec_Ptr =tmp_ptr; _>02: v = Rec_Ptr—>field2;

Figure 5.32: A morerealistic example for thread migration.

implementation. However, if the execution thread on P2 is preempted (at either of the two points shown by
the arrows) and migrated to a different processor, the program may erroneously dereference a null pointer
(in statement (b2) or (c2)) since the new value for the pointer may not have yet been propagated to the third
processor.

A general way to remedy the above problem for aggressiveimplementationsof PC, RCsc, RCpc, and PL3
isto ensurethat any writesthat have completed with respect to the processor from which thethread ismigrated
also complete with respect to the target processor where the thread is migrated. Consider the example in
Figure 5.33(a) executing on an aggressive implementation of PC. The outcomes (u,v,w)=(1,2,0) and (1,2,1)
are disallowed before migration. However, either outcome may occur with the simple migration shown in
Figure5.33(a). Figure 5.33(b) shows oneway to extend the migration code to guarantee correct behavior. As
shown, the processor wherethethread ismigrated to (i.e., P4) sendsan interrupt to al other processors (except
the processor where the thread is migrated from) and forces a synchronization with these processorsto ensure
all writeissued by those processors are complete with respect toit. Inthisway, theimplementation guarantees
that the read of A on P4 completes after the writes of A on P1 and P2.%” For models such as RCsc, RCpc,
and PL3, appropriate labels must be used for the additional synchronizationsto ensure the relevant chains
are indeed enforced. There are several ways to reduce the overhead of the above technique. For example,
the runtime or operating system may be able to limit the set of processors that need to be interrupted based
on knowledge of other processors that have access to the pages used by the migrated thread. Similarly, the
interrupt and synchronization phases may be optimized by using tree algorithms. Nevertheless, interrupting
and communicating with a set of other processors increases the overhead of thread migration, and can be
especialy undesirable in systems with light weight threads and frequent thread migration. This creates a
trade-off for aggressive implementations of the four model's discussed above.

5.7.2 Thread Placement

In specifying memory models, we inherently assumed anideal system where each thread executes on itsown
dedicated processor. In practice, however, each processor may execute multiplethreads by context switching
from one thread to another. Nevertheless, the memory behavior for the real system must resemble that of
the ideal system; i.e., outcomes that are disallowed in the ideal system must remain disallowed by the real
system. This section describes several techniques for ensuring the above property.

67 The above mechanism is quite similar to the way TLB consistency is managed by some operating systems when a page mapping is
changed; the nodethat attempts to change the mapping communicateswith other processorsto ensure that all previous operationsissued
to the given physical page complete before the mapping is altered.
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Figure 5.33: Different ways of implementing thread migration.
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Figure 5.34: Scheduling multiple threads on the same processor.

The main issue that arises with respect to thread placement is the potentially different behavior of
conflicting operations when they are issued by different processors as compared to when they are issued by
the same processor. For example, consider awrite on P1 and a conflicting read on P2. If the operations are
on different processors, the read is not allowed to return the value of the write until the write completes with
respect to P2. Implementationsthat enforce multiple-copy atomicity (assuming thefirst technique described
in Section 5.3.5) may further restrict the interaction: the read is not allowed to return the value of the write
until the write commits or completes with respect to al processors. Contrast the above restrictions with the
case when the conflicting operations are issued by the same processor. For example, implementations that
exploit theread forwarding optimization allow theread to return the value of the write beforethewriteis even
serialized with respect to other writes. Consequently, the fact that the read has completed (i.e., it returned the
value of the write) no longer implies that the corresponding writeis committed or completed with respect to
any processor. The above can lead to different semantics when multiple threads are mapped onto the same
processor.58

Figure 5.34 shows a simple example of the write-read interaction described above. The original program
has three independent threads. Assuming the SC model, the outcome (u,v,w)=(1,1,0) is disallowed. Fig-
ure 5.34(b) shows the effect of mapping the first two threads onto a single physical processor. Consider the
interaction between the write of A and the read of A in statements (al) and (a2), respectively. Assume an
aggressiveimplementation of SC. When the two operationsare on different processors, theread isnot allowed
to return the value of the write until the writeis committed or completed with respect to all other processors.
Therefore, by delaying the write of B for the read to complete, the implementation can ensure that the write
of A has been committed with respect to al processors before the write of B commits or completes with
respect to any processor. On the other hand, when the operations are on the same processor, a sufficiently
aggressive implementation of SC may allow the read to return the value of the write before the writeis even
serialized with respect to other writes. Therefore, delaying the write of B for the read of A failsto impose
an order between the write of B and the write of A. Fortunately, as long as the SC implementation treats the
operationson P1’ as though they belong to the same thread, the above issue does not lead to a problem; the
writeof B isstill delayed for thewriteof A to commit or complete with respect to all processorsand therefore,
the outcome (u,v,w)=(1,1,0) remains disallowed. However, problems may arise if the SC implementation
attempts to exploit the fact that the write of A and B actually belong to two different threads and does not
enforce the “program order” between the two writes.

68The anomal ous behaviors described in this section do not occur in the degenerate case where all threads are mapped to the same
processor.
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Figure 5.35: An example of thread placement with awrite-writeinteraction.

A similar issue arises with write operations in implementations that support eager exclusive replies (see
Section 5.3.5). Consider two conflicting write operations on different processors (anomalies may aso arise
for non-conflicting writes if they lie on the same cache line). As mentioned in Section 5.3.5, to facilitate
detecting the completion of writes, most implementations delay the service of the second write until the first
write is completed or committed with respect to al processors. However, if the two writes are issued by
the same processor, the second write may be serviced immediately after the eager exclusive reply returnsfor
the first write, even though the first write may not have completed yet. Figure 5.35 shows an example that
illustrates the write-writeinteraction. Assume amodel such as WO with the writeand read to B labeled as a
synchronization operations. The outcomes (u,v)=(1,0) and (1,1) are disalowed by the original program, but
may not be disallowed in Figure 5.35(b) given an aggressive implementation with eager replies where the
write of B does not get delayed for thefirst write of A (labeled (al)).

Anomalies arising from the above write-write interaction can be alleviated for any memory mode by
conservatively treating all operations on the same processor (e.g., P1’ in the above example) as belonging
to the same thread. Unfortunately, the above is not a sufficient solution for anomalies arising from the
write-read interaction when all combinations of models and implementations are considered. Consider the
examplein Figure5.36, along with an aggressive implementation of amodel such as TSO or PC. The outcome
(u,v,w,x)=(1,2,0,0) isdisallowed in the original program mapped onto four processors. Figure 5.36(b) shows
the scenario where two threads are assigned to each processor. In thiscase, even if the operationson P2’ are
conservatively treated as if they belong to the same thread, an aggressive implementation of TSO or PC can
lead to the outcome (u,v,w,x)=(1,2,0,0) (thisisthe same exampleasin Figure 2.14(b) discussed in Chapter 2).
The above behavior is somewhat anomalous since it is typically the case that the same program running on
fewer processors leads to fewer possible outcomes. However, the read forwarding optimization changes this
(for some of the models) by actually allowing a program that runs on fewer processors to possibly lead to
more outcomes than if it ran on more processors.

Similar problemscan arisefor implementationsof other model swhose semanticsare stricter in theabsence
of the read forwarding optimization. These include TSO, PC, PSO, RCsc, RCpc, RMO, and the sufficient
specifications for PL1, PL2, and PL3. The example in Figure 5.36 can be easily adapted to illustrate this
issue for most of the above models. For the PL1 specification, for example, simply consider the operations
to location C to be competing and the remaining operations to be non-competing.%° Examples for RCsc
are a little bit more subtle; Figure 5.37 shows one such example where the outcome (u,v,w,x)=(2,0,1,2) is

69This labeling does not make the program properly-labeled. However, the sufficient conditions for PL1 (or PL2 or PL3) place
restrictions on non-properly-labeled programs as well. Our conjecture is that the anomalous behavior will not be noticeable for the
properly-labeled programs.
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Figure 5.36: Another example of thread placement with awrite-read interaction.

disallowed by the original program, but may potentially be allowed when two of the threads are merged onto
asingle processor.

One conservative solution for remedying the write-read interaction described aboveisto simply disallow
optimizationssuch asread forwarding. However, thissolutionis undesirable sinceit can reduce singlethread
performance. Another conservative solutionisto wait for all writesfrom a processor to complete (or commit
with respect to other processors) before switching to a different context. Thisfunctionality can be included as
part of the context switch code, and achieving the delay may require using explicit fence instructionsin some
designs. Inthisway, aread or write operation from the next thread isinherently delayed until the conflicting
writes from the previous thread are complete, and therefore the interaction among conflicting operations in
the two threadsis similar to when the threads are on different processors.

The solutions described above are satisfactory for systems with infrequent context switching among
processes or threads. However, these sol utionsare not appropriatefor systemsthat exploit context switching at
afiner grain, for example, to achieve overlap among longer latency operationsfrom different threads. Treating
operations from multiple threads as though they belong to the same thread is undesirable since it imposes
unnecessary program order among operations from independent threads, thus reducing the opportunity for
overlap especialy with stricter models such as SC. Similarly, waiting for writes in one thread to complete
before switching to the next thread is undesirable because it €liminates the opportunity to overlap the latency
of the write with operationsin the next thread.

A moreaggressive solutionis possibleif theimplementation dynamically detects aread or writeoperation
from one thread that is to the same line as an outstanding write operation from a different thread and delays
the service of this operation relative to the outstanding write in the same way that it would be delayed if it
had been issued by another processor. The above requires adding some form of thread identification to the
record of the outstanding write operations from the processor (e.g., by extending the entries in the pending
write buffer discussed in Section 5.2.3). In this way, optimizations such as read forwarding can be allowed
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Figure 5.37: Example of thread placement for the RCsc model.

for read operationsfrom the same thread whilethey are disallowed for read operationsfrom a different thread
(read forwarding from a different thread is disallowed if the write is not yet complete with respect to its
processor). Similarly, for models that require multiple-copy atomicity for writes, a conflicting read from a
different thread is delayed until the outstanding write actually commits (or completes) with respect to al
processors.”® Finally, to deal with thewrite-writeinteraction inimplementationswith eager exclusive replies,
awrite operation from a different thread that is within the same cache line is delayed until the outstanding
write is committed with respect to all processors.

The above solution effectively disallows optimizations, such as read forwarding, that are used within
a single thread from being used across threads. This technique clearly incurs more hardware support and
complexity. However, it exploits the fact that no program order must be enforced among operations from
different threads, and does not unnecessarily delay the next thread for completion of writes from the previous
thread. In fact, delays only occur when there is an operation from one thread to the same address (or cache
linein case of awrite) as an outstanding write from the previousthread. Such delays are typically infrequent
since the chances for a write immediately followed by aread or writeto the same line is much lower across
threads as compared to within a single thread. Therefore, this solution can indeed efficiently support fine
grain context switching.

Whilethe above discussion has focused on executing multiplethreads on a single processor, similar issues
may arise in designs that tightly couple processors to share buffers or caches within a cache hierarchy. For
example, the same write-read or write-write interactions may be present if two processors share a cache
and the write from one processor can become visible to the other processor before the write is serialized or
committed with respect to al processors. The aggressive solution that dynamically disallows the service of
conflicting operations from one thread while thereis an outstanding write from another can be easily adapted
for achieving correct implementationsin these types of designs.”*

7 Asdiscussedin Section 5.3.5, this requirement is unnecessary for the PC, RCpc, and PowerPC models. For the PL1 and PL2 models,
it is sufficient to delay the read only if the outstanding write is competing. For the PL3 model, it is sufficient to delay the read only if the
write is non-loop or non-sync.

"1The remote access cache (RAC) in DASH usesa variation of this solution by actually allowing an operation from another processor
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5.8 Interaction with Other Latency Hiding Techniques

Thissection describestheinteraction of memory consi stency model swith two other latency hiding techniques:
prefetching and use of multiple context processors.

5.8.1 Prefetching
Prefetching techniques can be classified based on the following characteristics:
¢ binding or non-binding,
¢ hardware or software controlled,
o shared or exclusive copy prefetch, and
o producer-initiated or consumer-initiated.

Section 5.4.2 introduced some of the above distinctions.

A binding prefetch binds the value of a later reference at the time the prefetch completes. In contrast,
a non-binding prefetch simply brings data closer to the processor and the value is kept coherent until the
processor actually accesses the data. Binding prefetches can affect the memory behavior of a program
and must be treated identically to read operations in terms of their ordering with respect to other memory
operations. On the other hand, non-binding prefetches do not affect the correctness of a program and can be
used simply as a performance boosting technique; for example, the datawithin acritical section can be safely
prefetched before the critical section is actually entered. The following discussion focuses on non-binding
prefetches due to their greater flexibility.

The second distinction is based on whether prefetch operations are generated automatically by hardware
or whether the compiler or programmer must invoke the appropriate prefetch operations through software.
The next feature distinguisheswhether the copy that is prefetched isa shared or an exclusive copy of thedata,
corresponding to aread versus aread-exclusive prefetch, respectively. Finally, consumer-initiated prefetchis
the more common form of prefetching where the processor that issues the prefetch is the ultimate consumer
of the data. The alternative is producer-initiated prefetch where the “producer” processor pushes a copy
of the data closer to the consumer processor. The deliver operation in DASH [LLGT92] and the post-store
operation in KSR [Res92] are examples of producer-initiated prefetches. The following discussion primarily
focuses on consumer-initiated prefetching.

To eliminate unnecessary prefetches, consumer-initiated read and read-exclusive prefetch operations
should ideally check for the data within the processor’s cache hierarchy before they areissued to the memory
system.”? Furthermore, it is desirable to keep track of outstanding prefetch operations to allow the merging
of subsequent prefetches or ordinary operations to the same cache line. A simple way to achieve the above
isto treat prefetches as ordinary read and write operations within a lockup-free cache hierarchy. Of course,
keeping track of outstanding prefetch operationsis actually simpler than keeping track of outstanding read
or write operations since there is no destination register associated with a read prefetch and no write data

to be serviced (even though invalidations may be pending to that line) and noting this event. The appropriate delay isimposed on the
next fence operation from the processor.
72 read-exclusive prefetch may be converted to an exclusive prefetch if the cache already has a clean copy.
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associated with a read-exclusive prefetch. Furthermore, since prefetches can simply be dropped, a processor
does not necessarily need to stall when there are insufficient resources for keeping track of a prefetch.”

Consider the required program ordering constraints for consumer-initiated non-binding prefetches. A
read prefetch need not be delayed for any previous operations, and no future operations need to be delayed for
the prefetch to complete. Similarly, there are no program ordering constraints for read-exclusive prefetches
if the memory system services the prefetches using delayed exclusive replies (see Section 5.3.5). In fact,
some designs may use a separate buffer for prefetch operationswhich will inherently lead to thereordering of
prefetches with respect to other operations. However, program ordering constraints become important if the
memory system uses eager exclusive replies to service read-exclusive prefetches. This is because an eager
exclusive reply to the prefetch can allow a subsegquent write W to the same line to be serviced by the cache
even though there may still be outstanding invalidation due to the prefetch. However, a later operation that
must be delayed for W needs to wait for these invalidations to be acknowledged. One possible solutionis
to increment the count of outstanding writes on a read-exclusive prefetch (that may be serviced by an eager
exclusive reply) sometime before the prefetch reply returns. Therefore, subsequent operations that wait for
W will inherently wait for previous read-exclusive prefetches as well.”

Within the memory system, consumer-initiated prefetches can be treated in virtually the same way as
ordinary read or read-exclusive operations. This ensures that prefetched data will be kept coherent at al
times. For example, ordering constraints such as those described in Section 5.3.2 aso apply to prefetch
operations. Similarly, repliesto prefetch operations must be treated in the same way as ordinary repliesin
systemsthat exploit early invalidation or update acknowledgements (see Section 5.4.1). For thisreason, most
systems do not distinguish between prefetch and ordinary operations once the prefetch leaves the processor
environment.

Finally, we briefly consider producer-initiated prefetches for pushing either a shared or exclusive copy
of aline to another processor. The sole purpose of producer-initiated prefetches is movement of copies and
not eliminating stale copies. The processor that issues the producer-initiated prefetch need not wait for its
completion; therefore, no acknowledgements are required. Within the memory system, a producer-initiated
prefetch operation that carries a shared copy of thelinein many ways behaves similarly to an update request.
However, unlike an update request, the prefetch can be safely dropped unlessit is carrying an exclusive copy.

5.8.2 Multiple Contexts

Multiple context processors offer an aternative mechanism for hiding latency by assigning multiplethreads
to each processor and context switching among the threads at a fine granularity. This allows along latency
operation on one thread to be overlapped with computation and communication in the other threads.

A key decision in the design of a multiple context processor is the granularity at which context switches
occur. A blocked multiple context processor switchesto adifferent context only if the processor encounters a
long latency operation such as a cache miss. An inter-cycle interleaved multiple context processor switches
to a different active context on every cycle; a context remains inactive whileit iswaiting for along latency

73 consequenceof merging prefetcheswith subsequent operationsis that the memory system may no longer drop prefetch operations
silently past the merge point. An explicit negative acknowledgement reply may be used to signal a prefetch that is not serviced
successfully.

It is sufficient to wait only for the read-exclusive prefetches whose eager reply is back; prefetchesthat have not yet been issued, or
prefetches with outstanding replies, do not lead to the early service of a subsequent write.
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operation. Finaly, intra-cycleinterleaving alowsissuing instructionsfrom different contexts withinthe same
cycle. Providing fast context switch times requires support in hardware. A major component of this support
involves replicating state structures such as register files for the resident set of contexts in order to avoid
the overhead of saving and restoring such state. The blocked scheme requires less aggressive support due
to the lower frequency of switches and the fact that switch overheads of a few cycles are tolerable. On the
other hand, interleaved schemes effectively require a zero overhead switch. In return, interleaved schemes
are capable of hiding smaller latencies such as the latency associated with a floating point functiona unit or
afirst level cache miss.

Fromamemory model perspective, theimplementation shouldideally exploit theindependence of memory
operations on different threads especially with respect to program ordering constraints. Consider supporting
four contexts on each processor. Even with a strict model such as sequential consistency, each context must
be allowed to have asingle outstanding memory operation leading to atotal of four outstanding requests from
each processor. Therefore, while a single context processor implementation of sequential consistency may
allow a single outstanding operation, the multiple context implementation must provide sufficient support
structures to allow operations from different threads to be serviced simultaneoudly.

Exploiting the independence of memory operations across threadsis not too difficult for amodel such as
sequential consistency since the implementation can simply keep track of a single outstanding operation per
thread. Things become more challenging for more relaxed memory models, however. For example, consider
models such as RCsc or PL1 that alow each thread to have multiple read and multiple write operations
outstanding. A brute force technique for independently dealing with operationsfrom different threads would
require replicating the appropriate read and write buffers (and potentially counts of outstanding operations),
thus providing separate structuresto keep track of the operations from each active context. However, simpler
implementations that do not fully exploit the independence of operations across threads can often provide
most of the performance gains. For example, a single context design that supports the PL1 model with
blocking reads can be extended to allow one outstanding read per context, but may still use a single write
buffer for all write operations. This causes a competing write operation to be conservatively delayed for not
only its own context’s previous writes but also for the previous writes from the other contexts. However,
since write latency isnot visibleto the thread under amodel such asPL1 (i.e., writesare simply buffered and
the thread does not need to stall unless the write buffer isfull), the extra delay in servicing writes due to a
unified write buffer does not have adirect impact on performance. Similar trade-offs can be made for designs
with non-blocking reads where each context may have multiple outstanding reads. Assuming the PL1 model
again, the implementation may be extended to allow each context to have a single outstanding competing
read. However, non-competing reads from different contexts may till be conservatively merged intoasingle
read buffer, and writes can be handled as described above.

The main correctness issue with respect to the interaction of memory models and supporting multiple
contexts was discussed Section 5.7.2. As discussed there, one way to eliminate the anomal ous behavior that
arisesfromthisinteractionisto delay operationsfromthe next context if aprevious context has an outstanding
write to the same memory line. This functionality may require extra hardware mechanisms in a multiple
context design.

Finaly, from an implementation point of view, the lockup-free cache design for a multiple context
processor is complicated by the fact that cache misses typically lead to two phase transactions: (&) a thread
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originally requests a line and becomes inactive, (b) the reply to the line puts the thread back on the active
list, () the request reissues when the thread is rescheduled and is satisfied if the lineis still in the cache. The
problem that arises is that other activity (e.g., instruction or data fetches or operations by other processors)
may invalidate or replace the line between the time the reply comes back and the time the thread gets to
reissue its request. The above behavior can potentialy lead to livelock where the system continuously fails
to fully service requests. Kubiatowicz et al. [KCA92] and Laudon [Lau94] suggest severa possiblesolutions
for aleviating such livelock problems.

5.8.3 Synergy Among the Techniques

Relaxed memory modelsand prefetching are alternativeways for exploitingfine grain overlap of computation
and memory operations within a single thread. Multiple contexts, on the other hand, provides overlap of
computation and memory operations by exploiting the paralelism across different threads. Since the three
techniques are dternative ways for hiding latency in a hardware architecture, it may seem that the use of one
technique eliminates the need for the others. However, it turns out that thereis synergy in exploiting rel axed
memory models with either the prefetching or the multiple context techniques. We illustrate this synergy by
providing performance results for combinations of these techniques in the next chapter.

There isaso synergy from an implementation point of view. The synergy arises from the fact that many
of the architectura mechanism used to exploit relaxed memory models are aso needed for fully exploiting
the prefetching or multiple context techniques. This should not be surprising since all three techniques hide
latency by overlapping and pipelining multiple memory operations, thusthey all gain from more aggressive
cache and memory designs. Lockup-free caches are a good example of a universal requirement across the
threetechniques. Even though prefetching allowsfor asimpler lockup-freecache design, such adesign can be
easily extended to support the extrarequirements for relaxed models (e.g., forwarding read datato a register
on aread reply and merging the write data on a write reply). Alternatively, a lockup-free cache design that
supports multiple contexts aready has sufficient mechanisms to also support relaxed memory models.

5.9 Supporting Other Types of Events

The implementation discussion has so far focused solely on the ordering of dataread and write operationsto
asinglegranularity (e.g., aword). Asdiscussed in Section 4.5 of the previous chapter, areal implementation
has to deal with ordering issues among alarger set of events. The following are examples of other types of
events that must be considered:

e instruction fetch,

o dataoperations at multiple granularities (e.g, byte, word),

o operationsto I/O devices, and

o exception events (e.g., for arithmetic operations or related to virtual memory).

Most designs violate the notion of serial semantics for the above events in order to achieve higher perfor-
mance. Furthermore, many of the ordering issues that arise with respect to these events are not unique to
multiprocessors and must be dealt with in uniprocessor systems aswell.

224 Chapter 5 Implementation Techniques



Giventheaboveset of events, it isoften desirableto enforce ordering constraintsamong not only events of
the same type but a so events of different types. For example, memory operationsmay be used to synchronize
access to 1/0 devices. Therefore, an implementation requires mechanisms for detecting the completion of
each type of event (e.g., an I/O write) and mechanisms for enforcing orders among different types of events
(e.g., between an 1/O write and a data write). Furthermore, events such as I/O operations often exhibit
non-memory-like side effects, making some of reordering optimizations that are safe for ordinary memory
operations unsafe for such operations.

Appendix Q describes some of the practical implementation issues for supporting ordering among the
larger set of events, primarily focusing on solutions adopted by various commercia architectures such as the
Alpha[Sit92], PowerPC [MSSW94], and Sparc V9 [WG94].

5.10 Implicationsfor Compilers

The previous sections in this chapter have focused on the impact of memory model specifications on the
hardware implementation of a system. The memory model a so impacts the implementation of the compiler
since many important compiler optimizations involve reordering or eliminating memory operations (e.g.,
register allocation, code motion, loop interchange). This section describes the implicationsof memory model
specifications on optimi zationsthat can be safely exploited by the compilersexplicitly paralel programs(with
explicit synchronization; see Section 3.5.1). Many of the ideas in this section are extensions of our earlier
joint work with Adve [GAG*93].

This section begins by motivating issues related to compiler optimizations and describing some of the
problems with current compiler implementations. Section 5.10.2 describes the assumptions about the level
of information conveyed by a source program and the type of architecture that the compiler is targeting.
Section 5.10.3 provides a framework for reasoning about various compiler optimizations and their effect on
memory behavior. Finally, Section 5.10.4 describes the safe compiler optimizationsfor the various memory
models.

5.10.1 Problemswith Current Compilers

Figures5.38 and 5.39 show acouple of examplesto illustratethe effect of compiler optimizationson memory
behavior. The example in Figure 5.38 shows two nested for-loops before and after loop interchange; this
optimization may for examplebeusedtoincreasetemporal locality for theB[j] reference. Theloopinterchange
is safe for a uniprocessor since the there are no data dependences across the loop iterations. From a memory
model perspective, however, the effect of theloop interchangeisamajor reordering of the memory operations
to arrays A and B. Such reordering can potentially trandate into incorrect behaviors in a multiprocessor
especialy if the parallel program is written assuming a strict model such as sequential consistency (e.g.,
consider other processors simultaneoudly accessing the arrays without any synchronizations). The above
example is indicative of a large group of compiler transformations that lead to a reordering of memory
operations.

Figure5.39 showstheeffect of another common optimization. Figure5.39(a) showstheorigina program,
written for the SC model. P1 writesto A, sets a flag, then reads A, and P2 waits for the flag to be set before
reading A. Under SC, the while loop on P2 aways terminates and the only possible outcome is (u=1).
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al: for (i=0; i<m; i++) a1: for (j=0; j<n; j++)

bi:  for (j=0; j<n; j++) b1:  for (i=0; i<m; i++)
cl: Alilli] = BIil; cl: Alillil = BIiT;
(a) before (b) after

Figure 5.38: Effect of loop interchange.

P1 P2
al: A=1; a2: while (Flag == 0);
b1: Flag = 1; b2: u=A,
cl: ...=A;
(a) before
Pl P2
al: r1=1; a2: r2 = Flag;
b1: Flag =1; b2: while (r2 == 0);
cl: ...=rl; c2: U=A;
d1: A=rl;
(b) after

Figure5.39: Effect of register allocation.

Figure 5.39(b) shows the effect of register allocating locations A and Flag. This optimization is perfectly
legal if each processor’s code istreated as a uniprocessor program. However, the transformation can violate
the semantics of a model such as SC. Register allocating A on P1 makes it possible for P2 to read the value
of O for A since the writeto A on P1 no longer occurs before the write to Flag. Thisis an example of how
register alocation can effectively lead to a reordering of operations. Similarly, register allocating Flag on P2
can lead to a potentially non-terminating while loop (i.e., if theread of Flag that sets r2 returns the value 0)
since P2 essentially reads Flag only once and does not monitor its value continuously. Neither of the above
behaviorsis allowablefor the original program under SC.

Problems similar to the above may routinely arise when compiling explicitly paralel programs. The
reason is most compilers that are used to compile parallel programs are not “multiprocessor-ready”; the
resulting optimizationsthat arise from treating the program as a uniprocessor code can violate the semantics
of even the most relaxed multiprocessor memory models. A common technique for remedying this problem
isto usethe volatile keyword provided by languages such as C to identify shared variables. The functionality
of the volatile keyword was originally devised to deal with I/O operations in the context of uniprocessors.
Compilerstypically avoid register alocating volatilevariables and maintain program order among operations
to volatile variables. Ensuring correctness for an explicitly parallel program requires al shared locations to
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be declared asvolatile. For example, both A and Flag must be declared as volatilein Figure 5.39.

While the functionality supported by the volatile keyword is suitable for enforcing the semantics of
a strict model such as sequential consistency, it lacks sufficient flexibility for efficiently supporting more
relaxed models. The main difficulty arises from the fact that operationsto volatile variables are not ordered
with respect to operations to non-volatile variables. For example, for a mode such as WO, declaring all
synchronization operations as volatile is not sufficient for correctness since the compiler may still move or
register allocate data operations across synchronization operations. The aternative is to declare al shared
locations as volatile which fails to exploit any of the reorderings allowed by most relaxed models. The key
mechanism that is missing is a way to disallow optimization of non-volatile operations across boundaries
set by volatile operations. An empirical and inelegant solution is to insert code segments that are difficult
for the compiler to analyze before and after the volatile operations, in effect forcing the compiler to avoid
code motion and register allocation across such boundaries. For example, for compilers that do not perform
aggressive interprocedural analysis (and do not in-line procedures), a dummy procedure call may be used to
force the compiler to spill registersbefore the call and reload registers after the call. Ascompiler technology
advances, however, the need for amore robust and elegant solution increases.

A number of other researchers have observed the correctnessissues that ari se when uniprocessor compiler
technology is applied to explicitly paralel programs. Midkiff et al. [MPC89] briefly explore the idea of
finding more parallelismin an aready parallelized program and describe the difficulties that arise due to the
strict ordering constraints imposed by SC. Callahan and Smith [CS90] mention the idea of providing the
compiler with further information about operations (labels similar to those used by release consistency) in
order to allow more flexibility for compiler optimizations.

5.10.2 Memory Model Assumptions for the Source Program and the Target Archi-
tecture

A given source program assumes an underlying memory model. At the same time, the target architecture or
hardware may support a potentially different model. Therefore, the requirements on a compiler are twofold.
First, compiler optimizations must be constrained to correctly support the semantics of the memory model
assumed by the source program. Second, the compiler needs to correctly map the semantics of the source
memory model onto the hardware's target model when the two models are different. Section 4.4 in the
previous chapter described techniques for efficiently mapping the semantics of one model onto another. The
discussion here focuses on the first requirement of determining safe compiler optimizations with respect to
the source program model. However, aswewill seein Section 5.10.4, the compiler may still need to be aware
of the target architecture’s memory model even for determining the safe optimizations.

Toallow for saf eoptimizations, sufficient informationintheform of label sor fencesmust be communicated
to the compiler. Section 3.5 in Chapter 3 described techniques for communicating the associated operation
labels for properly-labeled models. Similar techniques may be used to communicate appropriate labels for
models such as WO, RCsc, and RCpc. For fence-based models such as Alpha, RMO, and PowerPC, the
explicit fence instructionsare assumed to be directly visibleto the compiler.
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5.10.3 Reasoning about Compiler Optimizations

There are two types of compiler optimizationsfrom amemory model perspective: (&) optimizationsthat lead
to a simple reordering of memory operations (e.g., code mation, loop transformations such as interchange
and blocking [LRW91]), and (b) optimizations that eliminate or substitute memory operations and other
instructions (e.g., register alocation, common sub-expression elimination).

Reasoning about thefirst type of compiler optimizationsisrelatively straightforward. Given an execution
E of an optimized version of the program, the optimizations are considered safe if the instructions and the
sub-operationsof E (including the valuesread and written) form avalid execution of the unoptimized program
with respect to the memory model assumed by the source program. Therefore, we can reason about reordering
optimizationsby the compiler in almost the same way aswe reason about such optimizationsby the hardware.

The above reasoning precludes the use of optimizationsof the second type, such as register allocation and
common sub-expression elimination, that eliminate or substitute memory sub-operations and/or instructions.
Oneway to deal with such optimizationsisto start with the execution of the optimized code and conceptually
alter the execution by adding back the deleted memory sub-operations and replacing new instructions by
original instructionsof the unoptimized code. Theaugmented executionisnow comparableto theunoptimized
execution, and the compiler optimizations may be deemed safe if the instructions and sub-operations of the
augmented execution form an execution of the unoptimized code. Weiillustrate the above idea by discussing
how an execution can be conceptually augmented to reason about the register alocation optimization. The
concepts presented bel ow can be extended to deal with other optimizations such as common sub-expression
elimination or combinations thereof.

Consider a memory location that is alocated to a register within a given code interval. For simplicity,
we assume a straightforward register allocation scheme. In the middle of this interval, register allocation
transforms amemory read to aregister read (memory-read to register-read) and amemory writeto a register
write with the same value (memory-write to register-write). The transformations at the two ends of the
interval aredlightly different. If theorigina interva startswith aread operation (aread-initiated interval), the
memory read is still performed and the value read is written to a register (memory-read plus register-write).
If the original interval starts with a write operation (a write-initiated interval), the memory write is simply
transformed into a register write asis done with memory writesin the middle of theinterval. Finaly, if there
are any writesto thislocation withinthe interval, the value of the register may be written back (or spilled) to
memory (register to memory write-back).

We now describe how the execution of a program that has been register allocated may be appropriately
augmented by adding the relevant memory operations back into the execution. We refer to R;,;; and
W; ;¢ Sub-operations as initial sub-operations. For a read, the remaining sub-operationis simply referred to
as the read sub-operation. For a write, the remaining n sub-operations are referred to as per-processor write
sub-operations. In transforming the optimized execution, we augment the operations from each processor
independently. For each processor, we traverse its instruction instances in program order. The following
enumerates the way the execution is augmented:

1. A register read on P; that corresponds to a memory-read to register-read case is replaced with the
R;n::() and R(i) sub-operations to the corresponding memory location with the same return value as
the register read.
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2. A register write on P; that corresponds to a memory-write to register-write case is replaced with an
initia write sub-operation (W;,,;:(i)) and the per-processor write sub-operations (i.e., W(1) ... W(n))
that write the same value to the corresponding memory location. For the last register write before
the write-back in an interval, only the W,,,;;(i) sub-operation is added to the execution (the remaining
sub-operationswill be contributed by the register to memory write-back event).

3. A W,;,,;+(i) sub-operation belonging to awrite W on P; that corresponds to aregister to memory write-
back case is removed from the execution (the previous case already adds aW,,,;:(i) for thelast register
write before the write-back).

The sub-operations added by the above augmentation must be appropriately ordered with respect to other
sub-operationsin the augmented execution. The R;,,;+(i) and R(i) sub-operationsadded by thefirst case above
must be placed immediately after either the W,,,;;(i) of the last conflicting memory write in program order
or the R(i) of the last memory read to the same location which starts the interval (i.e., a memory-read plus
register-write case), whichever islater in program order. The W;,,;(i) added by the second case above must
be placed immediately after the R(i) or W;,,;:(i) sub-operation of the last conflicting read or write (whichever
is later) that is before the added write in program order. Finally, a per-processor write sub-operation W(j)
added by the second case above must be placed immediately before the corresponding sub-operation W' (j)
belonging to the next conflicting write-back write; multiple write sub-operations to the same memory copy
corresponding to multiple register writes within an interval must be kept in program order. The intuitive
effect of the above conditionsis to push the W;,,;:(i), R;»::(i), and R(i) events to near the top and the W(i)
eventsto the bottom of the register allocation interval.

Given the above augmented execution, the register alocation optimizations are considered safe if the
instructions and sub-operations of the augmented execution form an execution of the unoptimized program
with respect to the memory model assumed by the source program. As mentioned before, this methodol ogy
can be extended to reason about the correctness of other combinations of optimizations.

5.10.4 Determining Safe Compiler Optimizations

This section explores the optimizations that a compiler can safely perform assuming a given memory model.
To determine whether an optimizationis safe, the compiler must conceptually consider al possibleexecutions
for al possible sets of input data for the given program. Most compiler optimizationsrequire full flexibility
in reordering operationsto different locations. Therefore, models such as SC, IBM-370, TSO, PC, and PSO
disalow virtually al important compiler optimizations on shared memory operations because they do not
provide the compiler with regions of instructionswhere read and write operations may be flexibly reordered
with respect to one another. Thisisin contrast to hardware designs where limited flexibility such as allowing
aread to bypass previouswrites asin TSO can provide substantial gains through hiding the write latency.

Asintheprevioussection, wewill useregister allocation asacanonical example of compiler optimizations
that eliminate memory operations. Another assumption in this section is that cache coherence is supported
by hardware, relieving the compiler from ensuring coherence in software. Finally, some of the specification
conditions such as the coherence requirement and the atomicity condition for read-modify-write operations
turn out not to be relevant to the compiler; this section considers only the relevant conditions.
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Value, Initiation, and Uniprocessor Dependence Conditions

To satisfy the notion of uniprocessor data dependence upheld by the value, initiation, and uniprocessor
dependence conditions, the compiler needs to ensure that if a read returns the value of its own processor’s
write, then the write is the last write before the read in program order. In the absence of optimizations
such as register alocation, this is easily achieved if the compiler does not reorder a write followed (in
program order) by aread to the same address. With register allocation, correctnessis maintained if withinthe
register allocation interval, the program order among conflicting register operationsin the compiled program
matches the program order among the corresponding memory operationsin the original source program. In
addition, the uniprocessor dependence condition requires program order among al conflicting operations to
be maintained. The exception for most modelsisthe order from awrite followed by aread, thusallowing the
read forwarding optimization. This relaxation is important because one of the effects of register allocation
isto make it appear asif the read completes before the write and yet returns the value of the write. Overdll,
uniprocessor data dependence can be maintained in a similar way to a uniprocessor compiler.

The above conditions apply to operations with the same address. Since compiler optimizations are
done at compiletime, the compiler does not have access to dynamic runtimeinformation about the addresses.
Therefore, the compiler may sometimes haveto make conservative assumptionsabout whether two operations
conflict. On the other hand, there are cases where the compiler can do better than runtime hardware by using
itsknowledge about the program and data structuresto determinethat two operations cannot possibly conflict.

Multiprocessor Dependence Chains

The key issue with respect to enforcing multiprocessor dependence chains is to disallow the reordering of
operations related by program orders that make up the different types of chains. For virtually al of the
specifications, these program orders are identified by the various flavors of the 222 relation.” Therefore, we
will use 22 to generically refer to the variety of program order arcs (and their transitive closures) that make
up multiprocessor dependence chains.

The restrictions are pretty straightforward for optimizationsthat lead to a simple reordering of memory
operations. Given X 222 Y, the compiler must avoid reordering the two operations; otherwise, reordering is
safe. For example, for amodel such as PL1, non-competing operations that appear in the interval between
competing operations may be freely reordered with respect one another since they are not related by the
2 relation.

The restrictions for optimizations such as register alocation that end up eliminating memory operations
isdightly different. The conservative conditionisto (a) disalow replacing amemory read R with a register
read if thevalue of theregister isset prior to the previous operation ordered before R by “2%, and (b) disallow
replacing a memory write W with a register write if the write-back operation corresponding to W (or alater
writein program order) does not appear in program order before the next operation ordered after W by 2%,
Given aregion of non-competing operationsin a model such as PL 1, the above conditionsallow operations
to be freely register allocated within the region.

The aboverestrictionscan berelaxed to allow register allocation across -2%’sin some cases. For example,

given X 222 R, R may be replaced by aregister read if the value that it reads belongsto a write that is also

SThe only two exceptionsare the aggressive specification for SC and the specification for Alphawheretwo readsto the same address
appear in acategory 1 chain but are not included in =25
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register allocated and whose value is not written back to memory until after X in program order. Similarly,
given W 2% Y, W may be replaced by a register write as long as there is a write-back to memory (of the
valuewritten by W or by alater writeto the same location) before Y in program order; the value that remains
intheregister may still be used to replace read references after Y aslong asall the other conditionsallow this.

One of the important requirements for the compiler is to preserve the conservative operation labels or
explicit fence instructionsthat appear in the source program in order to ensure theinformationremainsvisible
to the underlying system that will execute the compiler code. This regquirement places afew more restrictions
on optimizations, such asregister allocation, that eliminate memory operations or instructions. For example,
register allocating a read R should be disalowed if the value of the register is set by another read R’ and
the label for R is more conservative than the label for R'. Similarly, register allocating a write W should be
disalowed if the label for W is more conservative than the label of the write-back memory operation (e.g.,
consider the case where W is a competing operation and the write-back memory operation is non-competing,
assuming the PL1 model). In addition, if X 222 Y 222 Z impliesX 222 Z through transitivity, and register
alocating Y (i.e., eliminating the operation) makes X -2 Z nolonger hold, we must conservatively disallow
the register allocation.”®

Much of the above complexity can be diminated if the compiler simply uses the more conservative
approach for register allocation. Consider thePL1 model, for example. The conservative yet simpleapproach
described earlier limits the use of register allocation to within regions of instructions between competing
operations; the compiler can safely register allocate any operations within such regions. The more complex
conditions allow the compiler to sometimes extend the register allocation region past competing operations.
Yet, these aggressive conditions may not lead to a significant performance gain especialy if competing
operations occur infrequently in a program.

Termination and Other Related Conditions

Thetermination condition playsan important rolein disallowingincorrect compiler optimizationsby requiring
the compiler to ensure that, for certain writes, the write operation occurs in all executions of the compiled
code. For example, if a memory writeis converted to a register write, the compiler must guarantee that the
register value will eventually get written to memory. For most models, the termination condition applies to
all writes; for RCsc, RCpc, and the three PL specifications, the condition only appliesto competing writes.
The termination condition also interacts closely with the condition on execution orders (—) that requires
the number of memory sub-operationsordered before any given sub-operation to befinite (see Definition4.11
in Chapter 4). Intuitively, the two requirements together guarantee that certain writes will not only appear
in the execution, but will aso eventually be seen by reads in other processors. For example, consider a read
that may possibly be issued an infinite number of times, such as the read of the Flag location in Figure 5.39.
If thisread is register allocated within a potentially infinite loop with a value from outside the loop, the old
value for the location may be used in every iteration of the loop and new writesto thislocation that appear
in the execution order would not affect the value returned. The above would violate the requirement on the
execution order (assuming the augmented version of the execution where register reads are transformed back
to memory reads) sinceit will appear asif there are an infinite number of read sub-operations ordered before

6Consider the specification for RCsc, for example. Assume We 22 Re_acq == W, which implies We =25 W. This latter relation
may not hold if the acquireis register allocated. A compiler may use implementation-dependent information about the target hardware
to more aggressively determine whether eliminating the middle operation ends up allowing the reordering of the other two operations.
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P1 P2

al: A=1; a2: B=1;
b1: while (B == 0); b2: while (A == 0);

Figure 5.40: Example toillustrate the termination condition.

the new write sub-operation to the same memory copy. This explains how the register allocation of Flag in
the examplein Figure 5.39 is disallowed by the specification.

The uniprocessor correctness condition (Condition 4.1 in Chapter 4) aso interacts with the termination
condition to ensure that certain write operations occur in all executions of the compiled code. The unipro-
cessor correctness condition requires that memory sub-operationsin the execution for each processor should
correspond to a “correct” uniprocessor execution of the process' program given the reads return the same
values as the multiprocessor execution. The intuitive notion of correctness for a uniprocessor compiler isfor
most part sufficient for maintai ning this condition. However, there are certain aspects that are specific to mul-
tiprocessors. For example, an initia write sub-operation W;,,;; that would occur in the correct uniprocessor
executionisrequired to also occur in the multiprocessor execution. Similarly, if an operation A isfollowed by
an operation B where B can execute for an infinite number of times, then the compiler cannot reorder B before
A since this can cause A to never execute. Or, if awrite operation D is preceded by an operation C where
C can execute for an infinite number of times, then D cannot be reordered before C. Thisis because D may
execute in the “optimized” execution while it would not have executed in the corresponding “ unoptimized”
execution. Appendix G describes how the latter constraint may be relaxed.

We use the code segment in Figure 5.40 to illustrate various scenarios that can result in the violation of
the termination condition or the related uniprocessor correctness condition and the “finite” requirement on
execution orders. Assume a mode that reguires the termination condition to hold for P1's write of A and
for P2's write of B. The uniprocessor correctness, vaue, and termination conditions together require both
loopsto terminate in any possible executions of this code. However, any of the foll owing opti mizations may
violate this property: (1) if the while loop on each processor is moved above the write on that processor, (2)
if the writes of A and B are done as register writes and the new values are not written back to memory, or
(3) if location B isregister alocated on P1 or location A isregister alocated on P2. Thefirst optimizationis
disallowed by the uniprocessor correctness condition, the second by the termination condition, and the third
by the definition of execution order which alows only afinite number of sub-operations (reads in this case)
to precede any given sub-operation (the writein this case) in the execution order.

Appendix H describes amore aggressive form of the termination condition for the PL models, along with
its implementation implications.

Reach Condition

The constraintsimposed on the compiler by the reach condition are analogous to those imposed on hardware
as discussed in Section 5.3.6. Consider a shared-memory writeinstruction W that follows (in program order)
a shared-memory read instruction R in the unoptimized source code. If an instance of R could be ordered
before an instance of W by LT any execution of the unoptimized code (assuming the source memory
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mode!), then the compiler cannot move W to before R in the optimized code.

5.10.5 Summary of Compiler Issues

The mgjor flexibility required for doing compiler optimizationsisto allow read and write memory operations
to be arbitrarily reordered with respect to their origina program order. However, relaxing just the write-read
order, asisdoneby TSO or PC, or thewrite-writeorder, asisdoneby PSO, failsto providesufficient flexibility.
Therefore, such modelsend up disallowing virtualy all interesting compiler optimizationson shared memory
operations. The only models with sufficient flexibility are those that provide regions of instructions where
read-read, read-write, write-read, or write-write program orders are relaxed among operations to different
addresses. Thisincludes the label-based models WO, RCsc, RCpc, and the three PL models, and the fence-
based models Alpha, RMO, and PowerPC. For these model s, the compiler can identify regionsof instructions
where it can apply many of the same optimizationsthat are used by a uniprocessor compiler.

The way the flexibility provided by relaxed models is exploited by compilers is somewhat different
from the way hardware typically exploits this flexibility. For example, the aggressive specifications of
multiprocessor dependence chains (that do not impose orders at every point in the chain) are difficult to
exploit for the compiler. Similarly, relaxing multiplecopy atomicity constraints do not provideany additional
optimizations to the compiler. On the other hand, extra information such as the relationship between data
and synchronization (e.g., information on data that is covered by alock synchronization) can be more easily
exploited by a compiler.

Finally, most current compilers are inadequate for supporting explicitly parallel programs simply because
they are really uniprocessor compilers and can therefore violate some of the constraints that are required
for correctly compiling for multiprocessors. To remedy this situation, compilers must become aware of the
memory model assumed by the source program and must use information such as labels or fences provided
by the program to guide optimizations.

511 Summary

This chapter covered awide range of issuesrelated to correctly and efficiently implementing various memory
consistency modelsin amultiprocessor system. The scope of thetechniques covered pointsto thewidevariety
of implementation options with differing trade-offs in performance and complexity or cost. The challenge
for a designer is to choose the design that provides close to the full performance potentia for a model while
limiting the complexity and cost of the design. The performance results provided in the next chapter shed
further light on thisimportant trade-off.
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Chapter 6

Perfor mance Evaluation

Choosing amemory consistency model, and sel ecting the appropriate implementati on techni ques for support-
ing a model, requires designers to balance the trade-offs between programmability, design complexity, and
performance. Performance datafor various models and implementations play akey rolein helping designers
make an informed decision on the above trade-off.

This chapter presents a detailed evauation of the performance gains from exploiting the optimizations
enabled by relaxed memory models in the context of large-scale shared-memory architectures with hard-
ware support for cache coherence. Our results are based on detailed simulation studies of several parallel
applications. Section 6.2 characterizes the performance of different models in architectures with blocking
reads, which istypica for most current commercia systems. We consider the interaction of relaxed models
with other latency hiding techniques, such as prefetching and hardware support for multiple contexts, in
Section 6.3. Finally, Section 6.4 considers the effect of supporting non-blocking reads, which is becoming
prevaent in many new generation processor designs. Related work on performance evaluationsis discussed
in Section 6.5.

Overal, our resultsshow that the overlapping and reordering optimizationsenabled by relaxed modelsare
extremely effectivein hiding virtualy thefull latency of write operationsin architectures with blocking reads.
Furthermore, we show that these optimizations complement the gains from other latency hiding techniques
by further enhancing system performance. Finally, we show that asubstantial fraction of the read latency can
also be hidden if the architecture supports non-blocking reads. In each of the above cases, we identify the
key architectural enhancements that are necessary for achieving these gains by considering implementations
with different degrees of aggressiveness.

6.1 Oveview

The main focus of this chapter is to quantify the performance gains from optimizations enabled by relaxed
memory modelsin the context of scalable shared-memory multiprocessors with hardware support for cache
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Figure6.1: Categories of program reordering optimizations.

coherence. Morespecifically, we concentrate on designswith an invalidati on-based cache coherence protocol,,
whichisby far themost common choice. Examples of such machinesincludethe Stanford DASH [LLG190],
the MIT Alewife [ALKK90], and the Convex Exemplar.

Instead of providing performance resultsfor specific memory models, we primarily present resultsfor the
basi c optimizationsthat areenabled by different groupsof models. Thisapproach isolatestheeffect of different
optimizations and provides better intuition for the important sources of performance gain. Furthermore, itis
simple to map these resultsinto performance gains for specific models, based on whether the optimizationis
allowed by the model and whether a given implementation expl oits this optimization.

The two key optimizations enabled by relaxed models are the relaxation of various program orders and
the relaxation of multiple-copy atomicity constraints for writes. Our study primarily focuses on program
reordering optimizations. Since we assume an invalidation-based protocoal, it is simpleto support theillusion
of multiple copy atomicity for writes (see Section 5.3.5 in Chapter 5); furthermore, relaxing this constraint is
unlikely to enhance the performance of such a protocol.

Figure 6.1 depicts the program reordering optimizations, divided into three categories. These are the
same categories used in Chapter 2 to describe the various relaxed memory models. The first category
allows the reordering of read operations with respect to previous write operations. The second category
allowsthe reordering of write operations. Finally, the third category alowsthe reordering of read operations
with respect to future operations. While the first two optimizations can be exploited by most architectures,
the latter optimization requires more sophisticated processor support in the form of non-blocking reads.
Correspondingly, this chapter presents two distinct set of results, one for architectures with blocking reads
and another for those with non-blocking reads.

6.2 Architectureswith Blocking Reads

Thissection presentsthe performanceresultsfor architectureswith blocking reads. We describetheframework
for our simul ation experimentsin Section 6.2.1. Theperformanceresultsfor implementationsthat aggressively
exploit write-read and write-write program reordering are presented in Section 6.2.2. Finally, Section 6.2.3
studiesthe effect of 1ess aggressive implementations, and the effect of varying the cache and cache line sizes.
The performance results presented in this section extend the results that were published in a prior
paper [GGH914 by considering alarger set of applicationsand varying more architectural parameters.

6.2.1 Experimental Framework

This section describes the architectural assumptions, simulation environment, and benchmark applications
used in our performance study.
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Architectural Assumptions

To provide meaningful performance comparisons for the optimizations enabled by relaxed models, we need
to focus on a specific class of multiprocessor architectures. The reason isthat trade-offs may vary depending
on the architecture chosen. For example, the trade-offs for a small bus-based multiprocessor with broadcast
capability and miss latencies in tens of cycles are quite different than those in a larger scale multiprocessor
where broadcast is not possible and miss latencies are in hundreds of cycles.

For our study, we have chosen an architecture that resembles the DASH shared-memory multiproces-
sor [LLGT90], alarge scale cache-coherent machine that has been built at Stanford. Figure 6.2 shows the
high-level organization of the simulated architecture, which consists of several processing nodes connected
through a low-latency scalable interconnection network. Physical memory is distributed among the nodes
and cache coherence is maintained using a distributed directory-based protocol. For each memory block, the
directory keeps track of remote nodes caching the block, and point-to-point messages are sent to invalidate
remote copies. Acknowledgement messages are used to inform the originating processing node when an
invalidation has been completed. Although the DASH prototype has four processors within each node, we
simulate an architecture with only one processor per node. Thisalowsusto isolate the performance effect of
optimizationsmore clearly.

All our simulation results are based on a 16 processor configuration. The parameters used are loosely
based on the DASH prototype; we have removed some of the limitations that were imposed on the DASH
prototypedueto designtime constraints. The busbandwidth of thenode busisassumed to be 133 M bytes/sec,
along with apeak network bandwidth of 120 Mbytes/sec into and 120 M bytes/sec out of each node. Figure6.2
also shows the organization of the processor environment. Each processing node in the system consists of a
33MHz MIPS R3000/R3010 processor connected to a64 Kbytewrite-through primary datacache. Thewrite-
through cache enables processors to do single cycle write operations. The first-level data cache interfaces
to a 256 Kbyte second-level write-back cache. The interface includes read and write buffers. Both the first
and second-level caches are direct-mapped and support 16 byte lines. For most of this study, we assume an
aggressive implementation with a lockup-free secondary cache, a 16 word deep write buffer, and reads that
bypass the write buffer; results for more conservative implementations are presented in Section 6.2.3.

The following describes some features of the simulated cache-coherence protocol (for more details, refer
to the origina paper on the DASH protocol [LLGT90]); many of the terms used below were discussed
in Section 5.3.5 of the previous chapter. As we mentioned before, the protocol is invalidation-based.
Invalidations are acknowledged as soon as they arrive at the target cache's incoming buffer (i.e., early
acknowledgement), and acknowledgements are gathered at the requesting node. The protocol maintains the
illusion of multiple-copy atomicity for writes by nacking operations from other processors while there are
invalidations pending for the line. Write operations always generate a read-exclusive request even if the
second level cache has a clean copy of the line (i.e, the exclusive request optimization is not used). For
implementations that allow multiple outstanding writes, the protocol supports eager read-exclusive replies;
otherwise, read-exclusive replies are delayed until al invaidationsare acknowledged.

The latency of amemory access in the simulated architecture depends on where in the memory hierarchy
the access isserviced. Table 6.1 showsthe latency for servicing an access at different levels of the hierarchy,
in the absence of contention (the simulation results include the effect of contention, however). The latency
shown for writesisthetime for acquiring exclusive ownership of the line, which does not necessarily include
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Figure 6.2: Simulated architecture and processor environment.

the time for receiving the acknowledgement messages for invalidations. The following naming conventionis
used for describing the memory hierarchy. The local node isthe node that containsthe processor originating
a given reguest, while the home node is the node that contains the main memory and directory for the given
physical memory address. A remote nodeis any other node.

Synchronization primitives are also modeled after DASH. The queue-based lock primitive[LLG190] is
used for supporting locks. In general, locks are not cached except when a processor is spinning on alocked
value. When thelock isreleased, if there are any waiting processors, oneis chosen at random and is granted
thelock using an update message. Acquiring afreelock takes approximately 20 and 100 processor cyclesfor
local and remote locks, respectively. The total latency to perform a barrier for 16 processors, given all reach
the barrier at the same time, is about 400 processor cycles; the typical simulated time for a barrier is much
larger in practice since al processors do not reach the barrier at the same time.

Simulation Environment

We use an event-driven simulator that model sthe major components of the DASH architecture at abehaviora
level. For example, the caches and the coherence protocol, contention, and arbitration for buses are al
modeled in detail. The simulations are based on a 16 processor configuration. The architecture ssimulator is
tightly coupled to the Tango-L itereference generator, the light-weight thread-based version of Tango [GD9(],
to assure a correct interleaving of accesses. For example, a process doing a read operation is blocked until
that read completes, where the latency of the read is determined by the architecture simulator. Instruction
references are assumed to aways hit in the instruction cache. Furthermore, operating system references are
not modeled. Finally, main memory isdistributed across al nodes and all ocated using a round-robin scheme
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Table6.1: Latency for variousmemory system operationsin processor clocks. Numbers are based on 33MHz
processors.

Read Operations

Hit in Primary Cache 1 pclock
Fill from Secondary Cache 15 pclock
Fill from Local Node 29 pclock
Fill from Remote Node 101 pclock

Fill from Dirty Remote, Remote Home 132 pclock
Write Operations

Owned by Secondary Cache 2 pclock
Owned by Local Node 17 pclock
Owned in Remote Node 89 pclock

Owned in Dirty Remote, Remote Home 120 pclock

for the applications, unless specific directives are given by an application.

Given that our detailed simulator is significantly sower than the target multiprocessor that is being
simulated, we can only afford to simulate smaller problem sizes relative to those that would be run on
the actual machine. An important question that arises is how the simulated cache sizes must be scaled to
approximate the behavior of larger problem sizes running on full-sized caches. We assume the full-sized
caches (i.e, 64K first level and 256K second level) for most of our performance results. Since these cache
sizes are large relative to the simulated problem sizes, most of the cache misses correspond to inherent
communication misses. We later study the effect of smaller cache sizes in Section 6.2.3.

Benchmark Applications

The paralé applications we use consist of the entire SPLASH suite [SWG91] plus the LU-decomposition
application that we used in earlier studies [GHG191, MG91]. These applications are representative of
algorithms used today in scientific and engineering computing environments. The applications use the
synchronization primitives provided by the Argonne National Laboratory macro package [BBD187]. All
applications, except OCEAN, are written in C; OCEAN is written in Fortran. Table 6.2 provides a brief
summary of the applications, along with their input data sets. We describe each application in more detail
below.

OCEAN [SH92] models the role of eddy and boundary currents in influencing large-scale ocean move-
ments. The simulationis performed for many time-steps until the eddies and mean ocean flow attain amutual
balance. The work in each time-step involvessolving a set of spatial partia differential equationsusing Suc-
cessive Over Relaxation (SOR). The principle data structure consists of a set of 25 two-dimensiona arrays
holding discretized values of the various values associated with the model’s equations. For our experiments
we simulated a 98-by-98 point square grid.

PTHOR [SG89] is a parald distributed-time logic simulator based on the Chandy-Misra simulation
algorithm. The primary data structures associated with the simulator are thelogic e ements (e.g., AND-gates,
flip-flops), the nets (wires linking the elements), and the task queues which contain activated elements. Each
processor executes the following loop. It removes an activated element from one of its task queues and
determines the changes on that element’s outputs. It then schedules the newly activated elements onto the
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Table 6.2: Description of benchmark applications.

| Application || Description | Input Data Set |
OCEAN simulates eddy currents 98x98 grid
in an ocean basin
PTHOR simulates digital circuit at RISC (5 K elements),
the gate level 5 steps
MP3D simulates rarified hypersonic flow 100 K mols., cylinder.geom
(6144 cells), 5 steps
CHOLESKY sparse Cholesky factorization besstk15
LU dense LU decomposition with pivoting 200x200 matrix
LOCUS routes wires for VLS| Primary2
standard cell designs (25.8K cells, 3817 wires)
BARNES performs a hierarchical N-body 8192 bodies, 3 steps
gravitation simulation
WATER simulates water molecule interaction 512 mols., 2 steps

task queues. For our experiments we simulated five clock cycles of a small RISC processor consisting of
about 5000 elements.

MP3D [MB88] is a 3-dimensional particle smulator used to study the pressure and temperature profiles
created by an object flying at high speed through the upper atmosphere. The primary dataobjectsin MP3D are
the particles(representing theair molecul es), and the space cell s (representing the physical space, theboundary
conditions, and the flying object). The overal computation of MP3D consists of evaluating the positionsand
velocities of molecules over asequence of time steps. During each time step, the mol ecul es are picked up one
at atime and moved according to their velocity vectors. Collisionsof molecules among themselves and with
the object and the boundaries are al modeled. The simulator is well suited to parallelization because each
molecule can be treated independently at each time step. The program is parallelized by staticaly dividing
the particles equally among the processors. The main synchronization consists of barriers between each time
step. Accesses to the space cells occur in an asynchronous manner within atime step; the algorithmisrobust,
however, due to the low frequency of particle collisions at a given space cell. For our experiments we ran
MP3D with 100,000 particlesin a 32x6x32 space array, and simulated 5 time steps.

CHOLESKY [RG90] performs sparse Cholesky factorization using a dynamic version of the supernodal
fan-out method. The matrix is divided into supernodes (sets of columns with identical non-zero structures),
which are further divided into conveniently-sized chunks called panels. A panel receives updates from other
panels to its left, and is placed on a task queue after al updates have been received. Processors remove
panels from this task queue to perform the associated modifications; thisin turn causes other panels to be
placed on thetask queue. The principal data structure isthe sparse matrix itself. The primary operation that
is performed repeatedly is adding a multiple of one column to another column. Contention occurs for the
task queue and the modified columns, which are protected by locks. For our experimentsweranbcsst k15
which is a 3948-by-3948 matrix with 56,934 non-zeroes in the matrix and 647,274 non-zeroes in the factor.

LU performs LU-decomposition for dense matrices. The primary data structurein LU isthe matrix being
decomposed. Columns are statically assigned to the processors in an interleaved fashion. Each processor
waits for the current pivot column, and then uses that column to modify al the columns that it owns. The
processor that produces the current pivot column releases any processors waiting for that column. For our
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experiments we performed L U-decomposition on a 200x200 matrix.

LOCUS (abbreviationfor “LocusRoute”) [Ros88] isahigh quality VLSI standard cell router. Theprogram
evaluates standard cell circuit placement with the objective of finding an efficient routing that minimizes area.
The paralelism in LOCUS comes from routing multiple wires concurrently. Each processor continuously
picks up anew wirefrom thetask queue, explores aternative routes, and places the wire along the best route.
The main data structure is a cost array that keeps track of the number of wires running through each routing
cell of the circuit. Although the cost array is accessed and updated concurrently by several processors, it
is not protected by locks since the resulting distortions are considered acceptable. For our experiments we
used the largest circuit provided with the application, Pri mar y2. gri n, which contains 3817 wires and a
1290-by-20 cost array.

BARNES (abbreviation for “Barnes-Hut”) [SHG92] is a hierarchica N-body gravitational simulation,
with each body modeled as a point mass that exerts force on all other bodiesin the system. For efficiency, a
set of sufficiently far bodies are abstracted as a simple point mass. To facilitatethisclustering, physical space
isdivided recursively to form an oct-tree until each cell containsat most one body. The octreeisimplemented
asan array of bodiesand an array of cellsthat are linked together to form atree. Bodiesare statically assigned
to processors for the duration of atime-step. During each time-step, each processor cal cul ates the forces of
all bodies on its subset of bodies, and the bodies are then moved according to those forces. The treeis then
regenerated for the next time step. A set of distributed locks provide exclusive access to the tree. For our
experiments we ran BARNES with 8192 bodies through 3 time steps.

WATER is an N-body molecular dynamics application that evaluates forces and potentialsin a system
of water molecules in the liquid state. The main data structure is an array of molecules. Each processor is
statically assigned a subset of the molecules. In each time step the program computes the potential of each
molecule based on intra- and inter-molecul ar interactions. Due to symmetry, each processor only computes
the interaction between a molecule it owns and half the other molecules. Synchronization in the program is
mai ntai ned through locks on the mol ecul es being modified, and through barriersthat separate different phases
in the program. We ran WATER with 512 molecules through 2 time steps.

Table 6.3 shows some general statistics for the eight applications. The numbers correspond to a 16 pro-
cessor configuration, assuming the sequential consistency model (i.e., no program reordering optimizations).
Table 6.4 presents more detailed statistics on shared data and synchronization access behavior. The read and
write miss statistics correspond to misses past the second level cache. Except for LU, the hit rate for the
combined caches isnot substantially better than the rate achieved by the primary cache. Thetable aso shows
the frequency of accesses or misses relative to the total number of instructions executed.

6.2.2 Experimental Results

This section presents the performance results for architectures with blocking reads. We begin by presenting
a base set of results for an implementation that preserves all program orders, as may be required by the
sequentia consistency model. We next study the effect of relaxing the write-read and write-write program
orders. Finaly, we consider the performance effect of minor ordering differences among relaxed models.
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Table 6.3: General statisticson the applications. Numbers are aggregated for 16 processors.

Table6.4: Statisticson shared datareferencesand synchronization operations, aggregated for all 16 processors.

Instructions | Shared Data Shared
Executed References | DataSize
Application (millions) (millions) (Kbytes)

OCEAN 120 16.5 2972
PTHOR 86 15.8 2760
MP3D 209 22.4 4028

CHOLESKY 1302 217.2 6856
LU 50 8.2 640

LOCUS 897 130.3 5156

BARNES 337 449 1528
WATER 2165 195.3 484

Numbers in parentheses are rates given as references per thousand instructions.

Reads | Writes | R/W Read Misses | Write Misses | RMissWMiss
Application X1000 | X1000 | Ratio X1000 X1000 Ratio Locks | Barriers
OCEAN 12,280 4,255 29 1,438 1,810 0.8 352 2,400
(102) (35) (12) (15) (0.00) (0.02)
PTHOR 14,516 1,316 | 11.0 550 237 23 105,414 3,984
(169) (15) (6.4) (2.8) (1.23) (0.05)
MP3D 16,965 5,468 31 1,875 1,320 14 2,172 384
(81) (26) (9.0) (6.3 (0.01) (0.00)
CHOLESKY 193,216 | 24,049 | 8.0 4,908 3,917 1.2 90,307 16
(148) (129) (3.8) (3.0 (0.07) (0.00)
LU 5,478 2,727 20 273 123 22 3,184 29
(110) (55) (5.5) (2.5) (0.06) (0.00)
LOCUS 117,440 | 12,847 9.1 2,721 1,845 15 51,016 16
(131) (14) (3.0 (21 (0.06) (0.00)
BARNES 34,121 | 10,765 | 3.2 1,054 156 6.7 16,525 96
(101) (32) 3.1 (0.5) (0.05) (0.00)
WATER 146,376 4891 3.0 1,173 818 14 302,272 208
(68) (23) (0.5) 0.9 (0.19) (0.00)

Preserving all Program Orders

This section evaluates the performance of implementations that preserve all program orders. The program
order from a read to a following operation is inherently maintained because the processor stalls for the
completion of each read (i.e., the blocking read restriction). To preserve the program order from writes to
following operations, we assume the processor also stalls for each write operation to complete. The above
depicts a straightforward implementation of the sequential consistency model.

Figure 6.3 shows the performance for the benchmark applications assuming al program orders are
preserved. Thefigure presentsabreakdown of the executiontimefor each application. The bottom component
of each column represents the time spent executing instructions. This component provides a measure of
processor utilization or efficiency. The remaining three components represent time spent stalling for read,
write, and synchronization operations to complete. The synchronization component includes the time spent
acquiring alock, waiting for other processors to reach abarrier, or spinning on empty task queues.* We have

1The latter type of spinning is achieved through normal instructions. However, the applications are appropriately annotated to
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Figure6.3: Performance of applicationswith all program orders preserved.

shown the applicationsin the order of increasing processor utilization. In general, the applicationswith lower
processor utilizations benefit more from optimizationsthat hide the latency of memory operations.

As shown in Figure 6.3, many of the applications spend large portions of their execution time stalled for
memory operationsand synchronization. Asaconseguence, five out of eight applicationsachieve below 40%
processor utilization. Referring back to Table 6.4, thetime spent stalling for reads and writesisclosely related
to thefrequency of missesfor these operations. The correlation between synchronization operation frequency
and the time spent on synchronization is much weaker because synchronization latency is often dominated
by load balance issues. For example, even though LU and LOCUS have approximately the same frequency
for locks and barriers, LU spends a much larger percentage of its execution time stalled for synchronization
(mainly busy locks).

The program order from writes to foll owing operations can be maintained in adightly more efficient way.
In the implementation described above (referred to as BASE), the processor stalls immediately after each
write until the write completes. The alternative isto place the writes in the write buffer without stalling the
processor. To maintain the order among write operations, the write buffer retires the write at the head only
after the write is complete. Furthermore, the write-read program order is preserved by staling a read until
the write buffer is empty. Thislatter implementation (referred to as BASE') alows part of the write latency
to be overlapped with computation up to the next read. In most cases, however, a read access occurs soon
after awrite miss, and most of the latency for completing the write miss will still be seen by the processor.

Figure 6.4 showsthe performanceof theaternativeimplementation described above. For each application,
we show the breskdown of the execution time for both BASE and BASE’ (labeled B and B’, respectively),
normalized to the execution time for BASE. The small variation in the instruction time for CHOLESKY is
due to the slightly non-deterministic behavior of the application. We will later observe the same effect in
some of the other applications. As expected, the performance of BASE' is within a few percent of BASE

delineate regions of code that are used for such synchronization purposes.
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Figure 6.4: Effect of buffering writes while preserving program orders.

for all applications. BASE' performs better than BASE for all applications except LOCUS, with the gain
mainly due to a dight decrease in the write stall time. LOCUS and PTHOR experience a higher write stall
time, however. Thislatter effect issimply an artifact caused by the different interleaving of operationsin the
two executions. Overall, the performance difference between the two implementationsis negligible. For this
reason, we will continueto use the BASE implementation as a point of comparison.

Relaxing the Write-Read Program Ordering

The first reordering optimization we consider is relaxing the write-read program order, which is enabled by
models such as TSO and PC. We begin by describing the implementation requirements for supporting this
optimization. As before, the processor stals for aread to complete. Writes, on the other hand, are simply
sent to the write buffer. The only time the processor directly stallson awriteisif thewrite buffer isfull. The
program order among writesis maintained through the write buffer by retiring awrite only after it completes.
Relaxing the write-read program order is exploited by alowing reads to bypass pending writes in the write
buffer; in case of an address match with a pending write, the value of the latest such write is forwarded to
theread. To fully exploit the overlap of aread with previouswrites, the secondary cache (refer to Figure 6.2)
must be lockup-free. In thisway, even if the cache is currently handling a write miss, it can service alater
read (hit or miss) operation. Thisisalimited form of lockup-free behavior, however, since there can at most
be a single write miss and a single read miss outstanding at any given time (due to write-write ordering and
blocking read constraints, respectively).

The main effect of relaxing the write-read program ordering is to alow a read to complete without
waiting for previous outstanding writes. Figure 6.5 presents the results of the above relaxation. For each
application, we show the execution time for the write-read reodering optimization (labeled W-R) normalized
to the time for the BA SE implementation described in the previous section (labeled B). The visiblevariation
in the instruction times for PTHOR, CHOLESKY, and WATER are due to the non-deterministic behavior
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Figure6.5: Effect of relaxing write-read program ordering.

mentioned in the previous section.

The performance results in the figure show a significant benefit from this relaxation, ranging from
approximately 10% to 55% improvement in performance. Thisimprovement arises mainly from a significant
reduction in the write stall time; the write stall time is virtualy eiminated in all the applications except
OCEAN. Any leftover write stall time arises from the write buffer filling up which in turn stall s the processor
on itsnext write. Referring back to Table 6.4, the magnitude of gainsis highly correlated to the frequency of
write misses in the application.

Figure 6.5 also depicts a number of secondary effects. One effect is that the read stall time increases
in some of the applications (e.g., BARNES). The primary reason for this is that approximately the same
number of read misses are executed in a shorter time compared to BASE, therefore increasing contention at
the memory system which can lead to increased latencies. Conseguently, some of the savings due to hiding
writelatencies arelost. On the other hand, we noticethat synchronization times decrease in most applications
relativeto BASE, which in turn magnifies the gainsfrom hiding writelatencies. Empirically, we have noticed
that fewer memory stalls often leads to fewer synchronization stalls. This effect may possibly be due to a
decrease in variation of times for different processorsto arrive at the synchronization points.

We now return to the issue of the write buffer becoming full. The results show that, except for OCEAN,
the write buffer rarely fills up in any of the other applications. The reason for thisis fairly intuitive: write
missesare well interleaved with read missesrather than being clustered, and the number of read missesusually
dominates. Since the processor has blocking reads, the stall duration for read misses provides sufficient time
for write misses to be retired from the write buffer, thus preventing it from getting full. OCEAN isthe only
application where read misses are outnumbered by write misses (refer to Table 6.4). This makes the stall
duration for reads insufficient for fully covering the service time for the write buffer; increasing the size of
the write buffer does not help in thiscase. Overall, the write buffer depth of 16 in our simulated architecture
seems more than sufficient for handling the clustering of writes present in the applications.

In summary, relaxing the write-read program ordering enables an implementation to successfully hide
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virtually all of thewrite latency in most applications.

Relaxing the Write-Write Program Ordering

We now consider the effect of relaxing write-write program ordering in addition to the write-read program
ordering. Thistype of relaxation is allowed by a model like PSO. Furthermore, this relaxation characterizes
the behavior of models such as RCpc and RM O in architectures with blocking reads; even though these latter
models relax the program order from reads to later operations, this optimization cannot be exploited in the
context of blocking reads.

We begin by describing theimplementation requirementsfor exploiting the pipelining of writes. Thereare
two key differences compared to the implementation described in the previous section. Thefirst differenceis
that the write buffer can retire awrite without requiring ownership to be obtai ned for the write. Some writes,
such as writes following a STBAR in PSO or a competing writein RCpc, must still be ordered with respect
to previous writes. To achieve this, the write buffer delays the issue and retiring of such writes (when they
arriveat the head of the buffer) until all previouswrites have completed. Asdiscussed inthe previouschapter,
the implementation may use counters to keep track of the outstanding writes. The second difference is with
respect to the secondary cache in terms of its lockup-free behavior. The cache must now allow multiple
outstanding writes; the blocking read restriction till limitsthe number of outstanding reads to one, however.
Our simulation limitseach lockup-free cache to a maximum eight outstanding misses (i .e., eight write misses,
or one read miss and seven write misses).

The effect of pipelining writesis that writes can be retired at a much faster rate than is possible in the
implementation studied in the previous section. This can help performance in two ways. First, the chances
of thewrite buffer filling up and stalling the processor are smaller. Second, if thereisawrite synchronization
operation (e.g., unlock operation) behind severa writesin the write buffer, then a remote processor trying to
acquire the synchronization (e.g., lock on the same variable) can observe the write sooner, thus reducing the
synchronization stall time. Even though the write synchronization operation is still delayed until al previous
writescomplete, thisdelay isoften reduced because the previouswrites are serviced in an overlapped manner.
Therefore, synchronizationsthat are on the critical path may occur faster.

Figure 6.6 presentsthe resultsfor the above relaxation. For each application, we show the execution time
for the BASE implementation (Iabeled B), the write-read reordering optimization from the previous section
(labeled W-R), and the write-write plus write-read reordering optimizations (labeled W-W). As before, the
execution times are normalized to that of BASE for each application. Compared to the W-R case, W-W
eliminates virtualy any leftover write stall time. Even in OCEAN, the faster rate of service for writes
effectively eliminates stallsdue to afull write buffer. In addition, the synchronization timeisreduced in some
of the applications. Except for OCEAN, the performance of W-R and W-W are ailmost identical since W-R
already eliminates aimost al of the write stall time for most of the applications. The fact that CHOLESKY
performs slightly worse under W-W is simply an artifact of the different interleavingsin the two executions
causing the synchronization timeto increase by a small amount.

In summary, relaxing the write-write program ordering hel ps eliminate virtually al of thewritelatency in
all applications, even applications such as OCEAN which exhibit more write misses than read misses. The
performance improvement relative to the BASE implementation ranges from approximately 10% to 80%,
with six out of eight applications gaining over 25%.
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Figure 6.6: Effect of relaxing write-write and write-read program ordering.
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Effect of Subtle Differences Among Models

In studying the effect of relaxing write-read program ordering, we have assumed implementationsthat allow
aread to always bypass previouswritesthat do not conflict with the read. Models such as TSO, PC, PSO, and
RCpc alow such an implementation. However, a model such as WO does not allow a read to be reordered
with respect to a previous write if either the write or the read are labeled as synchronization. The Alpha,
RMO, and PowerPC modelsalso disallow such reordering if thereisafence in between thewrite and theread.
Finally, the RCsc, PL1, PL2, and PL3 models all exhibit cases where the write-read order must be preserved
when both operations are conservatively labeled (e.g., competing write followed by competing read in PL1).

Similarly, for the write-write program ordering, we have assumed that the only case when two writesto
different addresses must be ordered isif thelater writein program order has aconservativelabel orispreceded
by a fence (depending on whether we are dealing with label-based or fence-based models). Except WO, all
models discussed in thisthesis that relax write-writereordering alow such an implementation; WO does not
allow a synchronization write to be reordered with respect to either previous or future writes.

The above differences anong models become significant only if the frequency of fences or conservative
labelsishigh. Inthecontext of our applications, thistrand atesto ahigh synchronization rate. However, asthe
datain Table 6.4 shows, the frequency of synchronization operationsis extremely low in most of applications
in our study. The only application that shows a relatively high rate of synchronization is PTHOR, with an
average of 1.2 lock (and 1.2 unlock) operations occurring every thousand instructions. Therefore, we do not
expect these secondary differences to affect the performance of most of the applications.

Instead of attempting to show performance results for al the models, we try to place a bound on the
performance effect of the types of differences discussed above. For this purpose, we have selected two
models, WO and RCpc, that lie on the extremes with respect to such differences. The performance of
other models (that allow similar optimizations) will lie somewhere in between these two bounds. The
implementation assumed for RCpc is the same as the W-W implementation studied in the previous section.
The WO implementation has a few extra constraints. In particular, the processor stalls for previous writes
to complete before issuing a synchronization read (e.g., lock). In addition, the write buffer does not retire
a synchronization write (e.g., unlock) until it completes. This latter constraint is less significant since it
influences performance only indirectly by potentially increasing the chances of a full write buffer.

Figure 6.7 presents the performance of the WO and RCpc models for the eight applications. The results
for RCpc are the same as those shown in Figure 6.6 for the W-W implementation. As before, the execution
times are normalized to that of BASE; however, we no longer show the breakdown for the BASE case. As
expected, the performance of thetwo modelsisidentical for most applications. For PTHOR, the RCpc model
performs significantly better than WO due to the high synchronization rate in this application. Surprisingly,
the performance of WO for PTHOR is a so worse than the performance of the W-R implementation (compare
with normalized execution timesin Figure 6.5), which isallowed by lessrelaxed model s such as TSO and PC
that do not allow write pipelining. Finally, WO performs slightly worse than RCpc for OCEAN and WATER.

To understand the performance of PTHOR better, we gathered data regarding the extra stallsintroduced
by WO over RCpc. We found that there is frequently a write miss or unlock within 20 cycles before a lock
operation. Similarly, there is a read within a small number of cycles after an unlock. Therefore, at most 20
cycles of the latency of the write miss or unlock can be hidden and the rest of the latency is visible to the
processor. More detailed data show that virtually all unlocks caused a delay for the next read and 30% of the
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Figure 6.7: Effect of differences between the WO and RCpc models.

lock operations were delayed due to previous write misses. For the above reasons, WO fails to completely
eliminate the write stall time, with RCpc performing 14% faster.

The relative performance of WO as compared to models such as TSO, PC, and RCpc may be affected by
thefact that our simulated architecture does not cache locks, which increases the average latency for acquiring
or releasing locks. Caching locks is beneficial when a processor acquires and releases a lock severa times
with no other processor accessing the lock in between. All models gain from a faster acquire if the lock is
found in the cache. As for the reduced latency of the release, TSO, PC, and RCpc do not benefit since they
already hide write and release latencies. WO can potentialy benefit from this, however, which may reduce
the performance difference observed for PTHOR.

In summary, the subtledifferences anong model s do not have asignificant affect on performance for most
of the studied applications. The intuitive reason for thisis that these subtle differences become significant
only if the application exhibits a high frequency of synchronization.

6.2.3 Effect of Varying Architectural Assumptions

This section studies the effect of |ess aggressive implementations, and also considers the effect of different
cache and line sizes.

L ess Aggressive Implementations

Inthe previous section, weeva uated the performance of program reordering optimizationsusing an aggressive
implementation with lockup-free caches. The goal was to minimize the influence of the implementation in
the comparison of the optimizations. In this section, we explore less aggressive implementations and study
the impact on the relative performance of the write-read and write-write reordering optimizations.

We will consider four version of the implementation: (i) LFB (lockup-free with bypass), the aggressive
implementation studied in the previous section with a lockup-free secondary cache, a 16 word deep write
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buffer, and reads that bypass the write buffer; (ii) LFN (lockup-free with no bypass), which is the same as
LFB, except reads are not alowed to bypass the write buffer; (iii) BLB (blocking cache with bypass), which
is the same as LFB, except the secondary cache is blocking (i.e., not lockup-free); and (iv) BLN (blocking
cache with no bypass), which is the same as BLB, except that reads are not alowed to bypass the write
buffer. Recall that the lockup-free cache must only support a single outstanding read and a single outstanding
write at any given time when we consider the write-read reordering optimization. The write-writereordering
optimization requires the cache to allow multiple outstanding writes.

Effect on the Write-Read Reordering Optimization Figure 6.8 presents the performance results for the
various implementations of the write-read reordering optimization. The LFB results are the same as the
W-R results presented in Section 6.2.2. The execution time for each application is normalized to that of the
base implementation (labeled B) that preserves al program orders. For severa of the applications, thereis a
significant performance loss when we move from LFB to less aggressive implementations. Thisresult shows
that supporting both alockup-free cache and read bypassing is essential for realizing the full potentia of the
write-read reordering optimization.

Comparing the LFB and LFN implementations, we see a large performance difference in several of the
applications. The only difference between the two implementationsis that LFB alows reads to bypass the
write buffer. Because writes are serviced one at atime in both implementations, it islikely that thereis one
or more writes in the write buffer when a processor triesto issue aread to the secondary cache. In OCEAN,
which has a very high write miss rate, almost 70% of the primary cache read misses run into at least one
or more writes in the write buffer. Therefore, disallowing the read to bypass these writes can substantially
increase the time required to service each read.

Comparing LFB and BLB, we aso see alarge performance difference for severa applications. The only
difference between these two is that LFB’s secondary cache can have both a read miss and a write miss
outstanding, while BLB can have either aread miss or awrite miss outstanding but not both. Thus, in BLB, a
read miss that follows closely behind awrite missthat is already being serviced by the secondary cache will
have to wait until the write completes, which can be tens of cycles. The detailed results for LFB executing
OCEAN and PTHOR show that 73% and 22% (respectively) of the read misses are serviced whilethere was
awrite miss outstanding.

Comparing BLN, BLB, and LFN, we see less of adifferencein performance. For many applications, the
difference among these implementations is negligible. However, in OCEAN and PTHOR, BLB performs
somewhat better than the other two. The obvious advantage of allowing bypassing is that the read miss does
not have to wait for the write buffer to empty before being serviced. The results for OCEAN and PTHOR
suggest that read bypassing is more important than alockup-free cache if only oneisto be supported.

Finaly, the reason BLN still performs better than the base implementation (labeled B) is as follows. In
B, both first-level cache read hits and read misses are delayed for the write buffer to empty out. In BLN,
read hitsin thefirst-level cache are not delayed for pending writes and only first-level read misses suffer that
penalty. Therefore, BLN still exploitswrite-read reordering in alimited way.

In summary, implementationsthat exploit only write-read program reordering must support both alockup-
free cache and reads that bypass the write buffer to get the full benefit from this relaxation.
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Figure 6.8: Write-read reordering with less aggressive implementations.
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Effect on the Write-Write Reordering Optimization Figure 6.9 presents the performance results for
implementations that exploit both the write-read and the write-write reordering optimizations. The LFB
results are the same as the W-W results presented in Section 6.2.2. Again, the execution time for each
application is normalized to that of the base implementation (Iabeled B) that preserves al program orders.

In contrast to the results in the previous section, we see that the performance of LFB and LFN are
comparable. Exploitingwrite-writereordering allowsamuch faster serviceratefor thewritebuffer, especially
when the implementation supports multiple outstanding writes with a lockup-free cache. This significantly
decreases the chance that a primary read miss encountersawritein thewrite buffer. For example, over 99.9%
of the primary read misses in OCEAN encounter an empty write buffer under LFN, while without write
pipeining (i.e., the LFN implementation of the previous section), over 70% of the read misses encountered
at least asingle pending write. For this reason, disallowing reads to bypass the write buffer does not have a
significant effect on performance. Similarly, a more shallow write buffer would suffice.

The significant performance | oss occurs when the implementation no longer supportsalockup-free cache
(i.e., going from LFB or LFN to BLN or BLB). As in the previous section, the lockup-free cache alows a
read missto be serviced right away regardless of whether a previouswrite missis currently being serviced by
the cache. Furthermore, as we mentioned above, write missesin the write buffer are retired at a much faster
rate since the cache allows multiple outstanding writes.

The comparison of BLN and BLB issimilar to the previous section. For most applications, allowing read
bypassing with a blocking read does not provide a gain. However, read bypassing is useful in applications
such as OCEAN and PTHOR which have high write missrates. It isaso interesting to compare the results
for BLN or BLB with the results in the previous section. Even though the secondary cache is blocking,
write-writereordering can still be exploited by using eager read-exclusive replies. The write buffer retiresa
writes as soon as the read-exclusive reply is back and potentially before the invalidations are acknowledged.
This dlows a dightly faster service rate for the write buffer. Furthermore, the blocking cache is kept busy
for a shorter duration on each write miss since it a'so only waits for the read-exclusive reply and not the
invalidation acknowledgements. Therefore, the BLN and BLB implementation in Figure 6.9 perform better
than the BLN and BLB implementationsin Figure 6.8 (which do not exploit write-write reordering).

In summary, implementationsthat exploit both write-read and write-write program reordering must support
alockup-free cache to get the full benefit from these relaxations. Allowing reads to bypass the write buffer
does not provide much benefit once the design supportsalockup-free cache; thefast serviceratefor the writes
also alleviates the need for a deep write buffer.

Cache Size Variations

This section studiesthe effects of varying the cache size. Varying the cache sizetypically changes the absolute
number of misses, the ratio of read versus write misses, and the relative mixture of capacity/conflict versus
coherence (or communication) misses. The results will alow usto observe the behavior of the applications
and to evaluate the effectiveness of the reordering optimizations with respect to different cache sizes.

Figure 6.10 presents the results, with the performance of each application shown for three different sets
of cache sizes. The rightmost pair of bars correspond to the full-sized 64K/256K caches in DASH that were
used throughout the previous sections (same as results in Figure 6.6). The leftmost and middle pairs of bars
correspond to 2K/8K and 8K /64K caches, respectively. For each application, the resultsare normalized to the
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Figure 6.9: Write-read and write-write reordering with less aggressive implementations.
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performance of the base implementation running with the full-sized caches. In addition to showing resultsfor
the base implementati on with no reordering optimizations (1abeled B), we a so show resultsfor the aggressive
implementation with write-read and write-writereordering (Iabeled W-W) that we studied in Figure 6.6. The
percent number beside each pair of bars shows the relative performance gain of W-W over B for each cache
size.

We begin by considering the effect of varying the cache size on the performance of each application
running on the base implementation. At one extreme, varying the cache size has virtually no impact on
the performance of MP3D. The reason for thisisthat MP3D sweeps through a large data set on each time
step (the particles for each processor are 200 Kbytes, and the space cell array is 288 Kbytes), and even the
64K /256K caches are not large enough to capture this data set. Real-life runs of MP3D would have even
larger data sets, and therefore, our results are indicative of runs of this application on a real machine with
even larger caches. At the other extreme, applications such as CHOLESKY, LU, LOCUS and BARNES,
exhibit significant increase in performance once key data structures fit in the cache. For LU, the knee of the
performance curve occurs between the 8K/64K and 64/256K cache sizes, corresponding to when the columns
owned by a processor (approximately 20 Kbytes) fit in the primary cache. For CHOLESKY, LOCUS, and
BARNES, the knee occurs between the 2K/8K and 8K/64K cache sizes. The other applications exhibit a
substantially less dramatic change in performance as we vary the cache size.

We next consider the effect on each component of the execution time. The absolute time to execute
instructions is effectively constant as we vary the cache size for each applications. The read and write
stall times typically decrease as we move to larger caches due to a corresponding reduction in misses. The
synchronization component varies alittle bit more irregularly; for example, even though the read and write
stall components decrease in WATER as we go from the small to the medium sized caches, the increase in
synchronization time makes the performance of the medium sized cache worse.

The W-W implementation exhibitsthe same behavior we observed in Figure 6.6: it effectively eliminates
the write stall component of the execution time at al cache sizes. The relative gain from the reordering
optimizations is a bit harder to predict since it depends on the relative mix of read stall, write stall, and
synchronization times as we vary the cache size. The percentage gain over the base implementation is shown
in italics beside each pair of bars. For four of the applications (i.e., OCEAN, PTHOR, CHOLESKY, and
LOCUS), the relative gain from hiding the write latency actually increases as we move to larger caches
even though the absolute number of read and write misses actually decrease. As is especialy evident in
CHOLESKY, increasing the cache size end up reducing the absolute read stall time much more substantially
compared to the write stall time. Therefore, the write stall component occupies a larger percentage of the
execution time as we increase the cache size. The relative gain is unaffected in MP3D since the application
isinsensitive to the cache size variation. Finaly, LU, BARNES, and WATER exhibit a dightly less regular
behavior. LU isthe only application where there is a substantia reduction in the gains from hiding write
latency as we move from the small and medium sized caches to the larger cache; nevertheless, the gain at the
larger cache size (27%) is till significant.

In summary, the write-read and write-write reordering optimizationsare successful in hiding virtualy al
of the write latency irrespective of the cache size. One somewhat non-intuitive result is that the gain from
hiding write latency actually increases with the cache size in four of the applications; the larger caches are
more effective in reducing the read stall time, thusincreasing the relative importance of the write stall time.
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Line Size Variations

Figure 6.11 presents results using two different cache line sizes for the four applicationsthat benefited most
from the write-read and write-write reordering optimizations. The leftmost pair of bars for each application
are the same as the resultsin Figure 6.6 with a 16-byte line and 64K /256K caches. The rightmost pair uses a
32-byteline. The results for each application are normalized to the performance of the base implementation
with a16-byteline. The percent number above each pair of bars showsthe rel ative performance gain of W-W
over B for the given line size. Three of the applications benefit from the larger line size; the performance
of PTHOR is effectively unchanged, however. OCEAN exhibits an anomalous increase in the number of
executed instructions when we go to the larger line size; again, this is an artifact of a non-deterministic
behavior.

The W-W implementation eliminates the write stall time even at the larger line size. The relative gain
from this are dlightly less at the larger line size for three of the applications. Nevertheless, the performance
gains still remain significant (26% to 75%).

6.24 Summary of Blocking Read Results

This section characterized the performance gains from exploiting the program reordering optimizations in
the context of architectures with blocking reads. Allowing reads to be overlapped with previous writes was
shown to be extremely effective in hiding the latency of write operations; the combination of blocking reads,
and the fact that most applications exhibit a larger number of read misses than write misses, allow writes to
be buffered without stalling the processors. Overlapping and pipelining of write operations was shown to
provide a significant benefit in only a single application (OCEAN) which exhibits a larger number of write
mi sses than read misses; the faster service rate for writes eliminated any stalls caused by a full write buffer.
Overdl, the performance gain from the above two optimizationsranged from roughly 10% to 80%, with
six out of eight applicationsgaining over 25%. L ockup-free caches were shown to be essential for achieving
the full potential from the above program order relaxations; implementations that do not exploit the write-
write reordering optimization also benefit from deeper write buffers and alowing reads to bypass writesin
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the write buffer.

The blocking read constraint disallowsthe hardware from exploiting the reordering of reads with respect
to later operations, which is enabled by the more aggressive relaxed models (i.e., WO, RCsc, RCpc, Alpha,
RMO, PowerPC, and the three PL models). For this reason, relaxed models cannot hide the read latency in
architectures with blocking reads. The following section considersthe use of other latency hiding techniques
to address the read latency in such architectures. We next study the effect of supporting non-blocking reads
in Section 6.4.

6.3 Interaction with Other Latency Hiding Techniques

This section studies two other latency hiding techniques in the context of architectures with blocking reads.
The two techniques we consider are software-controlled non-binding prefetching and hardware support for
multiple contexts. We will show that exploiting the optimizations enabled by relaxed modelsin combination
with either of the above techniques|eadsto a higher overall performance. The study presented in thissection
builds on our previouswork in thisarea[GHG 91].

6.3.1 Interaction with Prefetching

This section studies the effect software-controlled non-binding prefetching. We briefly describe the imple-
mentation assumptions for prefetching before presenting the performance results.

In our simulation model, aprefetch instructionis similar to awritein that it does not block the processor.
The primary cache is checked in the cycle the prefetch instruction is executed. If the lineis aready in the
cache, the prefetch is discarded. Otherwise, the prefetch is sent to a prefetch issue buffer which keeps track
of outstanding prefetches. The reason for having a separate prefetch buffer is to avoid delaying prefetch
requests unnecessarily behind writes in the write buffer. We model a prefetch issue buffer that is 16 entries
deep. The secondary cache isaso checked before the prefetch goesto memory. When the prefetch response
returns, it is placed in both the secondary and primary caches. Filling the primary cache is assumed to
require 4 cycles, during which the processor is not allowed to execute any loads or stores. If the processor
references alocation for which a prefetch has aready been issued, the latter reference is combined with the
prefetch request and the reference completes as soon as the prefetch result returns. We assume support for
both read and read-exclusive prefetches. A read prefetch bringsdatainto the cache in a shared mode, whilea
read-exclusive prefetch acquires an exclusive copy, enabling alater writeto that |ocation to complete quickly.

The prefetch instructions for five out of the eight applications (i.e., OCEAN, MP3D, CHOLESKY, LU,
LOCUS) were automatically generated using the compiler developed by Mowry [Mow94]. While this
compiler generates efficient prefetch instructionsfor the above applications, it failsto do so for the other three
applicationsin our study. For PTHOR and BARNES, we use a version of the application, aso provided by
Mowry [Mow94], with hand-inserted prefetch instructions. We did not have access to a version of WATER
with hand-inserted prefetching, however.

The results of the prefetching experiments are shown in Figure 6.12. For each application, we show
the result for the base implementation (labeled B), for prefetching (labeled PF), and for combination of
prefetching with the write-read and write-write program reordering optimizations (labeled RO, for reordering
optimizations). The percent number above each RO bar represents the performance gain from exploiting the
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Figure6.12: Effect of prefetching and relaxing program order.

program reordering optimizationsrelative to the prefetching case aone (i.e., as we go from PF to RO). The
results for the program reordering optimizations without prefetching can be found in Figure 6.6 (compare
with the W-W case). The instruction time component of the execution time includes the extra instructions
used for prefetching. Furthermore, thereis anew component in the execution time breakdown, shown as the
prefetch memory overhead time. Thistime corresponds to two situations: (1) when the processor attemptsto
issue a prefetch but the prefetch issue buffer isfull, and (2) when the processor attempts to execute aload or
store during the time the cache is busy with a prefetch fill.

The results for prefetching (PF bars) show significant gain in many of the applications. Read and write
stall times are reduced due to the use of read and read-exclusive prefetch instructions. The overhead for
prefetch instructions clearly shows through in all cases as an increase in the instruction execution time; this
negates some of the performance gains from prefetching. We also see that the prefetch memory overhead
component isnegligiblein al applications. At one extreme, the performanceimprovement over baseis127%
in OCEAN. MP3D and LU aso have substantial gains from prefetching. However, the gains for BARNES,
LOCUS, CHOLESKY, and PTHOR are much more modest, with BARNES gaining a mere 2%.

Referring back to results in Figure 6.6 for the W-W implementation, we see that the write-read and
write-write reordering optimizations actually provide a higher performance gain than prefetching for four
out of the seven applications (i.e.,, PTHOR, CHOLESKY, LOCUS, and BARNES). These are the same four
applications mentioned above where the gains from prefetching are modest, partly because prefetching fails
to significantly reduce the write stall times.

We now consider the resultsfor combining prefetching with the reordering optimizations (labeled as RO).
We see that the performance is enhanced for al applications as a result of the combination. Furthermore,
comparing the results with those of Figure 6.6 for the W-W implementation, we see that the combination
of the techniques performs better or at least as well as (for CHOLESKY and BARNES) the reordering
optimizationsalone. The main effect of the reordering optimizationsis to eliminate virtually any write stall
time that prefetching could not eliminate. For four of the applications (PTHOR, CHOLESKY, LOCUS,
and BARNES), the incremental gain from exploiting the reordering optimizations beyond prefetching is
larger than the gain prefetching provides over the base implementation; again, these are the applications
where prefetching is less effective. The percent number shown in italics above each RO bar shows the
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performance gain from the reordering optimization over the performance of the prefetching case. Combining
thetwo techniques providesan extra 35% performance increase in PTHOR, and an extra 15-20% performance
increase for four other applications.

In summary, prefetching and reordering optimizations enabled by relaxed models are complementary
techniques; the reordering optimizations eliminate write latency and prefetching reduces the remaining read
latency.

6.3.2 Interaction with Multiple Contexts

This section evaluates the use of processors with support for multiple contexts. Each processor has several
threads assigned to it, which are kept as hardware contexts. When the context that is currently running
encounters a long-latency operation, it is switched out and another context starts executing. In this manner,
multiple contexts can help tolerate latency by overlapping the latency of operations in one context with the
computation and operations of other concurrent contexts.

The performance gain to be expected from multiple context processors depends on severd factors. The
first factor isthe number of contexts. More contextsincrease the chance that a processor will find a ready-to-
run context on a switch, but the number of contextsis constrained by available paralelism in the application
and the hardware cost to support the contexts. However, a handful of hardware contexts may be sufficient
to hide most of the latency if the interval between long-latency operations such as cache misses is large.
The second factor is the context switch overhead. A shorter context switch time leads to a more efficient
overlap of contexts, but requires more complex hardware support. The third factor relates to application
behavior; applicationswith clustered misses make it more difficult to overlap the latency of one context with
the operations in another. Finaly, multiple contexts on the same processor share the same cache and can
therefore interfere with each other either constructively or destructively.

For our simulations, we use processors with four contexts. We do not consider more contexts per
processor because 16 4-context processors require 64 parallel threads and some of our applications do not
achieve good speedup with that many threads. In fact, for three of the applications (OCEAN, PTHOR, and
CHOLESKY), we show resultswith only 2 contexts per processor (which trandates to 32 threads) since the
overall performance was better than the 4-context case. We assume an aggressive context switch overhead of
4 cycles, which corresponds to flushing/loading a short RISC pipeline when switching to the new instruction
stream.

Figure 6.13 presents the results with multiple contexts. For each application, we show the result for
the base implementation (labeled B), for multiple contexts (labeled MC; the number represents contexts per
processor), and for the combination of multiple contexts with the program reordering optimizations (Iabel ed
RO). The percent number above each RO bar represents the performance gain from exploiting the program
reordering optimizations relative to the multiple contexts case alone (i.e., as we go from MC to RO). The
resultsfor the program reordering optimizationswithout multiple contextsare in Figure 6.6 (the W-W case).
Each bar in the graphsis broken down into the foll owing components: time spent executing instructions(this
includesinstructionsused to spin on empty task queues; our previous experimentsincluded thetimefor these
instructionsunder the synchronization component), time spent switching between contexts, thetime when all
contexts are idle waiting for their operationsto complete (all idle), and the time when the current context is
idle but cannot be switched out (no switch). Most of thelatter idletimeisdueto the fact that the processor is

258 Chapter 6 Performance Evaluation



locked out of the primary cache whilefill operations of other contexts complete.

The results show that multiple contexts provide significant gain for most of the applications. Especially
for MP3D and LOCUS (and even for BARNES), multiplecontextseliminate almost al overhead components,
making the time to execute instructionsthe main component of the execution time. The two exceptions are
PTHOR and CHOLESKY. These two applicationsdo not exhibit sufficient parallelism at even 32 threads, and
thereforethe threads spend too much time spinningwaiting for work which showsthroughasan increaseinthe
instruction component of the execution time. The reason WATER exhibitssmall gainsis that the application
already runs efficiently without multiple contexts. The aggressive context switch time assumption makes the
switching component of the execution time negligiblein all applications. Similarly, the“no-switch” idletime
isnegligiblein most cases.

Referring back to results in Figure 6.6 for the W-W implementation, we see that the reordering opti-
mizations actually provide a higher performance gain than multiple contexts for four of these applications:
OCEAN, PTHOR, CHOLESKY, and WATER. Thisdifferenceislargest for PTHOR and CHOLESKY, where
multiple contexts fail to hide much of the latency.

We now consider the combination of multiple contextswith the reordering optimizations (labeled as RO).
With the reordering optimizations, write misses are no longer considered long latency operations from the
processor’s perspective since writes are simply put into the write buffer. Therefore, the processor no longer
switches on write misses. The effect of thisisto increase the distance between long latency operations, thus
requiring fewer contextsto eliminate most of theremaining read misslatency. Theresultsin Figure 6.13 show
the performance isenhanced for all applicationsas aresult of thiscombination. The percent number shownin
italicsabove each RO bar showsthe performance gain from the reordering optimization over the performance
of the multiple contexts case. Combining the two techniques provides an extra 37% performance increase
in PTHOR, and a higher than 25% increase for three other applications. Finally, comparing the results with
those of Figure 6.6 for the W-W implementation, we see that the combination of the techniques a so performs
better than the reordering optimizations alone.

In summary, multiple contexts and reordering optimizations enabled by relaxed models are also com-
plementary techniques; the latter optimizations eliminate writes as long latency operations, allowing the
remaining read latency to be hidden with fewer contexts.

6.3.3 Summary of Other Latency Hiding Techniques

Since thetechniquesof relaxing program orders, prefetching, and using multiplecontextsare alternative ways
for hiding latency, it may seem that the use of one technique eliminatesthe need for the others. However, the
resultsinthissection show that thereissynergy inexpl oiting program reordering opti mizationsin combination
with either prefetching or multiple contexts. The reason for this is that prefetching and multiple contexts
are sensitive to application behavior and fail to universaly reduce or eliminate the write latency for every
application. At the same time, allowing writes to overlap with following read and write operations fully
eliminates the write latency in virtually any application. Supporting these techniques together provides
synergy at the implementation level as well; thiswas discussed in Section 5.8 of the previous chapter.
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6.4 Architectureswith Non-Blocking Reads

The previous sections showed that the latency of write operations can be hidden by buffering writes and
allowing reads to bypass previous pending writes. Hiding the latency of reads by exploiting the overlap
allowed by relaxed models isinherently more difficult, however, simply because the computation following
the read typicaly depends on the return value. To hide this latency, the processor needs to find other
independent computation and memory accesses to process while awaiting the return value for the read.
Achieving this through hardware implies an aggressive processor architecture with a decoupled decode and
execution unit and capability for dynamic scheduling, branch prediction, and specul ative execution. Given
expected memory latencies in the range of tensto hundreds of processor cycles, there are serious concerns as
to whether such a processor architecture allows for effective overlap of read latencies.

This section explores the use of dynamically scheduled processors to aggressively exploit the overlap
of aread with operations that follow it in program order. Our results show that a substantial fraction of
the read latency can be hidden by exploiting this technique. We describe the framework for our simulation
experiments in Section 6.4.1. The performance results for overlapping reads with future operations is
presented in Section 6.4.2.

The results presented in this section are directly derived from a previous study that has aready been
published [GGH92].

6.4.1 Experimental Framework

This section presents the different components used in our simulation environment. The first part discusses
architectural details of the processor. The second part explainsthe coupling of the multiprocessor simulation
with the processor simulator. Finally, we present the benchmark applications used in our study.

Simulated Processor Architecture

The simulated processor environment is based on an architecture proposed by Johnson [Joh91]. Only a brief
description is provided here; the interested reader isreferred to [Joh91] for more detail.

Figure 6.14 showsthe overall structure of the processor. The processor consists of a number of functional
units with associated reservation stations [Tom67]. Although not shown in the figure, there are also four
floating point units for performing floating point add, multiply, divide, and conversion.? The reservation
stations are instruction buffers that decouple instruction decoding from instruction execution and allow for
dynamic scheduling of instructions. Decoded instructions and operands are placed into the appropriate
reservation station by the decoder. The reservation station can issue an instruction as soon as the instruction
has its data dependences satisfied and the functional unit isfree.

The reorder buffer [SP85] shown in Figure 6.14 is responsible for several functionsin this architecture.
Thefirst function is to eliminate storage conflicts through register renaming [Kel 75]. Each instructionthat is
decoded isdynamically alocated alocation in thereorder buffer and atag isassociated withitsresult register.
Thetag isupdated to the actual result value once the instruction completes. Correct execution is achieved by
providing the value or tag in the reorder buffer (instead of the value in the register file) to later instructions

2While Johnson assumes the floating point units reside on a coprocessor, we assume they are on the same chip as the integer units.
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Figure6.14: Overal structure of Johnson’'s dynamically scheduled processor.

that attempt to read this register. Unresolved operand tags in the reservation stations are updated when the
corresponding instruction compl etes.

The second function for the reorder buffer isto provide the rollback mechanism necessary for supporting
speculative execution past unresolved branches. The architecture uses a branch target buffer (BTB) [LS84]
to provide dynamic branch prediction. The rollback mechanism for mispredicted branches works as follows.
Decoded instructions enter the reorder buffer in program order. When an instruction at the head of the
buffer completes, the entry belonging to it is deallocated and the result value is written to the register file.
Since instructions enter the reorder buffer in program order and are retired in the same order, updates to the
register file take place in program order. Therefore, instructionsthat depend on an unresolved branch are not
committed to the register file until the branch completes. Similarly, memory stores are aso held back (the
reorder buffer controlstheretiring of storesfromthe store buffer).® If abranchis mispredicted, al instructions
past the branch are invalidated from the reorder buffer, the reservation stations, and the appropriate buffers,
and decoding and execution is started from the correct branch target. The mechanism provided for handling
mispredicted branches is aso used to provide precise interrupts. This alows the processor to restart quickly
without the need to save and restore complex state information.

For our study, we have assumed a single cycle latency for al functional units except the load/store unit.
The latency for loads and stores is assumed to be one cycle in case of a cache hit. The scheduling of
instructionswithin each functional unit is allowed to be out-of-order. This pertainsto the load and store unit
also as long as the memory consistency constraints allow it. Furthermore, load operations can bypass the
store buffer and dependence checking is done on the store buffer to assure a correct return value for the load.

Regarding the caches, we simulate alockup-free data cache [Kro81] that alows for multiple outstanding
requests, including multiple reads. We ran our simulations assuming a single cache port, thus limiting the

3A store at the head of the reorder buffer is retired as soon as its address translation completes and the consistency constraints allow
itsissue. The store buffer is free to issue the store after this point.
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number of loads and stores executed to at most one per cycle. The branch target buffer size was set to 2048
entries with a 4-way set-associative organization. For simplicity, al instructions are assumed to hit in the
instruction cache.

The next section describes how our processor simulator is coupled to the multiprocessor simulation.

Multiprocessor Simulation

Our multiprocessor simulation is done using Tango Lite, the same reference generator used to do our studies
for blocking reads. The simulation assumes asimple multiprocessor architecture. The architecture consistsof
16 processors, each with a 64 Kbyte lockup-free data cache that is kept coherent using an invalidation-based
scheme. The caches are direct mapped, write-back caches with a line size of 16 bytes. The simulated
processors are simple in-order issue processors with blocking reads. Writes are placed in a write buffer
and are pipelined, and reads are allowed to bypass the write buffer. The latency of memory is assumed to
be 1 cycle for cache hits and a fixed number of cycles for cache misses. In our experiments, we use a 50
cycle penalty for cache misses (resultsfor a 100 cycle penalty are provided in atechnical report [GGH934]).
Queueing and contention effects in the interconnection network are not model ed.

The above simulation generates a dynamic instruction trace for each of the simulated processes. The
generated trace is augmented with other dynamic information including the effective address for load and
storeinstructionsand the effective latency for each memory and synchronization operation.

To simulate the effects of dynamic scheduling, we choose the dynamic instruction trace for one of
the processes from the multiprocessor simulation and feed it through our processor simulator (described
in the previous section). Since the pertinent information about the multiprocessor cache simulation and the
synchronization behavior isal ready contained inthetrace, the processor simulator simply usesthisinformation
to determine the latency of memory accesses and synchronization.

The use of trace-driven simulationin our study may introduce some inaccuracies in our results [KEL91].
This is because the trace is generated assuming a different processor architecture than the processor we
eventualy smulate. Thus, although the exact global interleaving of shared accesses may be different given
the two processor architectures, we use the same ordering for both. The extent to which this affects results
depends both on the application behavior and on the characteristics being studied. For our study, the program
characteristics that determine how well dynamically scheduled processors hide memory latency are the cache
miss behavior, the data dependence characteristics between memory accesses and computation, and the
predictability of branches. We do not expect these characteristics to vary greatly due to dightly different
global interleaving of the accesses.

One characteristic that can vary grestly due to different interleavingsis the synchronization latency and
load balance in an execution; thisissue was also witnessed in the results presented for blocking reads. Thus,
synchronizationtimes need to betreated cautioudly in trace-driven simulations. In thisstudy, wemainly focus
on thefraction of read latency that can be hidden and the overhead of synchronization does not fundamentally
affect the ability of dynamic scheduling techniques in hiding this latency. Synchronization times are only
reported to provide an estimate for the fraction of execution timethat correspondsto memory latency. Overal,
we believe that our results are only minimally affected by the use of traces in our simulations.
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Table 6.5: Statistics on branch behavior.

Program || Percentage | Avg. Distance | Percentage | Avg. Distance
of bet. Branches Correctly bet.
Instructions | (ininstructions) | Predicted Mispredictions
(in instructions)

OCEAN 6.0% 16.6 97.9% 778.9
PTHOR 15.3% 6.5 81.2% 34.7
MP3D 6.1% 16.4 90.8% 176.9
LU 8.0% 125 98.0% 618.1
LOCUS 15.6% 6.4 92.1% 81.6

Benchmark Applications

We present results for five out of the eight applications that were studied in the previous section: OCEAN,
PTHOR, MP3D, LU, and LOCUS. These are the applications that provide a higher potentia for gain from
reducing the read latencies. The descriptionsfor these applicationscan befoundin Section 6.2.1. Therearea
few differences compared to theblocking read study. For two of theaboveapplications, we useinputsdifferent
from those used in the blocking read study. For MP3D, we ran 10,000 particlesin a 64x8x8 space array for 5
time steps. For LOCUS, weused the Pri mar y1. gri n input, which contains 1266 wires and a 481-by-18
cost array. Furthermore, because we are simulating the detailed data dependences among instructions, both
shared and non-shared data are simulated, and al libraries (e.g., math libraries) are annotated to generate the
appropriate instruction and data references.

Because branch behavior isan important factor in determining the performance of dynamically scheduled
processors, Table 6.5 provides some statistics on branches for the five applications. This data is from the
Tango Lite multiprocessor simulation assuming 16 processors and amemory latency of 50 cycles.

6.4.2 Experimental Results

This section studies the effect of relaxing program orders in conjunction with dynamically scheduled pro-
cessors. We present simulation results comparing statically and dynamically scheduled processors. The
degree to which dynamic scheduling succeeds in hiding the latency of reads is determined by the size of the
lookahead buffer from which the processor chooses instructions to execute, the predictability of branches,
and finally the data dependence characteristics of the program, which determine the degree of independence
among instructions. Our experimental results will shed more light on the effect of each of these factors on
performance. Theresultsassume a 16 processor system with singleinstructionissue processorsand auniform
50 cycle cache miss latency. We briefly consider the effect of higher latency and using multiple instruction
issue capability in the latter part of this section.

While the results presented in this section show similar trends to the results in the blocking read study
(e.g., for the base implementation with no reordering optimization or for the statically scheduled processor),
these two sets of results are not directly comparable. There are severa reasons for this. The most important
reason is that we are ssimulating a much simpler memory system architecture in this section; e.g., thereis
only asingle level 64 Kbyte cache, thereis asinglelatency of 50 cyclesfor all cache misses, and contention
at the memory system or network is not modeled. Another reason is that we are simulating both shared
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and non-shared data, in additionto al library references; furthermore, two of the applications use a dightly
different input set.

Figure 6.15 showsthe simulation results comparing statically and dynamically scheduled processors. The
left-most bar in each graph shows the breakdown of the execution time for the base implementation (labeled
B) which completes each operation before initiating the next one (i.e., no overlap in execution of instructions
and memory operations). The order in which we show the components of execution timeis dightly different
from the previous sections. The bottom section till represents the time to execute the instructions. The
section above it now represents the time that the processor is stalled waiting for synchronization (e.g., locks,
barriers). The two sections on top show the read and write stall times. The penalty for cache misses is
assumed to be 50 cycles in these simulations.

The rest of the bars in each graph correspond to different implementations of a relaxed memory model
such as RCpc that enables the reordering of read and write operations with respect to one another. The first
bar correspondsto a simple statically scheduled processor with blocking reads (SSBR); thisimplementation
cannot exploit the reordering of reads with following operations. The second bar is a statically scheduled
processor with non-blocking reads (SS). This processor is allowed to execute past read misses and the stall
is delayed up to the first use of the return value. We assume a 16 word deep write buffer for the above
processors. The SS processor aso has a 16 word deep read buffer. Finaly, we evaluate the dynamicaly
scheduled processor (DS) described in Section6.4.1. To allow usto better i sol atethe effects on hiding memory
latency, we have limited the decode and issue rate for the DS processor to a maximum of 1 instruction per
cycle. Another important assumption in this study is that the processor cycle time is the same for SSBR,
SS, and DS (i.e., dynamic scheduling does not increase the cycle time). The size of the reorder buffer (or
lookahead window) used is denoted at the bottom of each column. This size corresponds to the maximum
number of instructionsthat can reside in the window at any given time. The window size is varied from 16
to 256 instructions. All simulations assume an aggressive memory system with lockup-free caches, write
buffers that allow reads to bypass writes, and the ability to issue one access per cycle from each node. Of
course, the extent to which these features are exploited depends the processor architecture.

Some general observationsthat can be made from the simulation results are: (i) the statically scheduled
processor with blocking reads (SSBR) successfully hides dl of the write latency, but fails to hide any read
latency, (ii) the statically scheduled processor with nonblocking reads aso fails to hide much of the read
latency, and (iii) dynamic scheduling can substantially reduce the read latency given processors with large
window sizes. Thefirst section bel ow briefly describestheresultsfor static scheduling. The next two sections
analyze theresults for dynamic scheduling in greater detail.

Static Scheduling Results

We briefly discuss the results for the two statically scheduled processors (SSBR and SS) below. We first
concentrate on the results for the SSBR processor. The effect of relaxing the write-read and write-write
program order on statically scheduled processors was studied in the previous section. The results here show
the same trend: these two optimizations hide the write latency completely in al applications.

We now consider the resultsfor the SS processor. The difference between SS and SSBR isthat SS does
not block on read accesses and delays this stall until the first use of the return value. Therefore, thereisthe
potential for hiding the latency of reads in the region between the read access and its first use. However,
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as the results indicate, the improvement over SSBR isminimal. Thisismainly because the object code has
not been rescheduled to exploit non-blocking reads (by moving the load access further away from the use of
the return value). Thus, the processor is effectively stalled a short distance away from a read miss since the
use of the return value is normally within afew instructionsaway. It isstill interesting to study the effect of
compiler rescheduling to exploit non-blocking reads as an alternativeto using dynamic scheduling techniques
in hardware.

Dynamic Scheduling Results

We begin by building some intuition for the different factors that affect the performance of dynamically
scheduled processors, specificaly in their ability to hide read latencies. We then analyze the results based on
thisintuition. The next section presents more simulation results to further isolate the factors that influence
performance.

Three factors determine the effectiveness of dynamic scheduling in hiding memory latency. Two of these
factorsrelate to the characteristics of the application: (i) data dependence behavior and (ii) control (or branch)
behavior. Thethirdfactor isthe size of thelookahead window (or reorder buffer) provided by the architecture.

The data dependence characteristics of an application is the most fundamental factor influencing perfor-
mance. Dynamic scheduling depends on the presence of independent accesses and computation for hiding
memory latency. For the applications we are considering, independent operations are present at different
granularities. Typically, the applications exploit parallelism at the task or loop iteration level and each pro-
cessor is assigned a set of tasks or loop iterations. One source of independent operations is within the task
or loop iteration boundary. Another source of independence is operations from two different tasks or loop
iterations that have been assigned to the same processor. The availability of such independent operations
and the distance between them determines the feasibility of a hardware techniquein finding and overlapping
them.

The behavior of branches in an application is aso a key factor that affects performance. The frequency
of branches and their predictability determine whether it is feasible for hardware to find distant independent
operations.

Finaly, the size of the lookahead window determines the maximum distance between independent opera-
tionsthat can be overlapped by the hardware. To overlap two independent accesses, the size of thelookahead
window needsto be at | east aslarge asthedistance between thetwo accesses. Furthermore, tofully overlapthe
latency of memory accesses with computation requires enough independent instructionsto keep the processor
busy for the duration of the latency. This requires the window size to be at least as large as the latency of
memory. For example, with the latency of 50 cycles, we require a window size of at least 50 instructions.
Smaller window sizes overlap only afraction of thislatency (proportional to the size).

We now consider the bound on the gain achievable by dynamic scheduling given that read and write
accesses can be overlapped between synchronization points. Since we limit issue to a maximum of one
instruction per cycle, the time due to the computation (busy/useful time) cannot be diminished. In addition,
acquire synchronization overhead arising from load imbalance or contention for synchronization variables
is aso impossible to hide with the techniques we are considering. On the other hand, the fraction of the
synchronization overhead arising from the memory latency to access synchronization variables can be hidden
in the same way that normal memory latency is hidden. For example, the latency to access afree lock can be
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hidden by overlapping thistime with the computation prior toit. Relating thisto the applications, our detailed
simulation results show that virtually al of the acquire overhead in MP3D, LU, LOCUS, and OCEAN arises
from load imbalance and contention. Therefore, the best dynamic scheduling can do for these applicationsis
to fully hide the read and write (including release) latency. In PTHOR, however, approximately 30% of the
acquire overhead isdueto latency for ng freelocks. Therefore, for PTHOR, it istheoretically possible
to hide afraction of the acquire overhead as well.

Referring to the results for DS in Figure 6.15, we notice that there is a gradual increase in performance
as we move from window size of 16 to window size of 256, with the performance increasing more rapidly
for the small window sizes and leveling off at thelarger windows. For LU and OCEAN, dynamic scheduling
hides virtualy all memory latency at window size of 64. For LOCUS, amost all latency, except for 16% of
the read latency, is hidden at the larger window sizes. For MP3D, 24% of the read latency remains even at
the larger window sizes. Similarly, PTHOR has 31% of itsread latency remaining.

Data dependence and small window size effects are most likely thetwo factors that influence performance
at the small window sizes (16 and 32). Based on the average distance between mispredicted branches shown
in Table 6.5, branch behavior isnot expected to be adetermining factor for the small windows, except possibly
in PTHOR. Thefactors shift at the larger window sizes. In LU and OCEAN, performance levels off at larger
windows simply because the memory latency isvirtually al hidden at the smaller window sizes. On the other
hand, the leveling off of performance in MP3D, PTHOR, and LOCUS is most likely due to the fact that the
branch prediction falls short of effectively using such large window sizes.

Detailed Analysisof Dynamic Scheduling

This section provides ssimulation results to further isolate the effects of different factors influencing the
performance of dynamically scheduled processors. Figure6.16 presentsthese resultsfor al five applications.
The left-most column in each graph repesats the data presented in Figure 6.15 for the BASE processor. The
next five columnsin each graph provide performance resultsfor the different window sizes assuming perfect
branch prediction. The last five columns in each graph present the results given for the case where branch
prediction is perfect and data dependences are being ignored.*

To isolate the effect of branches on performance, we can compare the performance for each window size
with and without perfect branch prediction (eft side of Figure 6.16 and right side of Figure 6.15). For LU and
OCEAN, the branch predictionisaready so good that we see virtually no gain from perfect branch prediction
even at the largest window size of 256. For LOCUS, perfect branch prediction performs dightly better at
the large window sizes of 128 and 256. For MP3D, noticeable gain from perfect branch prediction starts at
window size of 64. PTHOR, which hasthe worst branch behavior of al the applications, seems to noticeably
gain from perfect branch prediction even at the small window sizes of 16 and 32. Thus, except for PTHOR,
the branch behavior of the applications does not seem to affect the performance until we reach the 128 and
256 window sizes.

Toisolate the effect of data dependences, we can look at theimprovement in performance at each window
size when we move from perfect branch prediction to additionally ignoring data dependences (left and right
sidein Figure6.16). For LU and OCEAN, thereislittle or no gain from ignoring data dependences, pointing

4Dependences arising from consistency constraints, for example from an acquire synchronization to the following access, are still
respected.
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to thefact that data dependences do not hinder performance in these two applications (thisisas expected since
it was possibleto hide all memory latency for these two applications). For MP3D, PTHOR, and LOCUS, we
observe that ignoring data dependences increases the performance more at the small window sizes. In fact,
at window size of 256, the performance with and without ignoring data dependences is virtually the same
in these three applications. This points to the fact that there are some data dependences at short distances
(within atask or loop iteration), however, by looking ahead at substantially larger distances, it is possibleto
find more independent operations (acrosstasks or loop iterations). Althoughthisisan interesting observation,
from apractical point of view, it isnot possibleto exploit such independence at large distances with hardware
techniques a one simply because the branch prediction falls short of providing such lookahead distances.

Our detailed simulation results aso confirm the presence of data dependences at short distances. One
such result measures the delay of each read miss from the time the instruction is decoded and placed in the
reorder buffer to thetime theread isissued to memory. Below, we consider thismeasure for the window size
of 64 given perfect branch prediction. In LU and OCEAN, we find that read misses are rarely delayed more
than 10 cycles. This clearly pointsto the fact that read misses are independent from one another in these
two applications. Results for MP3D show that about 15% of the read misses are delayed over 40 cycles.
Similarly, in LOCUS, more than 20% of read misses are delayed over 40 cycles. This indicates the presence
of read missesthat are data dependent on one another, with one read miss aff ecting the address of the next read
miss. Data dependences have the most serious effect in PTHOR. For PTHOR, around 50% of the read misses
are delayed over 50 cycles. Thisisindicative of dependence chains formed by multiple misses. One effect
of such dependence chains is that there are fewer independent accesses to overlap. Furthermore, it is more
difficult to fully hide the latency of read misses in such a chain by overlap with independent computation,
simply because the misses in the chain behave like a single read miss with double or triple the effective
memory latency. Thisisthe main reason why it takes window sizes of up to 256 to fully hide the latency of
read missesin MP3D and PTHOR even with perfect branch prediction.

Finally, we can isolate the effect of window size by further analyzing the results for when both branch
prediction is perfect and data dependences are ignored (right hand side in Figure 6.16). In this case, the
only remaining factor that can affect performance is the window size. Looking at the results, we notice that
window sizes of 16 and 32 do not fully hide the latency of reads. As explained in the previous section, the
reasons for thisare (i) small window sizes do not find independent operations that are farther apart than the
window size, and (ii) to fully overlap latency with computation, the window size (in instructions) needs to be
at least aslarge as thelatency of access (in cycles). Relating to (i), our detailed simulation data for LU show
that 90% of the read misses are a distance of 20-30 instructionsapart. Thus, the window size of 16 performs
relatively poorly compared to other applications. Similarly, in OCEAN, about 55% of the read misses are
16 to 20 instructions apart. Again, the reason for the poor performance a window size of 16 is that the
distance between independent accesses exceeds the window size. Regarding reason (ii), we observe from the
results that once we reach awindow size of 64 (which exceeds the memory latency), the latency can be fully
overlapped with computation given the assumed lack of data dependences.®

In summary, data dependence and branch predictability do not hinder performance in LU and OCEAN.

5Given perfect branch prediction and the assumed lack of dependence, the execution times for MP3D, LU, LOCUS, and OCEAN
asymptotically approach the time for the computation plus the acquire overhead. For PTHOR, however, some of the acquireoverhead is
also being hidden. As explained in the previous section, the reason for this is that about 30% of the acquire overhead in PTHOR arises
from latency for accessing free locks.
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The performance of LOCUS and MP3D are primarily affected by data dependence at small window sizes
and by branch predictability at large window sizes. Finally, PTHOR is affected by both data dependence and
branch behavior at all window sizes.

Effect of Higher Latency and MultipleInstruction Issue

We briefly discuss the effect of higher memory latency and multiple instruction issue in this section. The
simulation results for these experiments are presented in an earlier technical report [GGH93g].

We repeated the simulations assuming a higher memory latency of 100 cycles. The trendswere similar to
what we observed for the 50 cycle memory latency. The most obvious difference was that the performance
levels off at the window size of 128 instead of 64. This arises from the fact that the window size needs to
exceed the latency in order to fully overlap memory latency with computation. Another observation was that
the relative gain in performance from hiding memory latency is consistently larger for the higher latency of
100 cycles.

We aso did a preliminary study of the effect of multiple instruction issue. As with the higher latency
results, the performance still increases when we moved fromwindow size of 64 to 128, whilewithout multiple
issue, the performance virtually levels off a window size of 64 (see Figure 6.15). This arises from the fact
that multiple issue speeds up the computation, while memory latency remains a 50 cycles. Thus, a larger
window sizeis needed to fully overlap the memory latency with computation time.

6.4.3 Discussion of Non-Blocking Read Results

The goal of this section has been to evaluate the effect of overlapping reads with later operations. We used a
dynamically scheduled processor to exploit thistype of overlap.

The choice of the application domain clearly influences our results. The scientific and engineering parallel
programs used in this study typically exhibit sufficient instruction-level parallelism that can be exploited to
hide memory latency. Furthermore, the branch predictability in these applicationsis usually better than for
mMOst uniprocessor programs.

Our architectural assumptions also influence the results. Our results are somewhat optimistic since we
assume a high bandwidth memory system. In addition, we do not model the effect of contention in the
network or a memory modules. However, the results are pessimistic in that we did not consider the effect
of compiler help to schedule code to allow the processor to use the lookahead window more effectively. In
addition, the FIFO retirement of instructionsfrom the lookahead window (to provide precise interrupts) is a
conservative way of using the window since instructionsthat have aready been executed may remain in the
window, disallowing new instruction from being considered for overlapped execution. Other techniques for
providing preciseinterruptsmay allow for better use of the window space. More aggressive branch prediction
strategies may a so alow higher performance for the applications with poor branch prediction.

The most important concern about dynamically scheduled processors is the extra hardware complexity
and its effect on cycletime. These factors haveto be considered in determining the actual gain from dynamic
scheduling. Inaddition, other techniquesfor hiding latency need to be considered. For example, the overlap of
memory accesses alowed by relaxed model's can a so be exploited by the compiler for scheduling read misses
to mask their latency on a statically scheduled processor with non-blocking reads or to decrease window size
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requirements in a dynamically scheduled processor.

6.4.4 Summary of Non-Blocking Read Results

This section explored the overlap of reads with future read and write operationsfor hiding read latency using
dynamically scheduled processors. Assuming a memory latency of 50 cycles, the average percentage of read
latency that was hidden across the five applications was 33% for window size of 16, 63% for window size
of 32, and 81% for window size of 64. For two of the applications, LU and OCEAN, read latency was fully
hidden at window size of 64. In general, larger window sizes did not increase the performance substantially.
The trends for a memory latency of 100 cycles are similar, except that larger windows were needed to fully
hidetheread latency. Inisolatingthe different factorsthat affect performance, weidentified data dependences
at short distances and small lookahead as the limiting factors for small windows and branch prediction asthe
limiting factor for large windows.

These results show that a substantial fraction of the memory latency can be hidden by overlapping
operationsas alowed by relaxed models. Most next generation commercia processorswill be ableto benefit
from these gains since they use dynamic scheduling techniques. However, it is not yet clear whether large
window sizes can be efficiently implemented in such processors. Another interesting area for research isto
eval uate compiler techniquesthat exploit rel axed model s to schedul e reads early. Such compiler rescheduling
may alow dynamic processors with smaller windows or statically scheduled processors with non-blocking
reads to effectively hide read latency with simpler hardware.

6.5 Related Work

This section describes related work on evaluating the performance of relaxed memory models. The latter part
of the section briefly mentions some remaining areas for investigation.

6.5.1 Related Work on Blocking Reads

Our origina study in this area [GGH91a] provided the first comprehensive set of results comparing the
performance of various relaxed memory models on real applications. The work presented in this thesis
extends our previousresultsto alarger set of applicationsand awider set of architectural assumptions.

A later study by Zucker and Baer [ZB92, Zuc92] provides performance results for a “dance-hall” archi-
tecture with uniform memory latency across four applications. The overal trends observed by this study
are qualitatively similar to thosein our original study. However, some major architectural differences make
a more detailed comparison difficult. Specifically, the low cache miss latency of 18-20 processor cycles
assumed severdly limits the performance gains from relaxed models; real multiprocessor systems exhibit
significantly higher latencies.

Torrellas and Hennessy [TH90] present a detailed analytical model of a multiprocessor architecture
and estimate the effects of relaxing the consistency model on performance. A maximum gain of 20% in
performance is predicted for using weak consistency over sequential consistency. This prediction is lower
than the results in our study mainly due to the low memory latencies and limited bus bandwidth that were
assumed.
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There have a so been anumber of studies eval uating the performance gain from exploiting relaxed models
in the context of software-supported shared memory systems [CBZ91, KCZ92, DKCZ93]. The sources of
performance gain for relaxed models are quite different in these systems compared to a hardware-supported
cache coherent system studied in this chapter.

6.5.2 Related Work on Interaction with Other Techniques

Our earlier paper on the interaction of relaxed memory models with prefetching and multiple contexts was
the first to provide a performance study of combining these techniques [GHG*91]. Mowry [Mow94] and
Laudon [Lau94] also present results for the interaction with prefetching and multiple contexts, respectively,
across alarger set of applications. The trends observed in all these studies are quite similar.

Another rel evant techniqueis acache coherence protocol optimizationthat can reducewritelatency by de-
tecting and specidly treating migratory data. Thisideawas concurrently proposed by Cox and Fowler [ CF93]
and Stenstrom et a. [SBS93]. The protocol detects a migratory pattern if it sees a read/write miss sequence
by one processor followed by asimilar sequence by another processor. Once alineis classified as migratory,
read requests are provided with ownership for the line, effectively prefetching the line for the next write; the
effect is quite similar to issuing a read-exclusive prefetch for certain reads. This technique can substantially
reduce the number of write misses experienced by a processor especially for applications that exhibit a high
percentage of migratory data. Therefore, it can be used to decrease the write stall time in a sequentialy
consistent system. Relaxed models provide a more general and robust way of eliminating write stall time
since they work for both migratory and non-migratory data. Nevertheless, the migratory optimization may
be beneficia in systems with low bandwidth interconnects since it eliminates messages associated with some
write misses as opposed to only hiding the latency of the miss. This optimization can also be used in con-
junction with relaxed model s to reduce the total number of write misses; performance is enhanced only if the
application’s bandwidth requirements are high relative to the system’s network.

6.5.3 Related Work on Non-Blocking Reads

There have been severd studies on the effect of non-blocking reads in both uniprocessor and multiprocessor
systems. We mention a few of the studies that are relevant to our work.

Melvin and Patt [MP91] have observed that dynamically scheduled processors are less sensitiveto higher
memory latency than statically scheduled processors. Their study was donein the context of multipleissue of
instructionsin uniprocessors and the largest cache miss penalty used was 10 cycles. In addition, the behavior
(e.g., cache miss, data dependence, and branch behavior) of the uniprocessor applications they studied is
substantialy different from the parallel applicationsused in our study.

Farkas and Jouppi [FJ94] study the effect of non-blocking reads and lockup-free caches in the context of
statically scheduled uniprocessors. They use an aggressive compiler to schedule loads early for up to a 20
cycle load penalty. Their results show substantial improvements across many of the SPEC92 benchmarks.

In the context of multiprocessors, Scheurich and Dubois [DSB86, SD88] provided simple analytical
models to estimate the benefits arising from relaxed consistency models and lockup-free caches. The gains
predicted by these models are large, sometimes close to an order of magnitude gain in performance. These
results are over optimistic partly due to the fact that effects such as data dependence, branch prediction, or
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look-ahead capability are not carefully considered.

Finally, our study of hon-blocking reads in conjunction with dynamically scheduled processors [GGH92]
provided evidence that these techniques can also work well inthe context of higher latenciesthat are typical of
multiprocessor systems. The results presented in this chapter are completely derived from this earlier work.

6.5.4 Areasfor Further Investigation

The study presented in this chapter focuses on the performance of paralel scientific and engineering ap-
plications on cache-coherent shared memory systems. Below, we briefly describe some areas where the
performance of relaxed models remain to be fully explored.

The choice of the application domain clearly influences any performance study. Other areas that are
interesting to exploreinclude commercial and data base applicationsand the effect on operating system code,
especially in the context of non-blocking read architectures.®

From aprocessor perspective, we have not fully explored the effect of multipleinstructionissue per cycle.
Because multiple issue processors decrease the time required to execute instructions, it is clear that they
would increase the importance of reducing and hiding memory latency. Therefore, we expect the gains from
relaxed models to increase. However, understanding the detailed interaction between instruction parallelism
and latency hiding demands a comprehensive study. Furthermore, it is interesting to study the detailed
architectural choices in building dynamically scheduled processors from the perspective of exploiting the
overlap of reads.

From a cache coherence protocol perspective, we focused on an invalidation-based directory protocol
similar to the one used by DASH [LLG'90]. The trade-offs for other protocols may be different. For
example, update-based protocols are interesting to study because they trade off an increase in write misses
and write latency for adecrease in read misses. Since relaxed models are extremely effective in hiding write
latency, and since read latency is harder to hide in generd, there is a potentially nice match between the two
techniques. Nevertheless, since simple update protocols fail to perform well in large scale systems, more
research is required to develop robust hybrid protocols that selectively use updates. Studying the effect of
relaxed models in the context of other protocol designs, such as the IEEE Scalable Coherent Interface (SCI)
protocol [JLGS90], is also interesting. Typica implementations of the SCI protocol can exhibit large write
latencies since cache copies are invaidated in a seriaized fashion, making the latency proportional to the
number of sharers. Therefore, the gains from hiding the write [atency can be more substantial .

Chapter 5 described a couple of techniques (i.e., speculative reads and hardware prefetching for writes
described in Section 5.4) for boosting the performance of sequentially consistent systemsin hardware. These
techniques enable many of the reordering optimizationsthat are typically allowed by more relaxed models to
be safely used whilemaintaining theillusion of the stricter model. The degree to which thesetechniquesboost
the performance of models such as sequential consistency remains to be fully studied. While the success of
these techniques may de-emphasi ze the correctness aspect of overlapping memory accesses in multiprocessors
at the hardware level, the underlying architectural mechanisms (e.g., lockup-free caches, non-blocking reads,
and other techniques studied in this chapter) that enable and exploit such overlap till remain important.

Chapter 5 aso explored a large number of implementation alternatives. In this chapter, we mainly
concentrated on the important design choices. While other design choices are likely to have a more minor

8For blocking read architectures, it is predictable that relaxed modelswill eliminate the write latency as in scientific applications.
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effect on performance, it is still interesting to consider their performance effects in more detail .

Finally, the effect of relaxed models on compiler optimizations (and vice versa) remain to be fully
studied. As we have discussed before, strict models such as sequentia consistency disallow many of the
compiler optimizationsthat are applied to uniprocessor code. Therefore, the gains from relaxed models on
the compiler side may potentially exceed the gains on the hardware side. Similarly, as we mentioned in
Section 6.4, compiler algorithms for scheduling non-blocking reads are likely to play an important role in
exploiting the overlap of reads in the context of both statically and dynamically scheduled processors.

6.6 Summary

This chapter characterized the performance gains from exploiting the program reordering optimizations
enabled by relaxed memory consistency models. We showed that these optimizations lead to significant
gainsin the context of architectures with blocking reads by fully hiding the write latency. The gains ranged
from 10% to 80%, with six out of eight applications gaining over 25%. Furthermore, we showed relaxed
models are complementary to other latency hiding techniques such as prefetching and supporting multiple
contexts. Combining the techniques provided gains of higher than 15% over using prefetching alone for
five applications, and gains higher than 25% over using multiple context alone for four of the applications.
Finally, we showed that architectures that support non-blocking reads can exploit relaxed modelsto a so hide
asubstantial fraction of the read latency, leading to alarger overal performance benefit from relaxed models.
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Chapter 7

Conclusions

The memory consistency model for a shared-memory multiprocessor specifies how memory behaves with
respect to read and write operations from multiple processors. As such, the memory consistency model
influences many aspects of system design, includingthe design of programming languages, compilers, and the
underlying architecture and hardware. The choice of the model can have significant impact on performance,
programming ease, and software portability for agiven system. Models that impose fewer constraints offer
the potentia for higher performance by providing flexibility to hardware and software to overlap and reorder
memory operations. At the same time, fewer ordering guarantees can compromise programmability and
portability.

Coming up with a new memory consistency model is quitetrivial. After al, it isjust a matter of picking
and choosing the set of orders that must be maintained among shared memory operations. The real design
challenge lies in providing a balanced solution with respect to the fundamental trade-offs discussed above.
Choosing arelaxed model, or designing a new relaxed model, requires considering questions such as:

o What isthe target environment, including the types of programmers, applications, and architectures or
systems that are targeted?

¢ Arethe semantics of the model defined precisely?

o How difficult isit to reason and program with the model? How restrictive is the model with respect to
different programming styles? Isit possible to provide a simple representation to programmers? How
easy isit to port programs to and from the model ?

o What are the practical implementation optimizations that motivate the model? How difficult is it to
efficiently implement the model at both the architecture and compiler level ?

o What are the performance gains from using this model relative to aternative models? Does the
evaluation include both the compiler and the hardware? And most importantly, do the performance
gainsjustify the additional programming and implementation complexity?
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Addressing the above issuesisnon-trivia sinceit involvesconsidering complex trade-offsand interactions, in
addition to dealing with subtle correctness issues (which are easy to underestimate). Unfortunately, failureto
properly address such issues hasled to an abundance of aternativeproposalsand alack of clear methodol ogies
for choosing among them. This situation is exacerbated by the prevalence of non-uniform terminologiesand
informal specifications, making it extremely difficult to compare the different alternatives.

7.1 ThesisSummary

The primary goal of this thesis has been to shed light on the complex trade-offs that arise in choosing an
appropriate memory consistency model. The contributionsliein four areas:

o abstractionsthat enhance programmability with relaxed models,

o precise specification of the ordering constraintsimposed by a model,

o efficient and practical techniques for implementing a memory model, and

¢ detailed quantitative analysis of the performance benefits of various models.

The abstraction presented by properly-labeled programs captures the types of optimizations exploited
by previously proposed relaxed models within a simple and easy-to-use programming style. To enable safe
optimizations, the programmer is required to supply high-level information about the behavior of memory
operations, such as whether an operation is involved in a race with other operations to the same address.
This approach alleviates the need for reasoning with low-level reordering optimizationsthat are exposed by
atypical relaxed model. Another important benefit of the programmer-supplied informationis automatic and
efficient portability across awide range of implementations.

To enable correct and efficient implementations, the thesis presents a formal framework for specifying
the ordering constraints imposed by a model. Our specification methodology inherently exposes aggressive
optimizations by imposing as few constraints as possible. Specifying various models within this uniform
framework aso enables easy comparison of the semantics and optimizations supported by the different
models. Finaly, the specifications are useful for determining correct and efficient mechanisms for porting
programs across different models.

The implementation techniques and performance results primarily focus on multiprocessor systems with
hardware-support for cache coherence. On the implementation side, our work represents the most com-
prehensive set of techniques for efficiently supporting various memory models. In addition to presenting
fundamental techniques, the thesis exposes subtle implementation issues that are often not covered in the
literature. Our work on evaluating the performance of different models aso represents the most compre-
hensive set of quantitative results currently available. Together, the above two contributions provide a solid
understanding of the trade-off between design complexity and performance.

7.2 FutureDirections

This section presents a brief overview of promising areas for future research. Many of the ideas related to
extending this thesis and pursuing new directions have aready been discussed in each of the previous four
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chapters.

Theleast explored areaswith respect to rel axed memory model sare programming languages, programming
environments, and compilers. The abstraction presented to the programmer and the information provided by
the programmer are tightly linked to the programming language; one important area is with respect to easier
expression of information by programmers. The programming environment, including toolsthat help detect
races and incorrect programmer-supplied information, isalso critical in making rel axed modelssimpler to use.
Finally, there is much research to be done in the compiler area including implementations that correctly and
efficiently support a given model and performance evaluations to determine the gains from relaxed models
on the compiler side.

Other important areas to study include verification toolsfor checking the correctness of specificationsand
implementations, better understanding and characterization of programs with asynchronous data operations,
and finally exploring other waysto exploit theflexibility provided by relaxed memory models. Asan example
of the latter point, exploiting relaxed models for improving the performance of software distributed shared
memory systems has been an active area of research.

An exciting area to pursue is more efficient implementation techniques for supporting strict models such
as sequentia consistency. Our work on the hardware side has led to the surprising observation that many
of the optimizations that motivate relaxed memory models are indeed possible to exploit under sequential
consistency (see Section 5.4 in Chapter 5 and our previous paper [GGH91b]). Morerecently, Krishnamurthy
and Yelick [KY94, KY95] have presented preliminary results on applying safe compiler optimizations to
explicitly parallel programs under sequential consistency, based on an aggressive analysis that attempts to
determine aminimal set of program ordersthat are required for correctness. Further devel opments, especially
on the compiler side, can significantly change the balance in the choice of memory models for systems that
can exploit the above optimizations.

It is also instructive to observe the trends in industry. Companies such as Digital, IBM, and Sun have
already opted for supporting relaxed memory modelsin their commercial multiprocessors and have success-
fully developed fully functional operating systems, compilers, and other software that exploit these models.
Fortunately, all three companies have attempted to provide formal specifications of their models; thisisin
contrast to the ambiguous descriptions provided for older architectures such asthe IBM-370 and VAX. Other
companies such as Hewlett-Packard (HP), Intel, and Silicon Graphics (SGI) have chosen to support sequen-
tial consistency in their current architectures. The next generation processors from these companies exploit
aggressive implementation techniques in conjunction with dynamically scheduled processors to efficiently
support sequential consistency (mentioned in the previousparagraph). However, thereis still adependenceon
relaxed modelsfor enabling compiler optimizationsfor explicitly parallel programs. Furthermore, companies
such as Intel till maintain the option to move to relaxed models by recommending that programmers use
special seriaizing and locking operations for future compatibility.

Overdl, thereis still alot of room for interesting research and solid contributionsin the area of memory
consistency models for shared-memory multiprocessors. Our hope is that the framework and intuition
presented here pave the way for future developmentsin thisarea.
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Appendix A

Alter native Déefinition for Ordering
Chain

This appendix presents an aternative definition for the ordering chain defined by Definition 3.1 in Chapter 3.
The definition given below captures al ordering chains defined by Definition 3.1. The subtle difference is
that the new definition also includes chains that start with a conflict order or end with a conflict order even if
all operationsin the chain are not to the same location.

Definition A.1: Ordering Chain

Given two conflicting operations u and v in an execution, an ordering chain exists from operation u to operation

vif and only if

@uZv,or

GuZw 2 2w 2 2w 22, 22 v, wheren > 1, w; is awrite access, 1, is aread

access, and w; and r; are to the same location if i = j. umay be the same aswx, and v may be the sameasr,,

aslong asthereis at least one 22+ arc in the chain.

Assume we substitute the above definition (instead of Definition 3.1) in Definition 3.2 for competing
operationsunder the PL1 model. Intuitively, fewer operationswill be considered competing since the chains
captured by Definition A.1 are a superset of those in Definition 3.1. Consider the program segment in
Figure A.1, for example. With the original definition of ordering chain, all memory instructions in this
example must be label ed as competing to yield a PL1 program. However, with the new definition, the read of
A on P3 can belabeled as non-competing. Thelatter interpretation of competing is closer to thetrue notion of
arace; theread of A on P3isawaysordered after thewriteof A on P1in every SC execution and istherefore
not involvedin arace. Nevertheless, we expect that the resulting label s based on the two different definitions
(i.e., Definition 3.1 and Definition A.1) will beidentical for most realistic programs.

The main reason we chose Definition 3.1 over Definition A.1listhat Definition A.1isnot appropriatefor the
PL3 modd defined in Chapter 3 (e.g., it would disallow the optimi zation of using non-atomic write operations
to support loop writes), and we wanted to maintain the notion of ordering chains consistent across the three
PL models. The alternative isto use the new definition for ordering chains by appropriately substituting it
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P1 P2 P3

al: A=1; a2: while (A == 0);
b2: B=1, a3: while (B == 0);
b3: U=A;

Figure A.1: Canonical 3 processor example.

in Definition 3.2 for PL1 and also in Definition 3.6 for PL2. One caveat in doing thisis that the notion of
competing will be different for the new PL1 and PL2 models compared to the PL3 model; some operations
that may be considered non-competing under PL1 and PL2 will be considered as competing under PL3 (e.g.,
read of A on P3 in the example discussed above). Therefore, transforming PL1 and PL2 programs to PL3
programs can become complicated.

We refer back to Figure A.1 to illustrate the difference between Definition 3.1 and Definition A.1in PL3.
Every SC execution must have the result (u=1) for this example. Assume Definition 3.1 as the definition for
an ordering chain. The following labeling of the program yields a PL3 program: (al) as a non-loop write,
(a2) and (a3) as loop reads, (b2) as a loop write, and (b3) as a non-loop read. Note that (b3) clearly does
not qualify as aloop read, and since (al) competes with (b3), (al) does not qualify as aloop write. Thisis
important because we alow loop writesto be non-atomic for PL3 and if (al) was labeled as aloop write, this
optimization could lead to anon-SC execution with theresult (u=0). Now consider substituting Definition A.1
for Definition 3.1 as the definition of an ordering chain. The write (al) would no longer be considered as
competing with the read (b3). Therefore, the read (b3) could be label ed as non-competing and the write (al)
would now qualify as aloop write. Thisexample showsthat allowing loop writesto be non-atomic would no
longer be a safe optimization under PL3 if we used Definition A.1 instead of Definition 3.1.

Appendix C describes a modification to the PL3 model based on Definition A.1 for ordering chains; the
modified version inevitably forgoes some of the optimizations exploited by the original version.
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Appendix B

General Definition for Synchronization
L oop Constructs

This appendix provides the more genera definition for a synchronization loop construct defined by Defini-
tion 3.10 in Chapter 3. The conditions below are identical to the genera conditions provided in the original
paper on PLpc [GAGT92], with afew correctionsfrom alater technical report [AGGT93]. Theintuitiveidea
behind the conditionsis to ensure that the number of times the loop executes or the values returned by the
unsuccessful reads cannot be practically detected. This allows us to conceptualy replace the loop construct
with only the successful operation(s) that cause the loop to terminate.

Definition B.1: Loop Construct

A loop construct is a sequence of instructions in a program that would be repeatedly executed until a specific

read in the sequence (the exit read) reads a specific location (the exit location) and returns one of certain values

(the exit read values). If the exit read is part of aread-modify-write, then the write of the read-modify-write is
called the exit write and the value it writes is called the exit write value.
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Definition B.2: Synchronization Loop Construct

A loop construct in a program is a synchronization loop construct if and only if it always terminates in every
SC execution of the program and the following conditions hold. Consider a modification of the program so
that it executes beginning at the loop construct. Add another processto the program that randomly changesthe
data memory. Consider every SC execution with every possibleinitial state of the data memory and processor
registers. At the beginning of every such SC execution, the exit read, exit location, and exit read values should
only be afunction of theinitial state of memory and registers and of the program text. The exit write value can
additionally be afunction of the value that the exit read returns. Then, for every such SC execution,

(i) except for the final exit write, loop instructions should not change the value of any shared memory location,
(ii) the values of registers or private memory changed by any loop instruction cannot be accessed by any
instruction not in the loop construct,

(iii) aloop instruction cannot modify the exit read, exit location, exit read values, or the exit write values
corresponding to a particular exit read value,

(iv) the loop terminates only when the exit read returns one of the exit read values from the exit location and
the exit write stores the exit write value corresponding to the exit read value returned,

(v) if exit read values persist in the exit location, then the loop eventually exits,

(vi) the first instruction instance program ordered after the loop is the same in every other SC execution that
begins with the sameinitial state of data memory and processor registers, and

(vii) the only shared-memory operationsin the iteration that terminates the loop should be the exit read and exit
write (if the exit read is part of aread-modify-write).

When analyzing an SC execution, the accesses of a synchronization loop construct can be replaced by the
final successful exit read and exit write (if any). The unsuccessful accesses can be labeled non-competing.

The above definition is fairly genera, which partly explains its complexity. For example, it alows
implementations of locks using a test& test& set [RS84] or back-off [MCS91] techniques to be considered as
synchronization loop constructs.
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Appendix C

Subtletiesin the PL3 M oddl

Thisappendix presents a subtle example that illustratesthe need for some of the complexity in the definitions
of loop read (Definition 3.11) and loop write (Definition 3.12) in the PL3 model. In addition, we describe a
modification to the PL3 model that removes some of thiscomplexity at the cost of forgoing some optimizations.

C.1 |Illustrative Examplefor Loop Read and L oop Write

Figure C.1 shows an example that provides some intuition for the presence of complicated conditionssuch as
condition (d) in Definition 3.11 for loop reads and condition (b) in Definition 3.12 for loop writes. All four
while loops qualify as synchronization loop constructs; therefore, all unsuccessful reads from each loop are
assumed to be discarded in any execution. In every SC execution, the successful read of (b3) executes after
thewrite (d1). In addition, the only sequentially consistent result is (u,v,w,x)=(1,1,0,1). Memory instructions
shown in bold generate a competing operation in at least one SC execution. To yield a PL3 program,
all instructions shown in bold must be considered as sync operations to ensure sufficient synchronization
ordering chains among the non-competing operations. The operations generated by the (cl), (b2), and (a3)
loops trivially satisfy the conditions for loop read. Similarly, the write to B on P2 trivialy satisfies the
conditions for loop write. In contrast, the successful read operation generated by the (b3) loop satisfies
all conditions for a loop read except for condition (d) in Definition 3.11 (in this case, W’ in condition (d)
corresponds to the hypothetical write that initializeslocation A). Therefore, this instruction must be labeled
as non-loop. As aresult, neither of the two writesto A on P1 qualify as loop writes; (d1) does not qualify
as aloop write because it competes with (b3) which is anon-loop read, and (b1) does not qualify because of
condition (b) in Definition 3.12.

One of the optimizationswe exploitinthe PL3 model isto allow loop writesto be non-atomicwith respect
to multiple copies. This optimization is safe with the labeling described above. The write that especialy
mattersis(bl), sinceif thiswrite behaves non-atomically, then it ispossiblefor theloop (b3) on P3 to observe
theinitial value of A and terminate before either (b1) or (d1) complete with respect to this processor, which
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P1 P2 P3

al: C=1; a2: D=1;

b1: A=1,; b2: while (A ==0);

c1: while (B == 0); c2: B=1; a3: while (B == 0);
di: A=0; d2: v=C; b3: while (A ==1);
el: u=D; c3: W=A;

d3: x=D;

Figure C.1: Program segment illustrating subtleties of loop read and loop write.

could result in the non-SC result of (u,v,w,x)=(1,1,1,1).

Condition (d) of Definition 3.11 and condition (b) of Definition 3.12 play an important rolein disallowing
the write (b1) from being labeled as a loop write. Consider removing condition (d) of Definition 3.11; the
read in (b3) would qualify as aloop read, which would in turn allow the writesin (b1) and (d1) to be labeled
as loop writes. Similarly, consider removing condition (b) of Definition 3.12; even though the write (d1)
would not qualify as aloop write, the writein (b1) would still qualify as aloop write.

The above exampl eisadmittedly contrived and the likelihood of observing such behavior inreal programs
islow. Nevertheless, the conditionsfor PL3 must be applicable across al possible programs.

C.2 Simplification of the PL3 M odel

Itispossibleto ssimplify the PL3 model by forgoing the optimization that allowsloop writesto be non-atomic.
Therefore, the only major optimization that would be exploited relative to PL2 is the relaxation of program
order between a competing write followed by a competing read if either isidentified with the loop labdl .
Forgoing the optimizationthat allowsloop writesto be non-atomic simplifiesanumber of the conditionfor
thePL3 model. First, condition (d) of Definition 3.11 and condition (b) of Definition 3.12 could be eliminated,
which would simplify the conditionsfor loop read and loop write. Second, we could now use Definition A.1
instead of Definition 3.1 for the definition of an ordering chain. Of course, forgoing this optimization requires
the sufficient conditionsfor PL3 to be strengthened. In particular, the following multiprocessor dependence

s5co s5co

chains should be added to the conditionspresented in Figure 4.16 in Chapter 4: Wc — Rc AL {Wc—Rc
520, * {wec =2 Re (22 | L )} RW. Similarly, the conditionsfor porting PL3 programsto PC and RCpc
(Tables 4.3 and 4.4) must be changed to require every Rc to be part of aRMW (with W mapped to non-sync
or release for RCpc), and the conditions for porting to PC+ and RCpc+ (Table 4.6) should be changed to

require every Wc to be mapped to an atomic write.
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Appendix D

Detecting Incorrect Labelsand
Violations of Sequential Consistency

This appendix describes the two detection techniques, mentioned in Section 3.8.4, for helping programmers
use programmer-centric models.

D.1 Detecting Incorrect Labels

By providingmemory operation labelsfor aprogram, the programmer assumes that executionsof the program
will obey sequential consistency. However, thisassumption may beviolated if any of thelabelsare erroneous.
Therefore, tools that help the programmer identify potentially incorrect labels can play an important role in
further simplifying the use of programmer-centric models.

One of the fundamental pieces of information conveyed through labelsin the PL framework iswhether a
memory operation isinvolved in arace (i.e., competes with another operation). Identifying races in parallel
programs is in itself an important problem; even with sequentialy consistency, programmers opt to avoid
data races to simplify the task of reasoning about programs. In fact, the presence of races often signals a
programming error. Therefore, much research has been done on detecting data races. Fortunately, many of
the proposed techniques can be easily adapted for identifying erroneous labels for competing operationsin
the context of programmer-centric models.

The proposed techniques for detecting data races for programs written for sequential consistency can be
classified as static or dynamic. Static techniques use compile-time analysis to detect potential data races
that could occur in any possible execution of a program [BK89, Tay83b]. In contrast, dynamic techniques
analyze individual executions of the program and determine whether a particular execution exhibits a data
race [AP87, DS90a, HKMC90, NM89, NM91]. The following discusses the trade-offs between these two
techniques in more detail.

The advantage of static techniques is that all data races that may potentially occur in any possible SC
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execution of aprogram aredetected. Therefore, theprogrammer i sassured that the programwill not exhibit any
dataracesif no dataracesarereported by thedetectiontechnique. However, the problem of exactly determining
whether a program is free of data races or not is known to be undecidable [Ber66]. Exact analysis has been
shown to be NP-complete even for restricted classes of programs and synchronization primitives [NM90,
Tay83a]. Therefore, practical algorithmsfor static detection are often extremely conservative. Thislimitsthe
usefulness of static techniques since many programs that actually exhibit no data races may conservatively
be reported as having data races.

Dynamic techniques have the advantage of providing exact information on whether a specific execution
of the program exhibits data races. These techniques often use a trace gathering mechanism to monitor
the order among memory accesses in an execution and analyze this information to determine whether the
execution exhibitsany dataraces. Thetracing and analysiscan beeither doneon-the-fly (e.g., [DS90d]) orina
post-mortemfashion (e.g., [NM89]). The on-the-fly techniques buffer trace informationin memory and detect
data races as they occur. In contrast, post-mortem techniques generate trace files containing information on
the order of accesses and theinformation is analyzed after the execution completes.

Like static techniques, dynamic techniques have their own set of limitations. First, the gathering and
analysis of memory traces can adversely affect the execution time for the program. A two to five times
increase in execution time has been reported for on-the-fly techniques [DS90g]. Even though more efficient
on-the-fly techniques have been proposed by limiting the class of programs [MC91], the overhead is still
expected to be unacceptable for normal executions of the program. Thus, dynamic techniquesare limited for
use during debugging only. The second problem with the dynamic techniques arises from the fact that exact
informationisonly provided for a single execution of the program, with no information provided about other
possible executions. This is further complicated by the fact that the extra overhead of tracing can affect the
critical timing in a program, resulting in possibly different executions than would have normally occurred.
Therefore, there is no guarantee that a program will not exhibit any data races even if all executions during
debugging are determined to be free of dataraces.

The dynamic techniques described above are designed for use with architectures that are sequentialy
consistent. Fortunately, most systems that support relaxed models aso provide mechanisms for enforcing
sequential consistency (e.g., by smply disallowing some of the reordering optimizations). Therefore, it
is possible to employ dynamic race detection techniques by configuring such systems to be sequentialy
consistent during program debugging mode. More recently, an extension has been proposed to alow the
use of dynamic race detection even when the system is configured with a relaxed model during debugging
(certain system restrictions apply) [AHMNO91]. This approach extends dynamic detection to systems that
do not support sequential consistency in any form. Furthermore, thereis a potential performance advantage
during debugging since the system can operate under arelaxed model. However, this performance advantage
is expected to be small in most systems since the execution time during debugging will be dominated by the
overhead of tracing and analysis which effectively washes out the performance difference between sequential
consistency versus amore relaxed model.

We now briefly describe how the dynamic race detection techniques can be applied to detecting incorrect
labelsin programswritten for the PL models. Since dynamic techniques capture atrace of the execution, itis
conceptually possibleto add additional stepsin the analysis phaseto verify the vaidity of 1abels by checking
for various conditions among the memory operations in the trace. For PL1, the only information provided

286 Appendix D Detection Techniques



by the programmer is whether an operation is competing or not. Since the notion of race and competing are
closely related, the techniques discussed above can be easily adapted to identify competing operationsin an
execution and to check that none of the competing operations are incorrectly identified as non-competing
by the labels. By adding a little more analysis to the race detection techniques, it is possible to extend the
applicability of thistechniqueto the PL2 model by detecting whether enough operationsareidentified as sync
and non-sync. The PL3 model provides a more challenging problem, however, since (i) the conditions for
distinguishingloop and non-loop operations are quite complex, and (ii) some operations (i.e., all but thefinal
memory operation in each synchronization loop) have to be ignored during the analysis phase. Although it
may conceptually be possible to extend the race detection techniquesto detect incorrect labels with the PL3
model, there needs to be further study to determine the practicality of the approach; for example, the more
complex analysis that is required compared to simple race detection may potentially increase the execution
time overhead above the acceptable threshold for even debugging.

In summary, dynamic detection of races provides a practical method for helping the programmer identify
incorrect labels during the development and debugging phase of a program. However, race detection
techniques do not provide acompl ete sol ution since races that do not exhibit themsel ves during debugging can
unexpectedly occur during normal executionswithout being detected. |n systemsthat support arelaxed model,
the occurrence of such races can lead to violationsof sequential consistency. Therefore, to ensure sequentially
consistent executions, the programmer isstill ultimately responsiblefor guaranteeing the correctness of labels.

D.2 Detecting Violations of Sequential Consistency

Given the difficulty in verifying the correctness of the labels, an aternative approach for helping the pro-
grammer use programmer-centric models is to directly detect whether sequential consistency is upheld by
executions of a program on a given system. After al, the ultimate reason for checking the correctness of
labelsisto ensurethat all executions of the program will be sequentially consistent. We proposed and studied
the viability of thisapproach in an earlier paper [GG91]; the following covers the important highlightsfrom
thiswork.

Themain result of our work isanew implementation technique, applicableto cache coherent systems, that
dynamically detects possibleviolationsof sequential consistency [GG91]. Unfortunately, exactly determining
whether or not an execution is sequentially consistent turns out to be a difficult problem. Therefore, we settle
for a conservative detection for violations of sequential consistency. Below, we describe the constraints we
impose on the accuracy of the detection. For the detection to be conservative, we have to guarantee that
aviolation is detected if the execution is not sequentially consistent. More formally, if execution E is not
sequentially consistent, the detection mechanism will detect aviolationin . However, this condition can be
trivially satisfied by always detecting a violation for every execution. Such a detection scheme is clearly not
useful. Therefore, we need to place abound on the conservatism of the detection. We know that PL programs
are guaranteed to produce sequentially consistent executions on systems that support PL models. Therefore,
auseful detection scheme isonethat is conservative, but does not conservatively detect a violation when the
program is properly labeled. More formally, the bound on conservative detection is as follows: If program
P isaPL program, then the detection mechanism is guaranteed not to detect a violation in any execution of
P. Therefore, if no violation is detected for an execution, then the execution is sequentially consistent (due
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to conservative detection). And if aviolationis detected, then the program is known to have incorrect labels
(due to bound on conservative detection).

The detection technique discussed above can provide useful feedback to programmers on architectures
withrelaxed consistency models. In contrast to thework on datarace detection, our technique doesnot exactly
determine whether or not the program or execution have dataraces (or incorrect labels). Instead, the technique
detects whether sequential consistency may be violated in an execution of the program. An advantage of this
approach is that the programmer is provided with exact information either about the execution or about the
program. For every execution, the proposed implementation conclusively determineseither that the execution
is sequentially consistent or that the labels provided by the programmer are incorrect. In the first case, the
programmer is assured that the correctness of the execution was not affected by the fact that the architecture
supports a relaxed model. 1n the second case, the programmer knows that the program has incorrect labels
and can result in sequentially inconsistent results on architectures supporting relaxed models. Furthermore,
the implementation we proposed provides the functionality for detection with minor additional hardware and
with virtually no affect on the performance of the system [GG91]. Therefore, the detection technique is
efficient enough to be used during all executions of the program (as opposed to monitoring executions only
during debugging).

The intuition behind the detection mechanism is simple. Assume u and v are two accesses in program
order. Sequential consistency isguaranteed if the completion of visdelayed until u completes (Condition 2.2
in Chapter 2). Multiprocessors that support a relaxed model may allow u and v to be reordered to achieve
higher performance. The purpose of the detection mechanism is to determine whether such reordering may
result in a sequentially inconsistent execution. A violation may arise if v completes before u. First consider
the case where v isaread access. Assume the read completes (itsreturn value is bound) before u completes.
This does not necessarily lead to a violation of sequential consistency, however. If a the time u completes,
the return value for v is the same as the current value of the location accessed by v, then any computation
based on the access is correct since even if v was delayed until u completed, the value the access would
return would be the same. However, if the current valueis different from the value returned by access v, then
sequential consistency may have been violated and the detection scheme conservatively detects a violation.
Now consider the case where v is awrite access. Assume the write completes before u completes. Even so,
sequential consistency is guaranteed if no other processor attemptsto access the location touched by v until u
completes sincethisisasif v was delayed until u completed. However, the detection scheme conservatively
detects aviolation in case thereis an attempt to access the location touched by v whileu is pending.

Cache coherent architectures providean efficient base for the above detection mechanism. Each processor
can maintai nthe state of its outstanding memory operationsin aper-processor detection buffer and can monitor
coherence transactions destined to its cache to determine whether aviolation of SCislikely. Let usrefer back
to accesses uand v. If visaread access, an invalidation or update for the location accessed by v before u has
completed indicatesthat the value bound by access visold and may result in aviolation of SC. In addition, the
lack of invalidation or update messages indicates that the value bound by viscurrent. Similarly, if visawrite
access, a read, invalidation (or ownership request), or update message to the location accessed by v before u
has compl eted indicates a possible violation of SC. The original paper discusses an example implementation
based on the above intuition and describes some restrictions on the system to ensure the desired bound on
conservative detection [GG91]. The implementation techniques described are general, and are compatible
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with either an invalidation-based or update-based coherence mechanism and with cache line sizes of greater
than one word (unlike some proposalsfor race detection [MC91]).

The detection mechanism discussed above is applicable to the PL1 and PL2 models. As we mentioned
above, afew extrarestrictions are imposed on the system to ensure the detection is not overly conservative.
However, these restrictions are either already satisfied or can be easily incorporated in most systems with
virtually no effect on performance [GG91]. As with the race detection techniques, extending the approach
to PL3 seems challenging because (i) some operations (i.e., al but the fina memory operation in each
synchronization loop) have to be ignored by the detection mechanism and thus need to be identifiable, and
(i) systems that support PL3 typically alow optimizations such as allowing some competing writes to be
non-atomic which further complicates detection. Therefore, whether the approach can be extended to PL3
remains to be explored.

D.3 Summary of Detection Techniques

Compared to a sequentially consistent system, the extra effort required to program a system that supports
a programmer-centric model arises from the need to provide correct labels for al memory operations. We
discussed two techniques that can help the programmer in ensuring correct labels. The first technique
involved an extension to the debugging environment that hel psthe programmer identify incorrect labelswhile
aprogramisbeing developed. Whilethistechniqueisuseful during the debugging phase, it failsto protect the
programmer from incorrect labels during normal program runs. The second technique we discussed remedies
this problem by employing a simple hardware mechanism that can efficiently monitor normal executions of
the program and notify the programmer if sequentia consistency may be compromised due to the presence
of incorrect labels.

Work in thisarea is still in itsinfancy and there are many opportunities for improvement. Specifically
considering the two techniques discussed above, both inherently depend on the original program order among
memory references in determining whether an execution exhibitsincorrect |abels or sequentially inconsi stent
behavior. Therefore, they are not readily applicableto programsalready optimized by acompiler that exploits
thereordering of memory operationsenabled by relaxed models. Furthermore, extensions of thesetechniques
to deal with more complex programmer-centric models such as PL3 remains to be explored.
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Appendix E

Alternative Definition for Return Value
of Reads

The abstraction for memory operations presented in Chapter 4 uses the R;,,;+(i) and W;,,;(i) sub-operations
to capture the effect of optimizations such as read forwarding. These sub-operations play an important role
in the return value condition for reads (Condition 4.6) and the initiation condition (Condition 4.4), which
together allow a processor’s read to occur before its own write to the same location and yet ensure that the
read returns the value of that write. We chose to introduce the R;,,;+(i) and W;,,;(i) sub-operations because
they lead to a more flexible and intuitive abstraction for modeling optimizations such as read forwarding.

As an dterndtive, it is possible to eliminate the R;,,;(i) and W;,,;¢(i) sub-operations and the initiation
condition atogether if we define the return value condition (currently defined by Condition 4.6) as follows:

Condition E.1: Alternative Condition for Return Valuefor Read Sub-Operations

A read sub-operation R(i) by P; returns a value that satisfies the following conditions. If there is a write
operation W by P; to the same location as R(i) such that W 22 R and R(i) == W(i), then R(i) returns the
valueof thelast suchW in =2, Otherwise, R(i) returns thevalue of W’ (i) (from any processor) such that W’ (i)
isthe last write sub-operation to the same location that is ordered before R(i) by . If there are no writes that
satisfy either of the above two categories, then R(i) returns the initial value of the location.

The original specification of TSO and PSO [SFC91] use a similar value condition to model the effect of
optimizations such as read forwarding. The more informal descriptionsin Chapter 2 (Section 2.4) also use
a similar value condition that does not require the R;,,;:(i) and W,,,;;(i) sub-operations. The dightly non-
intuitive aspect of Condition E.1 isthat aread can return the value of awrite even though all sub-operations
associated with the write occur after the read.
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Appendix F

Reach Relation

rech

This appendix defines the reach relation (—) discussed in Section 4.2 for the properly labeled models. The
reach relation presented below is a straightforward adaptation of the 7 relation developed for the PLpc
model [AGGT93].

Defining the reach rel ation requires considering the set of dynamicinstructioninstances, I, inan execution.
The following presents an abstraction for the instruction instances. We classify instructionsinto three types:
computation, memory, and control. Computation instructions read a set of registers (register read set) and
map the read valuesinto new values that are written to another (possibly same) set of registers (register write
set). Memory instructionsare used to read and write memory locations (both private and shared). A memory
read instruction reads the address to be read from a register, reads the specified memory location, and writes
the return value into aregister. A memory write instruction reads the address and value to be written from
registers and writes the value into the specified memory location. A memory read-modify-write instruction
is both a memory read and a memory write instruction that reads and writes the same location. For a read
instruction, the register read set comprises of the address register and the register write set is the destination
register. For awrite instruction, the register read set comprises of the address and value registers and there
is no register write set. Finaly, control instructions (e.g., branch instructions) change the control flow by
appropriately adjusting the program counter. Theregister read set for acontrol instructionisa set of registers
whose values determine the change in the control flow. If an instance of a control instruction results in the
program counter only being incremented, then we say the instruction instance preserves program control
flow; if the program counter changes in any other way, we say the instruction instance results in changing
the program control flow. Note that the above description of instructionsis merely an abstraction and can be
adapted to most architectures and languages.

We now define the notion of local data dependence (ﬂ) and control dependence (C—d>) that will be
used to develop the " relation. For two instruction instances A and B in an execution, A 4. BifB
reads a value that A writes into its register write set or a private memory location of its processor. (The
interaction due to shared-memory data dependence is handled later.) Our notion of control dependence is
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borrowed from Ferrante et al. [FOW87]. Control dependence is defined in terms of a control flow graph and
dominators [ASU86]. Let Prog be the program under consideration, and let E be an execution of program
Prog. Consider the control flow graph of any process in program Prog, with the final node in the graph
denoted by EXIT. Let C' and D’ be two instructionsin the control flow graph. C' ispost-dominated by D’ if
D’ occurson every path in the control flow graph from C' to EXIT. Let A and B be two instruction instances
of processor Pin execution E and let A’ and B’ be the instructions corresponding to A and B in the program
text. Instructioninstance B iscontrol dependent on instructioninstance A if thefollowing conditionshold: (i)
A 22 Binexecution E, and (i) A’ isnot post-dominated by B’, and (iii) there isapath between A" and B’ in
the control flow graph of processor P such that al the nodes on this path (excluding A’ ,B") are post-dominated
by B’. Notethat if A <4, B, then A" isacontrol instruction.

To alow for possibly non-terminating executions, we need to augment the control flow graph and the
resulting %, relation with additional arcs. Informal ly, consider aloop in the program that does not terminate
in some SC execution. Then, for any instruction instance i that is program ordered after an instance of
the loop, we require <%+ to order i after instances of the control instructions of the loop that change the
program flow for this loop and cause infinite execution. More formally, let C' be any control instruction
that could be executed an infinite number of timesin some SC execution E. Suppose an infinite number of
successive instances of C' change the control flow of the program in E. Add an auxiliary edge from every
such ingtruction C' to the EXIT node. This ensuresthat any such control instructionC’ is not post-dominated
by any of theinstructionsthat follow it in the control flow graph, and so instances of C’ are ordered before all
instances of al subsequent instructions by %, +. The modification described above is not necessary if all SC
executions of the program will terminate, or if there are no memory operationsthat are ordered after possibly
non-terminating loopsin the control flow graph.

The <% and 2% relationsare used bel ow to define two other rel ations, the uni processor reach dependence

[ie’f) and the multiprocessor reach dependence (%”) relations. The 2% relation is defined in terms of
these two new relations.
Definition F.1: Uniprocessor Reach Dependence
Let X and Y beinstruction instancesin an execution E of program Prog. X P vinEiff X 2% Y, and either
(a)Xc—d>YinE,or
b) X 2L Y inE, or
(c) X 'and Y occur in another possible SC execution E’ of the program Prog, X 2 +z % Yin E’, and Z does
not occur in E.

Definition F.2: Multiprocessor Reach Dependence
Let X and Y beinstruction instancesin an execution E of program Prog. LetY be an instruction instance that

accesses shared-memory. X MEP v in E iff any of the following are true.
(@ X £ YinEand X and Y occur in another possible SC execution E' of Prog, where X Ydr, 7 % vin

E’, Z is an instance of a shared-memory instruction, for any A B constituting the Tdepy path from X to Z
in E’, B asooccursin E, and either Z doesnot occur in E, or Z occursin E but is to adifferent addressin E and
E’, or Z isawrite to the same addressin E and E’ but writes a different valuein E and E'.

)X 22 YinEandX 2477 2 YinE.

©X 2% YinEandX 27 2 vinE

(d) X 22 Y or X isthesameasY in E. Further, X generatesacompeting read R within aloop (asynchronization

rpo

loop construct for PL3) and Y generatesan operation O (different from R) such that R —+ O.

For PL3, Definition F.2 above assumes an additional constraint on synchronization loop constructs (either
the simple definitionin Section 3.2.3 or the generd definitionin Appendix B). The additiona constraintisas
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follows. Consider any read R of a synchronization loop construct in execution E1. If theinstructioninstance
corresponding to R occurs in any other execution E2, then the values that can terminate the instance of the
synchronization loop construct corresponding to R are the same in E1 and E2. Without the above constraint,
the following additional case must be added to thecas&s where 2% holds: X 2% Y in E, Y generates an
exit read of asynchronlzatlon loop construct and L Z, where Z is abranch instruction in the loop.

The 2% relation used as part of the % definition is defined as follows. The 2% relation and other
conditions mentioned below are derived from the sufficient conditions presented in Chapter 4 for each of the
three PL models.

Definition F.3: 222 Relation

Let X and Y be instances of shared-memory instructions in an execution E, and let X’ and Y’ be the memory
operations corresponding to X and Y respectively in E. X 222 Y in E iff either

@ X Z2y orx 2% v Y’ inE orx 7 v in Efor PL3, or

(b) X' 22 Y inEand X’ 22 Y is used in the uniprocessor dependencecondition to impose an order between
the sub-operationsof X’ and Y’, or

(©) X’=W £ Y'=R in E and theinitiation condition requires that Wi:: (i) — Rini:(i) in E.

Finally, the following defines the reach relation. The "M velation is also used in the next appendix to
relax the uniprocessor correctness condition.

Definition F.4: Reach’ Relation
Given an execution E and instruction instances X and Y in E (where X may or may not be the same as Y), X

reh’

— Y inEiff X and Y areinstancesof memory instructions, X generates a shared-memory read, Y generatesa
shared-memory write, and X {Udep | — Mdep }+ Y in E. For two different memory operatlons X andY’, from
instruction instances X and Y respectively, X’ ﬂ Y iff X' isaread, Y' isawrite, X’ 22 Y’ and X 2% reh; Y.

Definition F.5: Reach Relation
Given an execution E and instruction instances X and Y in E, X Teh Y in E iff X reh] Y and X generatesa

memory read that reads the value of another processor’swrite. The = I yelation among memory operationsis
defined in an analogous manner to reh,

The reach relation is atransitive closure of the uniprocessor reach dependence (U =4

—) and the multipro-
cessor reach dependence ( —>) relations. The uniprocessor component corresponds to uniprocessor data
and control dependence, while the multiprocessor component corresponds to dependences that are present

Udep Mdep
and —

due to the memory consistency model. The components that make up — are defined for agiven
execution E. Both relations also require considering other sequentially consistent executions of the program,
and determining if an instruction in one execution occurs in the other execution.? For an instruction instance
from one execution to occur in another, we do not reguire that locations accessed or the values read and
written by the corresponding instruction instances in the two executions be the same; we are only concerned
with whether the specific instances appear in the execution. In the absence of constructs such as loops and
recursion, it is straightforward to determine if an instance that appears in one execution also appears in
another. In the presence of constructs such as loops and recursion, care has to be taken to match consistent

pairsof instructioninstances. Instructioninstances between two executionsare matched consistently if the set

1We allow the relation X 222 Y to be dependent on the addresses of X and Y. In this case, if the same pair of memory instructions

accesses different addressesin two executions, it is possible for the pair to be ordered by 222 in one execution but not in the other.
21t may be simpler to be conservative and consider all possible executions of the program and not just SC executions (for E’) in the
.. Udep Mdep
definitionsof — and — .
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al: U=A; al: u=D;

bl if(u==1){ bl if(u==1){
cl: Vv=B; cl: Vv=Flag;
di: } di: }
el: C=v; el: E=1;

(@ (b)

Figure F.1: Examplestoillustratethe reach condition.

of instances that are considered to appear in both executions have the same program order relation between
them in both executions, and are the maximal such sets. (A set Swith property Pisamaximal set satisfying
property Pif there is no other set that isa superset of Sand also satisfies property P)

To illustrate the above concepts, consider the example in Figure F.1(a). Assume an execution E where
the read of A returns the value of 0. Thus, u is 0 and the read of B and assignment to v do not occur in
execution E. Therefore, in E, there is no instruction instance ordered before the write to C by either <4 or
by 44 Thus, parts (a) and (b) of the definition of 79 4o not order any instruction instance before (el) by
Ydep . However, if we consider a possible SC execution E’ Where the return value of A is1 (assumeit isthe
vaue of another processor’swrite), then we have (bl) <4, (c1) 4, (el) |n E', (c1) does not occur |n E and

(bl) L' (el) in E by part (c) of the definition of 22 . Further, (al) LN (bl) inEand so (al) L+ (ed)
in Eand so (al) roh, (el) inE.

Figure F.1(b) shows an example that uses — Mder - Assume the PL1 model, with the read of Flag being the
only competing operation. Consider an execution E where the return value for theread of D isO. Therefore,
(c1) doesnot occur in E. Consider apossible SC execution E' wheretheread of D returns 1 (assumethe value
isfrom another processor’swrite), causing (cl) to be executed Under PL1, Rc 2% W constitutesRc —2% W.
Therefore, |n E’ (c1) 222 (el). Since we have (b1) <% (cl) % (e1) in E' and (c1) does not occur in E, we
have (b1) %% (e1) in E by Definition F.2(8). Further, (al) 4 (h1)in E and so (al) 227 (b1) ¥ (e1) in
E and so (al) ~*" (e1) in E. Notethat in this example, —¥ does not hold between (b1) and (el).

The proofs for the sufficient conditions of models such as PLpc have shown that the reach relation as
formalized above is adequate [AGGT93]. It is likely that these conditions can be formalized even more
aggressively without violating the semantics of the various PL models.

TpO
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Appendix G

Aggressive Form of the Uniprocessor
Correctness Condition

Thisappendix formalizesthe rel axation of the uniprocessor correctness condition (Condition4.1) discussedin
Section 4.2. Theformalism presented below isthe same asthat devel oped for the PLpc model [AGGT93]. In
contrast to Condition 4.1, the extension presented here all ows certain operationsto execute before apreceding
loop may terminate. Definition G.1 below formalizesthe notion of aprecedingloop. ConditionG.1 formalizes
the conditionsthat determine whether an operation can execute before its preceding |oop terminates.

Definition G.1: Loop
A loop in a control flow graph refers to a cycle in the control flow graph. A loop L does not terminate in an
execution iff the number of instances of instructions from loop L in the execution isinfinite.

Condition G.1: Infinite Execution Condition

Consider an execution E of program Prog that contains instruction instancej of instruction j’, and j’ is awrite
instruction.

(a) Ifj’ followsloop L that doesnot terminate in some SC execution, then the number of instancesof instructions
in E that are from loop L and that are ordered by program order before ] is finite.

(b) The number of instruction instancesthat are ordered beforej by reh] in Eisfinite.

With the above conditions, a processor can execute a read operation before it is known whether the
previousloopsin program order will terminate. For awrite operation, the processor is allowed to execute the
write before a previous loop as long as the loop is known to terminate in every SC execution and as long as
no memory operations from the loop are ordered before the write by reh’ (defined in the previous appendix).
Referring back to the examplesin Section 4.2, the above conditions alow the optimizations discussed for the
examplein Figure 4.12, while appropriately disallowing the optimizationsdiscussed for thetwo examplesin
Figure 4.13 (Condition G.1(a) and (b) handle the examplesin Figure 4.13(a) and (b), respectively).

Most programs are written so that either they will terminatein all SC executions, or there are no shared-
memory operationsthat follow a potentially non-terminatingloop. In addition, theinformation about whether
aloop will dwaysterminate in an SC execution is often known to the programmer and can be easily obtained.
Thus, the above relaxation of the uniprocessor correctness conditionis applicableto alarge class of programs.
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Appendix H

Aggressive Form of the Ter mination
Condition for Writes

Thisappendix describes a rel axation of the termination condition for writes specifically for more aggressively
supporting the properly-labeled models.

H.1 Relaxation of the Termination Condition

Condition4.5 in Chapter 4 specifies when a write sub-operation must appear in the execution. This condition
can be further relaxed for the PL models. Condition H.1 bel ow specifies thisrelaxation.

Condition H.1: Aggressive Termination Condition for Writesfor Properly-L abeled M odels
Supposeawrite sub-operation W (i) (corresponding to operation W) by P; appearsin the execution. Consider
an operation O on P, that conflicts with W. The termination condition requires W(j) (i.e., the sub-operation with
respect to P;) to appear in the execution if both W and O are labeled as competing (includes sync and non-sync
labels for PL2, and loop, non-loop, and non-sync for PL3).

The relaxed condition turns out to be sufficient for supporting the three properly-labeled models. The
proof for the above is based on the general framework developed in Adve'sthesis [Adv93]; thisisthe same
framework that was used to prove the sufficient conditions for the PLpc model [GAG*92]. For the three
properly-labeled models, Condition H.1 above trivialy satisfies the constraints on termination assumed by
Adve'sframework.

Figure H.1 shows a simple exampleto illustrate the difference between Condition H.1 and Condition 4.5.
Assume the PL1 model, and assume the operations on P1 and P2 are labeled as competing (shown in
bold) while the operations on P3 are labeled as non-competing. The sufficient conditions for PL1 shown
in Figure 4.14 along with Condition 4.5 require that the while loops on both P2 and P3 terminate in every
execution. However, if we substitute Condition H.1 for Condition 4.5, then the specification alowsthewhile
loop on P3 to not terminatein some executions. Thisisbecause thewriteof A onPlisnot requiredto complete
with respect to P3 based on Condition H.1. Note that the program in Figure H.1 is not properly-labeled.

296



P1 P2 P3

al: A=1; a2: while (A ==0); a3: While (A ==0);
FigureH.1: Exampleto illustrate the more aggressive termination condition.

P1 P2 P3

al: A=1; a2: while (A == 0);
b2: B=1,; a3: while (B ==0);
b3: while (A == 0);

Figure H.2: Example of the aggressive termination condition for the PL3 model.

In fact, the distinction between Conditions 4.5 and H.1 arises only for non-PL programs; the relaxation in
ConditionH.1 simply exploitsthefact that the properly-labeled model sare not required to provide sequentially
consistent results to non-PL programs.

Figure H.2 shows an example specific to the PL3 model. Assume all operations are labeled as loop
writes and reads, which satisfies the labeling requirementsfor PL3. None of the system requirementsfor PL3
(see Figure 4.16) impose an execution order between the sub-operation of the write of A on P1 with respect
to P3 and the read sub-operation of A on P3. Therefore, if we remove the termination condition (either
Condition4.5 or Condition H.1), the sufficient system conditionsfor PL3 would not require the second while
loop on P3 to terminate in every execution. Note that with Condition H.1, it is important for the read of A
on P3 be labeled either aloop, non-loop, or non-sync to guarantee that the whileloop terminates. In contrast
to the PL3 specification, the same exampl e does not depend on the termination condition (either version) for
correctness if we assume either the PL1 or PL 2 sufficient conditions (still assuming all operations are labeled
as competing). Thisis because the multiprocessor dependence chain from the write of A on P1 to the read of
A on P2 isupheld by the sufficient conditionsfor either PL1 and PL2, thus aready requiring the write of A
on P1 to complete with respect to P3 before the read of A on that processor.

H.2 [Implications of the Relaxed Termination Condition on I mplemen-
tations

As discussed in Chapter 5, most hardware implementations end up naturally ensuring the termination for all
writes and write sub-operations. Therefore, Condition H.1 would not benefit most of these implementations.
However, there are afew hardware implementationsthat could exploit the more relaxed condition. For exam-
ple, consider implementations that aggressively exploit the early acknowledgement optimization described
in Section 5.4.1 whereby incoming invalidations and updates are only serviced when the processor enforces
a program order (delayed consistency implementations [DWB*91] use a similar optimization). With this
optimization, it is possible to build an implementation that supports the PL1 model, for example, and till
behaves aggressively for examples such as the one in Figure H.1 by allowing executions where the loop on
P3 does not terminate.
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The performance gains from exploiting the more aggressive termination condition in a hardware imple-
mentation arelikely tobesmall, however. Themain reasonisthat theless aggressive condition (Condition4.5)
can be supported quite efficiently. For example, even in an implementation such as the one described above,
the stricter semantics can be satisfied by guaranteeing that the incoming invalidationand update requestswill
be periodically serviced (e.g., by flushing theincoming queue oncein awhile), even if the period is chosen to
be extremely long and non-deterministic. The semantics of the stricter condition may a so be more desirable
for programs with non-synchronized accesses to data that are not properly-labeled for performance reasons
(see Section 3.6).

The relaxed semantics can be more beneficial for compiler optimizations, specificaly optimizations
such as register alocation. With the conservative semantics, the compiler must treat non-competing reads
conservatively if it cannot determinethat the read will only be executed afinite number of times. For example,
the read on P3 in the example from Figure H.1 cannot be register allocated with the conservative termination
condition (see Section 5.10.4). The more aggressive termination condition alows the compiler to aways
register allocate non-competing reads even if there is potential for the read to execute an infinite number of
times.!

Finally, due to a subtle reason, most software distributed shared memory systems (see Section 5.6)
would not benefit from the relaxed termination condition. This is because the restrictionsthat are typically
placed on programs by such systems make it impossible to write a program that can distinguish between
Condition 4.5 and Condition H.1.> This observation allows the implementation to exploit optimizations
enabled by ConditionH.1, yet provide behavior that isindistinguishablefrom that of Condition4.5 for al the
possible programs.

1Analogousto hardwareimplementations, it is possibleto satisfy the conservative condition even when alocation is register allocated
by periodically loading the value from memory into the register. However, generating the appropriate compiled code to achievethis can
be challenging.

2In other words, it is not possible to write a program with a competing label for some writes and a non-competing label for other
reads (or writes) to the samelocation.
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Appendix |

Aggressive Specificationsfor Various
System-Centric Models

This appendix presents the specification for various system-centric models using the framework described
in Chapter 4. In al cases, the set of conditions presented here are more aggressive than the original
specification for each model because we impose execution order constrai nts among competing sub-operations
only. However, these aggressive conditions are semantically equivalent to the original specifications of
these models; i.e., an implementation that obeys the aggressive conditions appears asif it obeysthe origina
conditions and vice versa. Consequently, for the programmer, the two sets of conditions are equivaent;
however, for the system designer, our conditions expose more aggressive implementations.

Chapter 4 already providesthe specificationsfor SC, RCsc, and RCpc. Thisappendix provides specifica-
tionsfor the rest of the models: IBM-370, TSO, PC, PSO, WO, Alpha, RMO, and PowerPC. In addition, we
providethe specification for theextended versionsof the model sdescribed in Section 4.4: TSO+, PC+, PSO+,
RCpc+, PowerPC+. Section |.2 describes how the reach relation is adapted to the system-centric models; this
conditionisonly relevant to the model sthat relax the read-write program order (i.e., WO, RCsc, RCpc, Alpha,
RMO, PowerPC, RCpc+, and PowerPC+). Finally, Section 1.3 describes how the aggressive uniprocessor
correctness conditionisadapted. The aggressive specificationsfor TSO, PC, PSO, and WO, along with proofs
of their equivalence to the origina specifications have appeared in a previous technical report [GAGT 93]
using adightly different specification format; the proofs of equivalence for the other specifications are similar
in nature.

.1 Aggressive Specification of the Models

Figures1.1-1.13 present the various aggressive specifications. The notation used to identify different types of
operations(e.g., synchronization and dataoperationsin WO) is consi stent with the notation used in Chapters 2
and 4.
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The original specification of the models are based on the following sources: IBM-370[IBM83], TSO and
PSO [SFC91, SUN91], PC [GLL*90, GGH93b], WO [DSB86, Schg9], Alpha[Sit92], RMO [WG94], and
PowerPC [CSB93, MSSW94]. For simplicity, we only specify the behavior of read and write operations to
a single data granularity. Therefore, we do not capture the behavior of other operations such as instruction
fetches, operationsto different data granularities (e.g, byte, word), or 1/0O operations specified by the origina
specifications of some of the commercia models (i.e., Alpha, RMO, and PowerPC). In addition, we have
made the following assumptions since certain behaviors are not precisely defined by some of the original
specifications. The first assumption relates to the reach relation. The WO, Alpha, and PowerPC models do
not specify the reach condition and are therefore underspecified. The RMO model, on the other hand, defines
a conservative version of the reach condition; for example, all writes past a conditional branch are delayed
until the branch isresolved. For these models, we adopt the more formal and aggressive reach relation that
isdescribed in Section 1.2. For WO, we also assume the following: the cache coherence condition holds for
all writes, and the same location can be read and written by both synchronization and data operations.
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I
- SpOo Spo
define 222 222,

X ﬂ: Y if X andY arethefirst and last operationsin one of
R-ZZ RW
w22 w
Ws 22 R
w22 Rs
w 2% FENCE 22 R
W 22, Rwhere W and R conflict
7
XZvitx {3+ v

define 222: X 222 Y if X and Y arethefirst and last operationsin one of
X2y
R W %R

Conditionson =2
(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; appliesto all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of
uniprocessor dependence: RW 22 RW
coherence: W =2 W
multiprocessor dependencechain: one of
w2 R RW

spo sco spo
RW— {A—B-—}+ RW
sco spo

WSR2 (A2 B+ R
then X (i) —= Y (i) for all i.

Figurel.1: Aggressive conditionsfor IBM-370.
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define 222: X 222 v if X and Y arethefirst and last operationsin one of
R-ZZ RW
w22 w
W (inRMW) 22 R
w22 rRMw 22 R

define 253: X 222 Y if X and Y arethefirst and last operationsin one of
X =2y
RZw- 2R

Conditionson =2

(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.

Condition 4.5: termination condition for writes; appliesto all write sub-operations.

Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of

uniprocessor dependence: RW 22 W
coherence: W =2 W
multiprocessor dependencechain: one of
w2 R RW
RW 2 (A28 B 251+ RW
sco spo

WISRE (A2 B+ R
then X (i) —= Y (i) for all i.

Figurel.2: Aggressive conditionsfor TSO.

302

Appendix | Specification for System-Centric Models



define 222: X 222 v if X and Y arethefirst and last operationsin one of
R-ZZ RW

w 2% w

define =25 X 22 vifx =2 v
Conditionson =2
(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; appliesto all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of
uniprocessor dependence: RW 22 W
coherence: W =2 W
multiprocessor dependencechain: one of
w2 R RW
RW 2 (A28 B 251+ RW
then X (i) — Y (i) for all i.

Figurel.3: Aggressive conditionsfor PC.
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define 222: X 222 v if X and Y arethefirst and last operationsin one of
R-ZZ RW
w 22 sTBAR 22 W
W (in RMW) 22 rRW
w 22 sTBAR 22 RMW 22 R

define 253: X 222 Y if X and Y arethefirst and last operationsin one of
X =2y
RZw- 2R

Conditions on =5

(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.

Condition 4.5: termination condition for writes; appliesto all write sub-operations.

Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of

uniprocessor dependence: RW 22 W
coherence: W =2 W
multiprocessor dependencechain: one of
w2 R RW
RW 2 (A28 B 251+ RW
sco spo

WISRE (A2 B+ R
then X (i) —= Y (i) for all i.

Figurel.4: Aggressive conditionsfor PSO.
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7 11
. SPO Spo  SPO’
define —,—, —:

spo'!

X == Y if XandY arethefirst and last operationsin one of
RWs 22 Rws
RW 22 Rws
Rws 2% RwW
s ! s 1 < 17
XZLvifx {24y (L2 ey
11
X Zyitx {ZL 2L ey
define 252, sc9,.
X 222 Y if X and Y arethefirst and last operationsin one of
X2y
R1 =% W =2 R2 where R1,R2 are on the same processor

X ﬂi Y if XandY arethefirst and last operationsin R1 =% W =2 R2 where R1,R2 are on different processors
Conditionson =2
(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; appliesto all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of
uniprocessor dependence: RW 22 W (or RW 22 Rw)
coherence: W =2 W
multiprocessor dependencechain: one of

W <% R 2 Rw
s s 8 sco’ spo’
RW2 (A2 B )| AZS B2 1+ RW

sco  spo’ sco spo sco’ | spo’

W-—R=— {A—B—)|(A—B—-—)}+R
then X (i) —= Y (i) for all i.

Figurel.5: Aggressive conditionsfor WO.
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spo spo’.

define —— =

;
spo

X =— Y if XandY arethefirst and last operationsin one of
X2 MBIy
w22 wmB 22w

s s /
X ZLvifx (X824 v
define 253: X 222 Y if X and Y arethefirst and last operationsin one of

X2y
RZw-2R

Conditionson =2
(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; appliesto write sub-operationsfor all writes.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of
uniprocessor dependence: RW 22 W (or RW 22 Rw)
coherence: W =2 W
multiprocessor dependencechain: one of
w2 R RW
RW 2 (A28 B 251+ RW
WIERES (AXS B+ R
then X (i) — Y (i) for all i.

Figurel.6: Aggressive conditionsfor Alpha
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7 11
. SPO SpO SPO
define — ,—, ==

X Sfi’: Y if X and Y arethefirst and last operationsin one of
R 22 MEMBAR(RR) 22 R
R 22 MEMBARRW) 22 w
w 2% MEMBARWR) 22
w 2% MEMBARWW) 22 w

X ﬂ: Y if X andY arethefirst and last operationsin one of
W (in RMW) 22 MEMBAR(RR) 22 R
W (in RMW) 22 MEMBARRW) 22 w

s s 7 s 1
XTIyt x {2820y y
define 253: X 222 Y if X and Y arethefirst and last operationsin one of

co

X—Y

R w4 R

Conditionson =2
(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; appliesto all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of
uniprocessor dependence: RW 22 W
coherence: W =2 W
multiprocessor dependencechain: one of
w2 R RW
RW 2 (A28 B 251+ RW
sco spo

WESREE (A2 B 1+ R
then X (i) 22 Y (i) for all i.

Figurel.7: Aggressive conditionsfor RMO.
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define 222: X 222 v if X and Y arethefirst and last operationsin one of
X 22 sYyNC 22 v

define =25 X 22 vifx =2 v
Conditionson =2
(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; appliesto all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of
uniprocessor dependence: RW 22 W (or RW 22 Rw)
coherence: W =2 W
multiprocessor dependencechain: one of
RW 2 (A 22 B 251+ RW

’
o rch

reach: R 2% (w4 RZ 1+ w
then X (i) — Y (i) for all i.

Figurel.8: Aggressive conditionsfor PowerPC.
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7 11
. SPO SpO SPO
define — ,—, ==

s 1
X 22, Y if X,Y arethefirst and last operationsin one of
RZZ RW
w2 w
w 22 MEMBARWR) 22
s 7
X 2% Y if X,Y arethefirst and last operationsin one of
W (in RMW) 22 R
7 11
X2 yitx {22522 1+ v
define 222: X 222 Y if X and Y arethefirst and last operationsin one of
X =2y

R W-%R

Conditionson =2
(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; appliesto all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of
uniprocessor dependence: RW 22 W
coherence: W =2 W
multiprocessor dependencechain: one of

w 2% R 25 Rw

spo sco spo
RW— {A—B-—}+ RW
SCO spo SCO spo

W-—R— {A—B-—}+R
then X (i) —= Y (i) for all i.

Figurel.9: Aggressive conditionsfor TSO+.
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define 222: X 222 v if X and Y arethefirst and last operationsin one of
po
R = RW
w2 w
W 22 Fence 22 R
define 253: X 222 Y if X and Y arethefirst and last operationsin one of
X2y
R =2 w_atomic =% R

Conditionson =2
(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; appliesto all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of
uniprocessor dependence: RW 22 W
coherence: W =2 W
multiprocessor dependencechain: one of
w2 R RW
RW 2 (A28 B 251+ RW
W_atomic 2% R 2 (A 222 B 214+ R

then X (i) =2 Y (i) for all i.

Figurel.10: Aggressive conditionsfor PC+.
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7 11
. SPO SpO SPO
define — ,—, ==

s 1
X 22, Y if X,Y arethefirst and last operationsin one of
RZZ RW
w 2 stBAR 22w
w 22 MEMBARWR) 22
s 7
X 2% Y if X,Y arethefirst and last operationsin one of
W (in RMW) 22 RW
7 11
X2 yitx {22522 1+ v
define 222: X 222 Y if X and Y arethefirst and last operationsin one of
X =2y

R W-%R

Conditionson =2
(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; appliesto all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of
uniprocessor dependence: RW 22 W
coherence: W =2 W
multiprocessor dependencechain: one of

w 2% R 25 Rw

spo sco spo
RW— {A—B-—}+ RW
SCO spo SCO spo

W-—R— {A—B-—}+R
then X (i) —= Y (i) for all i.

Figurel.11: Aggressive conditionsfor PSO+.
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spo spo’

define —,——:

spo’

X =— Y if XandY arethefirst and last operationsin one of
Rc 22, RWe
we 22 we
we 22 Fence 22 Re
Rc.acq =2 RW
RW 22 we_rel

spo rch

7
XZvyitx {Z2 22+ v

7
define 222,222 X 222 Y if X and Y arethefirst and last operationsin one of
X2y
R1 =2 W =2 R2 where R1,R2 are on the same processor

R -2 Wc_atomic =2 R

Conditionson =2
(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; appliesto write sub-operationsfor all competing writes.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X and Y conflict and X,Y arethefirst and last operationsin one of
uniprocessor dependence: RW 22 W
coherence: W =2 W
multiprocessor dependencechain: one of
w2 R RW
RW 2 (A28 B 251+ RW
We_atomic 255 R22 A 22 B 2331+ R
then X (i) —= Y (i) for all i.

Figurel.12: Aggressive conditionsfor RCpc+.
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define 222: X 222 v if X and Y arethefirst and last operationsin one of
X 22 syNCc 22 v

sco sco

define ——: X —— Y if X and Y arethefirst and last operationsin one of
X2y
R =2 wW_atomic =% R

Conditions on =2
(a) thefollowing conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; appliesto all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.
(b) given memory operationsX and Y, if X and'Y conflict and X,Y arethefirst and last operationsin one of
uniprocessor dependence: RW 22 W (or RW 22 Rw)
coherence: W =2 W
multiprocessor dependencechain: one of
RW 2 (A28 B 251+ RW
W_atomic <% R 225 Rw

W_atomic =2 R -2 {A 222 B 23+ R
/
reach: R 2% (w5 RZ 1+ w

then X (i) — Y (i) for all i.

Figurel.13: Aggressive conditionsfor PowerPC+.
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.2 Reach Relation for System-Centric Models

The reach relation used for the system-centric models is virtually identica to the relation formalized in
Appendix Ffor the PL models. Theonly differences arein Definition F.2(d) and Definition F.3(a) which must
be customized for the system-centric models.

Definition F.2(d) can be customized asfollows: “X 2% Y or X isthesameas Y in E. Further, X generates
aread R withinaloop and Y generates an operation O (different from R) such that R 2%+ O. Theread R
must be asynchronization read in WO, acompeting read in RCsc or RCpc (or RCpc+), and any read in Alpha,
RMO, or PowerPC (or PowerPC+).”

rpo

The definition of the — relation (Definition F.3) must aso be customized for each model. Definition
F.3(a) can be customized as follows: “X’ 2£%- Y’ in E”. The 22%- relation represents the 2% relation for a
given model minus the reach relation in the case of WO, RCsc, RCpc (and RCpc+), Alpha, and RMO. For
example, for RCpc, the 222 relationisas follows. Let X and Y beinstruction instancesand let X’ and Y’ be
memory operations corresponding to X and Y respectively. X 2% Y if X’ {ﬂ HY (e, 529, as defined

in Figure4.20 in Chapter 4), or if X’ and Y’ conflict and X* 2% Y’.

.3 Aggressive Uniprocessor Correctness Condition for System-Centric
Models

The origina specifications of the system-centric models do not explicitly state whether they assume the
conservative or aggressive uniprocessor correctness condition. We believe that except for SC, the intent of
the remaining models can be captured with the more aggressive uniprocessor correctness condition if one
additional condition is enforced. The additional condition should ensure the following two properties:

1. For certain classes of well-behaved programs (e.g., properly-labeled programs), the model should
appear sequentially consistent.

2. Consider any pair of shared-memory instructions X’ and Y’ from the same processor where X’ is
before Y’ in the control flow graph of the processor. If the original specification of the model requires
sub-operations of instances of X’ to execute before those of Y’, then the new condition should ensure
that only afinite number of instances of X' are ordered by program order before any instance of Y'.

Thisconditionisformalized below as Conditionl.1 and iscalled theinfiniteexecution condition. Parts(a),
(b), and (c) of the condition cover property (1) above and part (c) also covers property (2) above. Definition
I.1 isthe same as Definition G.1 in Appendix G. Definition 1.2 is particular to system-centric modelsand is
used in Condition 1.1(c) to satisfy property (2) above.

Definition I.1: Loop

A loop in a control flow graph refers to a cycle in the control flow graph. A loop L does not terminate in an
execution iff the number of instances of instructions from loop L in the execution isinfinite.

1Removing the reach relation isimportant since otherwise there would be acircularity in the specification since we use 222 to define

rch rch

2% through 222 and 222 itself uses 2<%, The reach condition is specified in a more aggressive way in PowerPC and is therefore not
merged with the 222 relation.
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P1 P2 P3
while (B==0); if (P==1)

A=1,;
B=1,; if (A==0) { D=1;
while (1) {C = 1;}
P=1,
}

Figurel.14: Example illustrating the infinite execution condition.

Definition |.2: I nfinite Execution Order (ﬂ)

Let X and Y be two shared-memory instruction instances in an execution E, with X’ and Y’ being the
corresponding memory operations.

If E is an execution on an IBM-370 system, then X e v X 2Ly

If E is an execution on a TSO system, then X 229 v iff X'=R 2% Y'=RW or X'=W 22 Y’ =W.

If E is an execution on a PC system, then X e Yiff X S22y,

If E is an execution on a PSO system, then X 2% v iff X'=R 22 Y'=RW or X’=W 22 STBAR 22 Y’=W.

1eo

If E is an execution on aWO system, then X 222 Y iff X’ {ZZ 1+ Y.
If Eis an execution on aRCsc system, then X <2 Y iff X* {22 | 22 1+ y'.

If E is an execution on aRCpc or RCpc+ system, then X 27V ff X {loi H+ Y.

If E is an execution on an Alpha system, then X 22V iff X {loi H+ Y.

If Eis an execution on aRMO system, then X 2 Y iff X {SP—>O” 1+ Y.

If Eis an execution on a PC+ system, then X 0V iff X {25+ Y,

If Eis an execution on a TSO+ or PSO+ system, then X 2 Y iff X {SP—>O” 1+ Y.

Condition |.1: Infinite Execution Condition

Consider an execution E of program Prog that contains instruction instancej of instruction j’.

(a) If loop L does not terminate in some SC execution, then the number of instances of instructionsin E that are
from loop L and that are ordered by program order before j isfinite if j is awrite instruction instance.

(b) The number of instruction instancesthat are ordered before j by reh! in Eisfinite (i.e., for modelsthat have

rch!

— defined: WO, RCsc, RCpc, Alpha, RMO, PowerPC, RCpc+, and PowerPC+). By definition, j is a write
instruction instance. ‘

(c) The number of instruction instances that are ordered before j by ~=> in E is finite. This clause does not
apply to the PowerPC and PowerPC+ models.

Figure 1.14 shows an example to illustrate the use of Condition 1.1(c) which is particular to the system-
centricmodels. AssumetheWO model with only thewrite of C and writeof P on P2 label ed as synchronization
operations. Note that more operations would have been labeled as synchronization for a port of a properly-
labeled version of this program to WO. P3 would never execute the write to D on P3 in any WO execution
according to the original specification of WO. However, thiswrite may get executed if we allow the writeto
Pto occur on P2 beforeits preceding whileloop ends. Thisisdisallowed by Condition1.1(c), but would have
been alowed by Conditions|.1(a) and (b) aone.
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Appendix J

Extensionsto Our Abstraction and
Specification Framework

We begin by clarifying some of the simplifying assumptions we made in Chapter 4 about the notion of result
for an execution. Section J.2 considers the issues that arise in modeling external 1/O devices. Section J.3
describes other event types, such as instruction fetches, that may aso need to be modeled. We describe the
steps that are required to incorporate extra events into our framework in Section J.4. Finaly, Section J.5
describes a potentially more realistic notion of result that attempts to incorporate the larger set of events.
Chapter 5 and Appendix Q further describe implementation issues with respect to 1/O operations, instruction
fetches, and multiple granularity data operations.

J.1 Assumptions about the Result of an Execution

The definition for result should capture sufficient behavior for an execution to include the aspects that a
programmer would consider as the outcome of a program. Yet, we want to exclude other behavior so
as to alow flexibility in specifications and implementations. The simple notion of result introduced by
Definition 4.6 in Section 4.1.1 isuseful for isolating the behavior of shared memory operations. Nevertheless,
it fails to capture the behavior of events such as I/O operations. Below, we describe how making additional
aspects of an execution visible to the programmer fundamentally changes the basic notion of result and
assumptions about equivalence between specifications. Many of the issues discussed apply to uniprocessor
systems as well.

Our simple notion of result consists of the values returned by the read operations that occur in a given
execution. This notion provides us with substantia freedom in reordering memory operations, and as long
as the reads in the execution return the same values as with a more conservative system, the aggressive and
conservative systems are considered to be equivalent. One example of this is the aggressive conditions for
SC, shown in Figure 4.7, whereby orders are imposed among conflicting operationsonly. A more dramatic
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al: A=1; al: B=1;

b1 B=1; bl1: u=B;

cl: u=B; cl: A=1;

d1: V=A; d1: V=A;
(a) (b)

Figure J.1: Illlustrating memory operation reordering in uniprocessors.

exampleisthe aggressive conditionsfor properly-labeled programs (e.g., Figure4.14 for PL1) which allow a
large number of reordering optimization and yet guarantee sequentially consistent results for such programs.
The situation is quite similar for uniprocessors. The optimizations exploited in uniprocessors depend on
the assumption that the result of executing a program on a conservative system that strictly maintains the
sequential order among all memory operationsisthe same as executing the program on an aggressive system
that maintains the sequential order among conflicting operations only.

The equivalences discussed above do not necessarily hold if we alow programmers to observe additional
characteristics of an execution beyond the values returned by read operations. In effect, additional knowledge
about the execution may enable the programmer to partially or fully reconstruct the actual execution order
among memory operations. With this information, programmers can trivialy distinguish executions on the
conservative and aggressive systems discussed above. Consider the uniprocessor example in Figure J.1(a).
Figure J.1(b) shows alega transformation of the program that may arise due to either dynamic reordering
in hardware or static reordering by the compiler. If we consider the values returned by read operations, the
possible results for the two program segments are identical (i.e., (u,v)=(1,1)). However, the order in which
memory locations are modified is clearly different in the two programs, making it possible to distinguish the
executionsif thisorder is either directly or indirectly observable.

There are numerous ways in which programmers may be ableto partially reconstruct the actual execution
order for an execution in either uniprocessor or multiprocessor systems. For example, the ability to monitor
the contents of memory allows the programmer to infer the actual order among memory writes. Referring
back to the program segmentsin Figure J.1, thismakes it easy to determine whether the writesto locations A
and B are reordered. A programmer may be able to monitor memory contents under a number of scenarios.
For example, most debuggers allow the programmer to single step a program and examine the contents of
registers and memory. For thisreason, debugging is often done with unoptimized code even in uniprocessors
since the reordering optimizations done by the compiler may no longer be transparent. In actual runs of the
program, paging activity can indirectly provide snapshots of memory contents for the pages that are pushed
to disk, even though programmers typically do not have default access to the swap data on disk. Hardware
monitors may also alow the order of writesto memory to be observed. Any of these approaches enable the
programmer to distinguish among executions even if the return values for read operations are identical .

Figure J.2 shows a multiprocessor example where having an accurate measure of real time allows the
programmer to observe anomalies. Assume a conceptua implementation that provides an accurate time for
when an operationsisissued and when it is considered to be complete (i.e., when the processor issues the next
operation). For example, according to the time bars shown in the figure, the writeto A on P; is considered
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P1 P2

\
al: A=1; |

=
b1: B=1; T3

t4} a2: U=A;

Figure J.2: An example multiprocessor program segment.

complete at timetl and theread of A on P; isinitiated at timet3. A programmer who is aware of such actua
timing may naturally expect the read of A to return the value 1. However, even the sequential consistency
model alows the value of 0 to be returned for the read of A, regardless of the actua timing of operations.
Another way programmers may observe anomalies is if there is an independent means of communication
among the processors. For example, P; may signa P, through a mechanism separate from memory, when it
initiatesthe writeto B. If P, observesthissignal in an execution beforeit actually initiatesitsread of A, then
thereturn value of O would again seem anomal ous even thoughit isallowed under sequential consistency. The
above examples show that the equiva ence among specifications and implementations is heavily dependent
on what is considered to constitute the result of an execution.

Even though our simple notion of result has many merits, it aso has some shortcomings that we describe
below. The most serious shortcoming is that the simple notion does not fully encompass a pragmatic notion
of result as understood by the programmer. For example, externa input and output are not included in
the event types even though external output operations are often considered as part of the outcome for the
program by a programmer. Similarly, the fina value of some memory locations may be considered as part
of the execution outcome by the programmer (e.g., these values may be saved to disk), but are not included
in our simple notion of result.! The other shortcoming of our simple notion of result is that it can capture
excess behavior; programmers often do not consider (or cannot observe) the value for each and every read
operation as part of the execution outcome. Including the return value of all reads in the notion of result
can therefore exclude certain desirable optimizations. For example, common compiler optimizations, such
as register allocation, common subexpression elimination, and hoisting loop invariants, have the effect of
eliminating some read operations. Other compiler or hardware optimizations, such as speculative execution,
may introduce extra read operationsinto the execution. Another example isthe optimization alowed by the
PL3 model for synchronization loops where operations issued by unsuccessful iterations of the loop must be
ignored for achieving equiva ence with sequential consistency (refer back to Section 3.2.3).

We will discuss a more redlistic notion of result in Section J.5 after discussing various extra events that
may need to be incorporated into the system abstraction.

J.2 External Devices

This section describes the issues that arise in modeling external input and output devices. We begin by
discussing externa input and output operations whose effect can be an important part of what a programmer

10ne possible way to include the latter issue in the notion of result is to assume that every program is augmented with reads of all
memory locations after the original programis complete.
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perceives as the outcome of an execution. We next consider the issues that arise when external devices are
allowed to directly access main memory.

External Input and Output Operations

External input and output operations are commonly used to communicate with user input and output devices
(e.g., keyboard, terminal) and other external devices such as disk or network controllers. Depending on the
architecture, 1/O operations are either encoded as specia instructions or are generated by issuing ordinary
read and write memory operations (typicaly uncached) to a predesignated address space (referred to as
memory-mapped 1/0). Due to the common use of memory-mapped 1/0, external input and output operation
are often referred to as 1/0 read and 1/0 write, respectively. The effect of an external output operation, or 1/0
write, is to change the state at its target external device. Similarly, an external input operation, or 1/O read,
returns a value representing a certain state at the target externa device. In some cases, 1/0 reads may also
modify state at the external device, thus functioning like a read-modify-write.

Even though I/O operations may appear similar to memory operations, their behavior and semantics can
be quite different. First, the functionality achieved by an I/O operation can be quite complex. For example,
an 1/O write to a given device may enqueue its value at the tail of an internal queue on the device, while a
subsequent 1/0 read dequeues and returnsthe value at the head of thisqueue. In other cases, an 1/0 read may
return a value that is unrelated to previous 1/O writes to the device (e.g., 1/0 read that returns the character
typed at the keyboard). Therefore, optimizationsthat are common for memory operations, such as merging
two writes to the same address into a single write or forwarding the value of a write to a later read to the
same address, can easily violate the intended semantics for many 1/0 operations. Second, the order of 1/0O
operationsto different addresses can be important. For example, an 1/O write to one address may potentially
affect the value returned by an 1/0 read to adifferent address. Therefore, unlike ordinary memory operations,
maintaining order among conflicting 1/O operations may not be sufficient for guaranteeing correct behavior.
Third, the programmer may be able to infer the actual execution order for certain 1/0 operations. In some
cases, thisorder isdirectly observablein real time (e.g., print statementsto aterminal). In other cases, it may
be possibleto reconstruct the order because of the semantics of the operations(e.g., consider 1/0O writeswhose
values are sequentially saved on disk). This further emphasizes the importance of avoiding optimizations
such as merging operations to the same address and maintaining the appropriate order among 1/0 operations
to different addresses.

The aboveissues affect the specification methodol ogy for both uniprocessor and multiprocessor systems.
Figure J.3 shows several examples to illustrate this. Examples (a)-(b) correspond to the uniprocessor case.
Each 1/O location is identified by an identifier and a device number. For example, io(A,devl) refers to the
location identified by A on device devl. Figure J.3(a) illustrates a uniprocessor example with I/O operations
to different locations on the same device. Maintaining the program order among these non-conflicting
operationsmay beimportant; for example, thel/O writeto A may affect thereturn valuefor the I/O read to B.
Figure J.3(b) shows a couple of program segments with 1/O operationsto separate devices. The example on
the left hand side shows two consecutive I/O writes to separate devices. Maintaining the order among such
writes may be important; the writes may be to two output devices that are monitored by the user during the
execution of the program. Thisexample illustrates how uniprocessors may exhibit multiprocessor effects due
to the fact that 1/0O operations are sometimes visible to the user. Maintaining order among 1/O operations to
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al: io(A,devl) =1;
b1: U =io(B,devl);

(a) non—conflicting operations

al: io(A,devl) =1,
b1: while (io(Status,devl) == 0);
cl: io(B,dev2) =1;

al: io(A,devl) =1,
b1: io(B,dev2) =1,

(b) operations to different devices

P1 P2
al: A=1; a2: io(B,devl) = 2;
b1: io(B,devl) =1, b2: U=A;

(c) behavior in multiprocessors

Figure J.3: Examplesillustrating /O operations.

separate devicesistypically more difficult and often less efficient than maintaining order among operationsto
the same device. Some systems may require an explicit mechanism for enforcing this order, such as reading
the status from one device to ensure the completion of operations destined to it before issuing an operation to
a different device. An example of thisis shown in the right hand side of Figure J.3(b), where we assume a
non-zero return value for the read of Status on thefirst device signifies that previously issued I/O operations
have completed with respect to the device.

Finally, Figure J.3(c) shows an example of how 1/O operations may influence the specification of mul-
tiprocessor memory behavior. The program segment shows P1 writing to A followed by an I/O writeto an
output device and P2 doing another 1/O write to the device before reading A. Assume an execution where the
user observesthe /O writefrom P1 before the I/O writefrom P2. Serial semanticswill lead the user to expect
the read of A to return the value of 1. However, this suggests that memory behavior depends on the order
of 1/O operations. Similarly, the behavior of 1/0 operations may depend on the order of memory operations;
for example, memory operations may be used to synchronize access to adevice by ordering I/O operationsto
that device from multiple processors.

To achieve higher performance, many designs, including uniprocessors, forgo serial semantics among 1/0
operations or between 1/0 and memory operations. The exact order maintained among 1/0O operations, and
between 1/0 and memory operations, are often specified in an implementati on-dependent manner. Similarly,
mechanisms for enforcing extra orders are often implementati on-dependent.

Memory Operationsby External Devices

In addition to servicing 1/0O operations, some 1/O devices have the ability to directly perform read and write
operationsto memory. For example, disk and network controllersmay directly move data between physical
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Processor I/0O device

al: A=1,;
b1: B=1;

Tt observe Ready set
el: io(Ready,devl) = 1; _— Y

access memory

f1: while (io(Done,devl) == O);,\ D
set Done

Figure J.4: Synchronization between a processor and an /O device.

memory and the disk or network. The ability to directly operate on memory introduces many processor-like
behaviorsfor I/O deviceswhich need to be model ed appropriately to capture the behavior of arealistic system.

Memory access by an 1/0 device may either be synchronous or asynchronous with respect to the program
execution (analogous to exceptions versus interrupts). The scenario shown in Figure J.4 corresponds to a
synchronousaccess sinceit isinitiated by the program (e.g., asininitiatingawriteto disk). Ontheother hand,
paging activity to disk for supporting virtual memory is an example of asynchronous access to memory since
itisnot explicitly initiated by the program. Regardless of whether the memory access by an I/0 device occurs
synchronously or asynchronously, such accesses are virtually always synchronized. That is, the processor
and the 1/0O device coordinate their accesses to memory to avoid simultaneous conflicting operations. This
synchronization may be in the form of either specia 1/0 operations (e.g., 1/O write to initiate a transfer to
disk) or memory operations (e.g., network controller may set a flag in memory to signify completion of a
transfer). Figure J4 shows an example of such synchronization, where a processor signals the 1/0O device
to access memory by performing an 1/0 write and waits for the device to signal completion by polling on a
different I/Olocation. Even though the example correspondsto a uniprocessor system, the presence of thel/O
device makes the behavior of the system multiprocessor-like since the program order relationship between
memory operations and the I/O operations becomes significant.

One of the subtle issues that arises with respect to asynchronous memory operations by 1/0 devices is
whether they should be included as part of the result of a program. For example, when a disk controller is
invoked to read and transfer the contents of memory page as part of the operating system’s paging activity,
the values read represent a snapshot of the memory contents at a point in the execution. Such a snapshot
of memory can unveil many of the reordering optimizations that take place even in uniprocessor systems
(e.g., compiler optimizations such as code motion and register allocation). Therefore, considering such
asynchronous snapshots of memory as part of the result would disallow many of the reordering optimizations
if we want to provide sequential semantics. For this reason, such snapshots are often excluded from the
definition of the result, especially since they are often not directly visibleto the programmer.

J.3 Other Event Types

This section describes other event types, aside from 1/0O operations, that may need to be included in the
specification of areal system, in addition to issues that arise with respect to each event.
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P1 P2 P1 P2

a1 A=1, a2: =A; al: A=1; a2: uyv=AB;
b1: B=1, b2: v=B; b1: B=1,;

(a) (b)

Figure J.5: Multiplegranularity access to memory.

Instruction Fetches

Thefirst type of event isinstruction fetch or read from the instruction space. Modeling instruction fetchesis
important if the system allows dynamic code modification. Thisissue arisesin uniprocessor systems aswell.
Ideally, an instruction fetch should be simply treated as an extra memory read operation that is issued by
the instruction. Therefore, maintaining sequential semantics would imply that the value returned by the read
should correspond to the last write to the location in program order. However, most uniprocessor systems
sacrifice the sequential semantics for read and write operations to the instruction space in order to achieve
higher performance. Optimizations such as instruction prefetching and pipelining, separate instruction and
data caches, issuing multiple instructions in the same cycle, and the out-of-order issue of instructions can
lead to the possibility of temporarily stale copies of instructions being fetched and executed. Therefore, a
writeto theinstruction space may not be reflected in instruction fetches that immediately follow it in program
order.? As aresult, the programmer is exposed to the non-sequential sesmantics. Ensuring correct behavior
often requires adding a set of architecture or implementation-specific operations, such as afence instruction,
that delay futureinstruction fetches and flush stale instruction copies.

Atomicity Relation among Events

The framework presented in Chapter 4 deals with three atomic operations. a read, a write, and a read-
modify-write to a single address, al with the same granularity of access to data. In general, a system may
define a larger set of memory operations with varying access granularities and atomicity constraints. By
far the most common feature is to support multiple granularity read and write operations. For example, the
Alpha architecture supports atomic read and write operations to consecutive one, two, four, or eight byte
regions [SW95]. We briefly discuss the issues in capturing the behavior of multiple granularity operations
below.

Consider thetwo examplesin FigureJ.5. Assume operationsin FigureJ.5(a) are at afour byte granularity,
and that locations A and B lie within an aligned eight byte boundary. Figure J.5(b) shows a similar code
segment except the operations on P2 appear as an atomic eight byte read operation. Under sequentia
consistency, the outcome (u,v)=(0,1) is lega for the example on the left, but is not allowed for the example
on theright since the read operationsto A and B must appear atomic.

Our specification methodol ogy isgeneral enough toincorporatethetypeof multiplegranul arity operations
discussed above. There are numerous ways in which this can be achieved; we briefly discuss one option

2Capturing this effect is simple within our framework. For an instruction fetch |, the initiation condition can be relaxed to not require

Winie (D) == linie(i) given W 22 1. In addition, uniprocessor dependencewould not constrain W(i) —= (i) in the above case. This
alowsthe instruction fetch to return the value of an older write.
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below. First, we need to introduce multiple granularity operations into the operation set. Sub-operationsare
still modeled at the lowest granularity. For example, assume a system with word and double-word operations.
A double-word operation consists of two sets of sub-operations, one set for each word boundary. Second,
we must extend the notion of conflict to larger granularity operations; two operations are considered to
conflict if any of the constituent sub-operations conflict. Third, we must provide explicit conditions, similar
to Condition 4.7, to capture the atomicity relation among the sub-operationsof alarger granularity operation.
As with our current specifications, chains such as the multiprocessor dependence chain are defined among
conflicting operationswhiletheimplied constrai ntscan be defined on conflicting sub-operations. Constraining
the execution order only among conflicting sub-operations makes the specification more challenging. To
capture the behavior of larger granularity operations, we may need to increase the number of chainsin the
specification. For example, consider the code segment in Figure J.5(b) under sequential consistency. Each of
the word writes on P1 conflicts with the double-word read on P2. However, the writes on P1 do not conflict
with oneanother. Therefore, we may requirean explicit chain of theform w1 22 W2 =2 Rto disallow the
outcome (u,v)=(0,1). Thistypeof achainisimplicitin specifications with single granularity operations since
W1 and W2 would have to be conflicting (i.e., given W1 conflicts with R and W2 conflicts with R) and the
uniprocessor dependence and value conditionsalong with the transitivity of —— would end up appropriately
constraining the execution order between the sub-operations of W1 and R.

Operationsto Private Memory

The framework presented in Chapter 4 treats memory as a single shared address space. Nevertheless, some
programming languages may allow the programmer to distinguish between shared and private memory, with
private memory locations only accessible to a single process or thread. Because private memory locations
are not read and written by multiple processes, operations to such locations need not obey the same strict
ordering congtraints as for shared memory locations. In fact, the necessary constraints are analogous to
uniprocessor memory operations; conflicting operations from the same process must appear to execute in
program order. Exploiting the distinction between private and shared memory operations can potentially lead
to higher performance if (i) the relative frequency of private memory operations is significant, and (ii) the
base memory consistency model imposes strict ordering constraints on the shared memory operations (e.g.,
a model such as SC). Furthermore, the fact that only a single processor needs to access a private memory
location at any time may be useful for customizing the coherence protocol for private memory operations.

Consider the example in Figure J.6(a). By convention, private memory locations are appended with
a“p’ (eg., pX). Assume a typica sequentialy consistent system. Without distinguishing private and
shared memory operations, the system would conservatively service one memory operation a atime. By
distinguishing private memory operations, the system can treat such operations less conservatively by only
maintaining the order among conflicting operations (i.e., between (b1) and (el)). Furthermore, the program
order between shared and private memory operations need not be maintained.

Even though a private memory location is accessed by a single process, process migration effectively
allowsmore than one processor to access the location and may a so lead to multiple copies of thelocation. To
uphold the correct semantics for private memory locations, we need to ensure a consistent view of the private
memory as processes are migrated. Aswewill see below, issues such as efficient and transparent support for
process migration may reduce theincentivefor distinguishingbetween private and shared memory operations.
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ﬂ p— -
al: A=1; al: A=L
b1 pX = 1: b1: pX =1,
ol B=1: cl: B=1;
aL pY=1: di: pY =1 while (Flag ==0);
el: U=pX; I<:I|2tger:ﬂ;[‘?t> e

(a) without migration (b) with migration

Figure J.6: Interaction of private memory operationsand process migration.

Figure J.6(b) shows the same program as in Figure J.6(a), except the process is migrated from P1 to
P2 during its execution; this is shown as an interrupt on P1 to preempt the processor, adong with a flag
synchronization to signal the fact that the process is ready to move to P2. As a result of the migration,
location pX iswritten by P1 and read by P2. Nevertheless, to provide transparent migration, the read to pX
on P2 must still return the value of 1. A system that distinguishes between private and shared operations
may require extra mechanisms to ensure transparent migration. For example, the private memory for a
process has to be accessible from any processor, even though a any one time only a single processor will
be accessing it. Similarly, migrating the process may result in multiple copies of private locations; these
multiple copies must either be eliminated or must be kept coherent. One way to support process migration
istowait for al private memory operationsto complete, flush any private memory |ocations associated from
the process from the current processor’s cache, migrate the private memory pages associated with the process
to the target processor’s node, and finally resume the process at the target process. Unfortunately, the cost
of process migration can become quite large under such a scheme. At the other extreme, a consistent view
is trivialy guaranteed if we treat private memory operations the same as shared memory operations, and
process migration can be supported much more efficiently in thisway.2 Therefore, there can be a trade-off
between the performance gains from distinguishing between private and shared memory operations and the
cost incurred for process migration.

Overdl, most existing systems do not exploit the distinction between private and shared memory oper-
ations. Treating private and shared memory operations differently incurs hardware support and complexity.
At the same time, the gains from making this distinction are less significant if the shared memory model is
already relaxed since much of the reordering optimizationsare aready allowed for shared memory operations.
Finally, making this distinction can potentially sacrifice efficient process migration.

Address Trandation

Another event that isrelevant to memory operationsand instruction fetches is address translation. To support
virtual memory, every instruction fetch and every memory operation can potentialy require a trandation
of its address. The appropriate sequential semantics for address trandation would be that any modification

3Section 5.7.1 in Chapter 5 describes the requirements with respect to shared memory operationsfor supporting transparent process
migration.
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to the trandation should be reflected in subsequent trandations. However, due to the various pipelining
optimizations, even uniprocessor systems may not maintain this semantics and may require the use of specia
instructionsto guarantee the seria behavior.

The interpretation of addresses is aso important for determining whether two operations reference the
same logical location (e.g., for determining whether two operations conflict). For virtual addresses, it is
possible for two distinct addresses to refer to the same logica location. This sort of diasing is not an issue
with physical addresses. However, dealing with physical addresses requires including the behavior of 1/0
devices. For example, paging can cause a given logical location to be moved from one physical address to
disk and back to a different physical address.

Exceptionsand Other Miscalleneous Events

Another class of relevant events are exceptions. There are varioustypes of exceptions, some related to integer
and floating point operations and othersrelated to memory operations. For example, an exception may occur
during address trandation if the trandation is not readily available (e.g., TLB or page miss). Another class
of exceptions related to memory operations are parity or ECC errors during cache or memory accesses. An
important issue is whether the system provides support for precise exceptions. For efficiency reasons, most
architectures do not provide precise exception semantics for every exception, e.g., an ECC error on write
operations. Therefore, the programmer may again be exposed to the non-sequentia behavior of such events
even in uniprocessors.

There are other miscalleneous events that may also be of interest in other types of systems. For example,
in a system that provides a stable storage facility, it may be important to know when write operations are
committed to memory as opposed to simply guaranteeing the appropriate order among writes. Therefore, it
may be important to model the actual committing of the writeto memory.

J.4 Incorporating various Eventsinto Abstraction and Specification

In addition to memory reads and writesissued by the processors, we have discussed a variety of other events
that may need to be incorporated in a complete specification of a system. Below, we briefly enumerate
the types of changes that are required for incorporating the larger set of events within our abstraction and
specification methodol ogy.

First, the abstractions for a shared-memory system and a shared-memory program (Definitions 4.1 and
4.2) need to be generalized to incorporatethe various events. We al so need to provide an abstraction for each
type of event, similar to the abstraction presented for memory reads and writesin Section 4.1.3. For example,
the abstraction for instruction fetches or operations to private memory may be identical to that of memory
operations. We can use a similar abstraction to model memory operations issued by 1/O devices. On the
other hand, 1/0 operationsissued by the processor may require a different abstraction. The issue of multiple
copiesis not present for 1/O operations, allowing us to model 1/0 writes as a single as opposed to multiple
sub-operations. In addition, the semantics for 1/0 operationsis different from typical read and write memory
operations. Finally, events such as address translations or exceptions a so need to be model ed.

Second, the notion of result needs to be clearly defined and needs to incorporate al events of interest.
For example, the effect of 1/O operations needs to be incorporated in the notion of result. Furthermore, the

Section J4 Incorporating various Events into Abstraction and Specification 325



manner in which events are incorporated into the notion of result determines the flexibility in constraining
orders among such events for maintai ning equivalent results.

Third, we need to generalize the components of an execution (e.g., Definition 4.11) to include the various
events and to define the relevant relations such as program order and execution order among them. The
execution order relation needs to be defined as a total order on all events (for example, ordering memory
operations with respect to other memory or 1/0O operations). Similarly, the program order relation needs to
be defined among the relevant events, again possibly relating events of different types with respect to one
another.

Finally, the conditions that impose constraints on the execution order need to be extended to impose the
appropriate orders among the various events. As discussed above, the execution order becomes a total order
on al events. To maintain aggressive implementations, it is important to constrain execution order among
as few events as possible. For most specifications, it should be possible to constrain the execution order
among events of the same type, thus avoiding execution order constraints on events of different types. For
memory operations, we can continue to constrain execution order among conflicting operations only, unless
the notion of result is radically changed. For I/O operations, however, ordering constraints may in genera
be required for operationsto different locations due to the non-memory-like semantics. Furthermore, chains
that capture the order among events need to be generalized to include different types of events. For example,
memory operations may be used to order 1/0O operations (e.g., to synchronize access to an 1/O device) and
I/O operations may be used to order memory operations (e.g., for synchronizing accesses to memory by 1/0
devices).

J.5 A MoreRealistic Notion for Result

The notion of result can be made more redlistic once 1/O devices are fully incorporated into the abstraction
and specification of amodel. Programmers may observe the effects of some 1/0 operations, such as output to
aterminal. In addition, some of thevaluesreturned by memory readsissued by I/O devices may be observable
by the programmer; for example, an I/O device like the disk controller may read various regions of memory
and save the contents on disk for later retrieval. In many cases, the above two things form a complete notion
of the result for the programmer. Therefore, one possibility is to define the notion of result as consisting of
the sequence of certain 1/O operationsissued by the processors plus a subset of the return values for memory
reads issued by the 1/O devices.

J.6 Summary on Extensionsto Framework

This appendix explored the issues that arise in modeling a more general set of eventsin addition to read and
write memory operations. Many of the issues discussed are not particular to multiprocessors and apply to
uniprocessors as well. Furthermore, even in the context of uniprocessors, maintaining sequential semantics
for sometypesof events(e.g., I/O operations) is sacrificed for purposes of efficiency. In addition, the behavior
of themore general set of eventsis often not precisely defined. Fortunately, only afew programmers need to
deal with the semantics of the more general set of events. Whileit is possible to incorporate various events
into our specification methodol ogy, the remaining question iswhat the ordering semantics should be on such
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events; thisis closaly related to the notion of result that is assumed by programmers.
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Appendix K

Subtle I ssuesin |mplementing Cache
Coherence Protocols

Designing a correct and efficient cache coherence protocol for alarge scale shared-memory system can be
reasonably challenging. A number of cache coherence protocol designs have been described in previous
publications (e.g., [Len92, CKA91]). This appendix briefly reviews some of the more subtle aspects in de-
signing such protocols, primarily based on our experience withthe DASH [LLG*90] and FLASH [KOHT 94]
protocols.

One of the big challenges is to implement an efficient cache coherence protocol while still maintaining
correctness. From a performance point of view, it isimportant to reduce the latency and humber of messages
associated with servicing each memory operation in addition to minimizing serializations in the protocol.
Furthermore, since most systems are built around commercia processors, the design of the cache coherence
protocol among different processors is typically influenced by protocol decisions that have been made for
maintaining coherence within the processor cache hierarchy. The difficulties on the correctness side arise
from two sources: (@) the distribution of the protocol state information makes it practically impossible to
atomically access and modify the globa state associated with a given memory line, and (b) the presence of
multiple paths within the network leads to minimal message ordering guarantees. In addition, the protocol
must ensure deadl ock-free and livel ock-free operation (most protocolsdo not attempt to alleviate starvation).

This appendix begins by briefly discussing protocol deadlock issues. The remaining parts of the appendix
primarily focus on interactions of operationsto the same cacheline. We provide several examples of transient
or corner cases that arise due to the distributed nature of the protocol. In addition, we describe issues related
to serializing simultaneous operations to the same line, cross checking messages on incoming and outgoing
paths, and maintai ning point-to-point ordering among specific messages.
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FigureK.1: A transient write-back scenario.

K.1 Dealing with Protocol Deadlock

Protocol deadlock may arise from circular dependencies among resources, and such dependencies can arise
at many levels within a cache coherence protocol. A simple example of acircular dependences involvestwo
processors issuing requests to each other’s caches; deadlock can ariseif each cache waitsfor itsreply before
servicing its requests. As we discussed in Section 5.2, the buffering and handling of messages within the
cache hierarchy and in the network is another potentia source of circular dependences. A common solution
to this problem is to separate request and reply messages and to use logically different paths (either separate
virtual or separate virtua lanes) for transferring such messages within the network and cache hierarchy. A
conseguence of this solutionisthat even point-to-point ordering is not guaranteed among al message types.

K.2 Examplesof Transient or Corner Cases

The distribution of state information and the lack of order among coherence messages introduce a number of
subtle transient cases that can occur under normal operation and must be correctly handled by the protocol.
Transient conditions typically arise because multiple processors simultaneously act on a given address and
these action do not take effect atomically with respect to the global state of the line; therefore, different
processors may observe the line in different states at the same time. This section describes some classic
examples of such transient behavior.

The first example, shown in Figure K.1, illustrates the effect of the distributed state information. The
figure shows three processing nodes along with the logical request and reply network paths denoted as “R”
and“Q", respectively. Consider alinewithahome at P; that isinitialy dirty in P,’scache. Assume Py issues
aread request to thisline, which is sent to the home node and isthen forwarded to P,. Meanwhile, assume P,
replaces the dirty line (leading to a write-back message destined to the home) while P;’srequest isin transit
towards P,. The read request and the write-back request travel in opposite directionsin the network and can
easily pass one another without detection (cross checking messages in the network isimpractical). Therefore,
when the read request reaches P;’s cache hierarchy, it finds that the line is no longer available. The above
anomaly arises due a window of time when the global state of the line can change while the read request is
in transit towards P,. There is arelated window of time while the write-back request is in transit that the
directory information is no longer correct.

One solution to anomalies similar to the above is to generate a negative acknowledgement (nack) reply
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as aresponse to forwarded requests that do not find the line in the appropriate state at the target cache. The
nack reply can be used to signa the requesting processor that the given request must be reissued, which
implies a mechanism for retrying requests from each node. Nack replies can also play an important role in
deadl ock avoidance solutions(based on separating requests and replies) by eliminating certai n request-request
dependences. For example, a request that generates additiona request messages (e.g., aread request that is
received by the home and forwarded to another node) can simply be nacked if the outgoing request buffer is
temporarily full.

Transient cases similar to the one shown in Figure K.1 can a so occur within a cache hierarchy. FigureK.2
shows one such scenario where an incoming read request (from a different processor) bypasses a write-back
request for the same line. In contrast to the network, it is possible to detect these types of bypasses within
a cache hierarchy through some form of cross checking between the incoming and the outgoing paths. By
detecting this case, the cache hierarchy can take appropriate action by grabbing the data from the write-back
toform areply for theread. There are several ways to achieve the cross check. The bruteforce way isto use
associative lookup on the queues. Another approach involves appropriately flushing a set of queues before
servicing requests from other queues. The effect of cross checks may also be achieved by exploiting the
cache states. For example, if an incoming read requests arrives at the level 2 cache first, it can appropriately
change the state of theline (e.g., from dirty-dirty, signifying that the hierarchy has adirty copy and the actual
dirty copy is at a higher level, to clean-dirty) such that the outgoing write-back is automatically turned into
an outgoing read reply by this cache (ordinarily, the write-back expects adirty-dirty state). Thislast solution
does not apply to the lowest level buffers in the hierarchy (i.e., past the lowest level cache). Of course,
the simplest option is to use the same solution that is used by the network: alow the messages to bypass
one another and simply nack the read if it does not find the line in the appropriate state. However, since
most bus-based systems do not support nacks, commercial processors typically provide some form of cross
checking functionality.

Figure K.3 shows another example of a transient case where the processor receives an invalidate request
whileitsread request is pending to the same line. Assume thehomefor thelineisat P,. The sequencein the
figure shows P;’s read request is satisfied by P, and areply is sent back to P;. Meanwhile, assume P, issues

330 Appendix K Cache Coherence Protocols



ReadRq R

— T = R
R - - R - =

- B ———
Q Q ReadRp

R 4’3
4’Q
R InvalRg Rt —
Q-5 5. I Q
ReadRp

ReadRp
Figure K.3: Example of atransient invalidate from alater write.

RplcHintRq R ReadRq R
Q Q
R InvalRq R InvalRq -»>
Q= Qe
ReadRq ReadRq

=R — 1 =R
X = § Q @ >
-
Qe

nv

— =R
@ Q

ReadRp

59
<

Figure K.4: Example of atransient invalidate from an earlier write.

awriteto the same address which resultsin an invaidate request to be sent to P;. As shown in the figure, the
invalidate can bypass the read reply because they use different paths. Therefore, P, observes an invalidate
for alineit is waiting upon. From a correctness point of view, P; must avoid caching the data returned by
thereply sinceit is aready stale. The value of the read can be provided to the processor as long as it is not
cached; alternatively, the read can be reissued.

Figure K.4 shows asimilar scenario to the above, except the invalidaterequest is actualy from an earlier
write (i.e., a write that is serialized before the read value is bound). Assume P, is the home for the line
and that P, isinitially caching a copy. The figure shows P; replacing the line, leading to a replacement-hint
request (replacement of clean lines may be silent in some protocols). Meanwhile, P, writesto theline, and
since the directory still shows P; as a sharer, an invalidate request is sent to it. The sequence in the figure
shows P; attempting to read the line before the invalidate reaches at. As shown, the invalidate can actually
be acknowledged back to the home before this read reaches the home due to the separate request/reply paths.
The read eventually gets serviced and actually carries the most up-to-date data back to P;. However, in
most protocols, P; cannot distinguish this scenario from the scenario in Figure K.3; in both cases, P; simply
receives an invalidateto alinewhileitsread is pending. Therefore, the implementation must conservatively
treat the invalidate as possibly belonging to a later write, which means that it cannot cache the returning
reply.t

The above two transient cases arise primarily dueto a lack of point-to-point order between requests and
replies. However, even if the network provides point-to-point order among all messages, similar transient

1Analogoustransient scenarios can arise with update requests to pending reads. Similar to the invalidation case, the implementation
cannot distinguish whether the update belongsto an earlier or later write relative to the read reply (see Figure K.8.
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conditions can arise when more than two nodes are involved. Figure K.5 shows one such scenario. Assume
Ps is the home node for the line, and P, initialy has a dirty copy. The sequence shows P; making a read
request, which is forwarded from the home to P,. The read reply is shown to be directly sent from P, to
P1, dong with a sharing write-back message that informs the directory about the new sharer and write backs
the up-to-date data to memory; both the DASH and the FLASH protocols use this forwarding optimization.
However, assume that P; issues awriteto the line before the reply returnsto P;. This scenario is analogous
to the example shown in Figure K.3 where an invalidate from alater writeisreceived by the requesting node
while it has a pending read. In this case, the problem arises due to the forwarding optimization which leads
adifferent point-to-point path for the reply (P, to Py) relative to the path for the invalidate request from the
home (P; to Py).

FigureK.6illustratesanother subtletransient scenario wherean invalidate request arriveswhileaprocessor
has an outstanding exclusive request to the same line. Assume P, isthe home node and P; initially holds a
clean copy of thedata. Assume P; and P, both attempt to writethe line, leading to an exclusive request from
P; to the home, and an invalidaterequest from P, to P;. Thefigure showsP,’sinvaidate being acknowledged
before P;’s original exclusive request gets to P, (another example of request-reply bypassing). There are
three possible solutions for servicing the exclusive request. All three solutions require the directory at the
home to detect that P; no longer maintains a valid clean copy of the line; this can be easily determined by
examining the list of sharers at the home. The first solution involves responding to P; with a read-exclusive
reply (instead of the expected exclusive reply) and modifying the directory to point to P; asthe new exclusive
owner; thisimpliesthat theimplementation can robustly accept aread-exclusive reply to an exclusive request
(even when an invalidate request arrives in between). The second solution is to respond with a negative
acknowledgement reply, which does not change the state of the directory and forces P; to retry the request;
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the retry from Py will lead to a read-exclusive request since it no longer has a clean copy. Finaly, the third
solutionisto speculatively respond with an exclusive reply before fully checking the sharer list. P, must still
drop the exclusive reply because it received an invalidate while its exclusive request was outstanding and
no longer has the up-to-date data for the line; similarly, the directory must check the list and not modify the
ownership information. The motivationfor thelast solutionisto reduce thelatency of an exclusiverequest in
the common case (i.e., no transient situation), especialy if checking thedirectory takesarelatively significant
time. The FLASH protocol uses thethird sol ution;2 such scenarios do not ariseinthe DASH protocol because
of thelack of support for exclusive requests (i.e., the protocol aways generates a read-exclusive).

Overdl, even though a protocol must correctly handle transient cases, the occurrence of such scenariosis
typically infrequent. A necessary prerequisiteisfor multiplecache hierarchiesto simultaneously act upon the
same line. Furthermore, some of the scenarios arise only if messages experience substantially different delays
within the network or associated network queues. Given the low frequency of transient cases, the efficiency
of handling transient cases is not important as long as the adopted solutions do not degrade performance for
the common coherence operations.

K.3 Serializing Smultaneous Operations

Serializing simultaneous operations on the same line is a powerful design strategy for eliminating a large
number of transient cases in a protocol. Section 5.3.5 already describes the benefits of disallowing new
requests from being serviced while aline has pending invalidationsor updates; detection of write completion
and support for category three dependence chains are both ssimplified. As discussed in Section 5.3.5, the
functionality of disallowing new requests can be supported at either the requester or the home depending on
which is responsible for gathering the invalidation acknowledgements. This section describes a number of
other scenarios where such serializations can greatly simplify the design of the protocol.

FigureK.7 illustratesan examplewhereallowing awriteto proceed whilethe previouswrite’ sinvalidations
are pending can lead to subtle problems. Assume P, isthe home node and that P; initialy has a clean copy
of the line, and assume P; and P, simultaneoudly attempt to write the line. The scenario in the figure shows
P, reaching the directory first and generating an invalidation request to P; while P; has an exclusive request

2Due to the fact that the sharers are represented as a linked list in FLASH, the protocol also speculatively sends invalidations to
sharers before having checked the whole list to see whether the exclusive reply will fail. Exclusive requests due to a store-conditional
use the second solution above, however, both to provide correctness and to avoid livelocks (see Section 5.3.7 and Appendix N).
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intransit. Assume the directory actualy services the exclusive request from Py before the invalidate request
from the previouswriteis acknowledged. As mentioned in the previous section, the directory can detect that
Py isnolonger on the sharing list and responds with aread-exclusive reply. Itisnow possiblefor thisreply to
reach P, before the original invalidation request dueto the lack of point-to-point order between regquests and
replies. Therefore, P, may later receive an invalidation request to a dirty line, which can lead to anomalous
behavior in most protocols. A simple solution for alleviating thisbehavior isto disalow any new requeststo
the line whilethere are outstanding invalidationsfor theline.

Figure K.8 shows that disallowing a new read while there are outstanding updates from previous writes
can simplify the design of update-based protocols. Again, assume P, isthe home for the line. Figure K.8(a)
shows a scenario where P; replaces alineand then reads the line while thereis an outstanding update request
destined for it. Asshown, the read reply can reach P; before the update request. Even though the read reply
provides P; with the most up-to-date data, the value can be made incorrect if P, performsthe update from the
earlier writewhen it later receives the request. The difficulty arises from the fact that P, cannot simply drop
the update request since it cannot distinguish whether the update is due to an earlier or later write relative to
itscached value. Figure K.8(b) showsthelatter case, where the update that belongsto alater write (e.g., from
P,) must actually be performed by P;. Note that this problem is easier to solve with an invalidation-based
scheme because the line can be conservatively invalidated even if the invalidate request belongsto an earlier
write; therefore, the invalidate can be accepted in both cases. However, with an update-based scheme, it is
incorrect to uniformly accept or reject the update request under both scenarios. Disalowing a future read
from proceeding until the updates from previous writes are acknowledged turns out to solve this problem by
eliminating the possibility of receiving an update from an earlier write after the processor receives the read
reply.3

A larger number of simplifications are possible by further serializing operations to the same location by
disallowing a new request to be serviced either (a) while there are pending invaidations and updates from
previous writes to the line (described above), or (b) while a previous request that is forwarded from the
home (to the current owner) is not yet satisfied. The FLASH protocol achieves the above serialization by
maintaining a pending bit per memory line (as part of the directory entry) that determineswhether alineisin
one of the above two states;* new read, read-exclusive, and exclusive requests to aline in pending state are

3This solution is described in Appendix M; the other solution described there is to enforce point-to-point order between incoming
read replies and update requests, for example, by placing both of them on the same network path. It turns out that the DASH protocol
does not use either solution, and therefore fails to enforce the coherence requirement if update writes are used. Thisis the only known
error in the protocol. The error probably arose because the protocol was only tested for invalidation writes; it was uncovered through
the reasoning presented in Chapter 5.

4The pending bit is reset when all invalidations or updates are acknowledged to the home, or when a sharing write-back or ownership
changerequest arrives at the homein responseto aforwarded request.
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Figure K.8: Example transient problems specific to update-based protocols.

forced to retry. This type of seriaization makes the FLASH protocol significantly simpler than the DASH
protocol. Figure K.9 shows a scenario that illustrates the type of complexity present in DASH. Assume Ps
is the home node and P; is theinitial owner. The sequence in the figure shows P, grabbing the line next;
the reply is directly forwarded from P; and an ownership change request is sent to the home to signal the
new owner. Meanwhile, P; also writes to the location, generating a read-exclusive request to P; before the
ownership change reaches the home. The sequence shows P; grabbing the line again, and finally the request
from P3 succeeds in grabbing theline. As shown, thisinteraction can lead to two ownership change requests
to be simultaneously present in the network; the protocol will fail to properly keep track of the current owner
if the ownership change request from P; reaches the home first. To avoid thisrace, the DASH protocol has
an extra message that is sent by the home to the requester of a forwarded message to signal the fact that the
ownership change request has reached the home; before then, the requester disallows other processors (e.g.,
P3 in the example) from accessing the line and a so avoids writing back theline. In FLASH, this problemis
trivially solved by disallowing multiple operations on the line as described above.®

K.4 Cross Checking between Incoming and Outgoing M essages

Cross checks are typically done to detect messages to the same linethat bypass one another on the incoming
and outgoing paths. As we mentioned before, most types of cross checking can be virtually alleviated by
depending on negative acknowledgement (nack) messages and simply retrying a request that fails to find
the data. However, bus-based designs typically do not support thistype of mechanism and therefore depend

5For correctness, an ownership change request that arrives at the home checks to make sure the line is not yet written back by the
new owner before changing the directory state to point to the new owner; otherwise, the ownership change request is simply ignored.
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on the appropriate cross checks to be done within the cache hierarchy. Referring back to Figure K.2, the
scenario isaclassic example where cross checking isimportant if the implementation does not support nacks
(incoming read or read-exclusive request with outgoing write-back request).

As an example of a cross check that may be important for correctness (i.e., even if the protocol supports
negative acknowledgements), consider an outgoing exclusive request and an incoming invalidate request
within a cache hierarchy. For correctness, most bus-based protocol s depend on thisinteraction to be detected
and for the exclusiverequest to betransformed to aread-exclusive request which fetches an up-to-date copy of
the linein addition to obtaining ownership. Architectures that support store-conditionals (see Section 5.3.7)
depend on asimilar cross check between an outgoing exclusiverequest generated by the store-conditional and
an incoming invalidate or update request; to provide correctness and to avoid livel ock, the store-conditional
must be forced to fail in such a case without invalidating or updating other processor’s copies.

The cross checks described in the previous paragraph involving exclusive requests are actualy important
for correctnessin snoopy protocol ssincewithout detecting them, theprotocol can fail to appropriately serialize
simultaneous writes to the same line (or support the atomic semantics for store-conditionals). In contrast,
directory-based protocolstypically have sufficient information at the directory to detect such races without
any cross checking; this was described earlier in the context of Figure K.6. Therefore, by using negative
acknowledgement messages and choosing the appropriate solutions for dealing with exclusive requests, a
directory-based protocol can actually eliminate the need for all types of cross checks.®

K.5 [Importance of Point-to-Point Orders

Even though the network and cache hierarchy provide only a few message ordering guarantees, maintaining
some of these orders may be important for providing simple and efficient implementations of some protocols.
Thissectionismainly concerned with point-to-point ordering guarantees among messagesto the same address.
Themajor trade-off hereisbetween further relaxing the ordering guaranteesin the network and cache hierarchy
to achieve better message performance versus more aggressively exploiting the stricter ordering guarantees
to achieve simpler and more efficient protocols.

Consider the following example of how point-to-point ordering among messages can simplify the design
of acache coherenceprotocol. Assume aprocessor replacesacl ean line, generating areplacement-hint request
tothehome, and next issues aread request to the same line. The ordering of these two requestsisimportantin
most protocol ssince areordering would lead thedirectory to incorrectly discard the processor from the sharing
list whilethe processor maintains a copy as a result of the read reply. The design of the protocol can actualy
become complicated if the cache hierarchy and network do not provide the above ordering guarantee. Thisis
because it is difficult to provide additiona state at the directory, other than using sequence numbers or time
stamps to reconstruct the message order, to distinguish whether the replacement-hint actually occurs before
or after the read request. The other option isto provide an acknowledgement reply for the replacement-hint

60f course, choosing the third solution described in the context of Figure K.6 (i.e., speculatively responding to the exclusive request)
till requires the cross check on the requester side. One solution is to place a detection table that keeps track of outstanding requests
right past the lowest level cachein the hierarchy. By ensuring the cache and thistable are accessed atomically by incoming and outgoing
requests, the case where the invalidate request is received right after the exclusiverequest is sent off can be correctly detected. Note that
if the invalidate request arrives earlier, it will invalidate the copy at the lowest level cache, and the exclusive request can detect this and
turn into a read-exclusive request (or fail) since the hierarchy no longer has a clean copy. The same detection table can be extended to
also detect the types of transients described in the previous sections (e.g., an invalidate occurring while aread request is outstanding).
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request and delay read requests from the processor until the replacement-hint is acknowledged. Both options
are likely to make the protocol less efficient. Other similar ordering guarantees may also be important: for
example, the order from an outgoing replacement-hint request followed by a read-exclusive request, or the
order from an outgoing write-back (or sharing write-back, or ownership change) request followed by aread or
read-exclusive request. The directory state in most protocols may have sufficient state to alow the protocol
to robustly deal with the latter types of reordering. For example, to handle the reordering with awrite-back
request, aread or read-exclusive request can be simply nacked if the directory state shows that the requesting
processor still maintains a dirty copy of the line. Nevertheless, the extra checking of state that is required
may still increase latencies and occupancies in the protocol. Finaly, Appendix M and Section 5.3.3 describe
the importance of severa point-to-point orders for update protocols.

M ost designs maintain a higher degree of ordering within the cache hierarchy as compared to the network.
For example, the order between an incoming read reply and a later incoming invalidate request within the
cache hierarchy isimportant for avoiding stale copies (the reverse order is not critical since reordering will
lead to conservatively invalidating the ling). Note that orders such as the above are not maintained in the
network if the request and reply use different paths; thisleads to transient cases such as the one depicted in
Figure K.3 that must be handled properly external to the cache hierarchy. Further point-to-point orders may
also be maintained within a cache hierarchy in designsthat do not support nacks. For example, the order from
an incoming read or read-exclusive request to an earlier incoming exclusive or read-exclusive reply must be
maintained to make sure the request will find the cache linein the appropriate state.

Overdl, the degree to which a protocol depends on (or exploits) point-to-point order within the network
and cache hierarchy varies among different protocols. The amount of changes required in a protocol to
correctly deal with more relaxed point-to-point orders can therefore vary greatly across different protocols.
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Appendix L
Benefits of Speculative Execution

This appendix provides a few examples of how speculative execution helps in aggressively exploiting a
relaxed memory model (see Section 5.2 for the general discussion on this).

Consider the example program segment in Figure L.1(a). Without speculative execution, the processor
must first resolve the conditiona clause which involves stalling for the return value for the read of A before
issuing the operations within the conditiona statement. Speculative execution a ong with branch prediction
enable the processor to fetch and issue instructions from the predicted path before the branch condition is
actualy resolved. Therefore, with correct branch prediction, the processor has the opportunity to overlap the
read of A with useful computation and memory operations within the conditional .

Speculative execution typically requires a rollback mechanism in the case of an incorrect branch pre-
diction. The rollback mechanism logically discards the results of speculative instructions that appear after
the incorrectly predicted branch and restarts the processor by issuing new instructionsfrom the correct path.
Most instructionscan be executed speculatively, though theresult of theinstructionisnot logically committed
until previous branches are known to be correctly predicted. Therefore, memory read operations can be
speculatively issued to the memory system. However, memory write operations are typically not issued
speculatively to the memory system since rolling back would be too difficult. Nevertheless, the write may
be issued internal to the processor and later read operations to the same address can speculatively return the
value written by the write. For example, referring back to Figure L.1(a), the read of B can be speculatively
issued to the memory system, the write to C can be issued internally, the read of C can speculatively return
thenew valuefor C, and finally the value of thisread may be used to speculatively execute the following add
operation, al before theread of A iscomplete.

Even though we discussed specul ative execution in the context of conditional branches, thereare anumber
of other scenarios where speculative execution can increase overlap. For example, processors that support
precise exceptions can benefit from speculative execution. Consider the program segment in Figure L.1(b).
The exampl e shows three consecutive reads, with thereturn value for thefirst read determining the address of
thesecond read. Assumethethreereadsarelonglatency operations,and that any read can result in an exception
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al: N1 =A;

b1: if (rl ==0){

cl: r2 = B, al: r1=A;

di: c=1, b1: r2 = B[rl];
el: r3=C; cl: r3=C;

fl: r5=r3+r4,

(b)
gl: }

(@)

FigureL.1: Example program segments for illustrating specul ative execution.

such as a page fault. To provide precise exceptions, a processor without support for speculative execution
cannot issue the read of C until the address for the second read is resolved and checked for exceptions, thus
eliminating overlap between the reads of A and C. Speculative execution allows the processor to issue the
read of C early by assuming (or predicting) that previous unresolved addresses will not lead to an exception,
and using rollback if an exception does occur (ana ogous to branch misprediction).
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Appendix M

Supporting Value Condition and
Coherence Requirement with Updates

Section 5.3.2 describes the support for the value condition and coherence requirement in invalidation-based
designs. Thisappendix considersimplementationswith update-based schemes, assuming asinglelevel write
through cache per processor. We consider two implementations similar to those described for theinvalidation
case.

In the first implementation, the write remains in the write buffer until the processor is notified that the
writeis serialized with respect to other writesto the same location. The update reply from the home signals
the fact that the write has been seriadized. The write can be retired from the write buffer when this reply
arrives at the issuing processor. Update requests to stale cache copies emanate from the home node, thus
serializing updates to a given location. Incoming requests to the cache are handled in the usual way while
there isawrite miss outstanding.

The ordering between an incoming update reply and an incoming update request (to the same address)
sent from the hometo atarget cache isimportant for maintaining coherence. Specifically, if an update request
from awritethat is seridized before (after) this processor’swrite arrives after (before) the update reply, then
the order in which the writes complete with respect to this processor will not be the same as the order in
which they are seridized. Therequired order can be maintained in networksthat support point-to-point order
by sending both types of message on the same lane; for example, the update reply may be placed on the lane
that is typicaly used for requests! Similarly, for cache hierarchies that provide multiple incoming paths,
both messages can be sent on the same path; for example, the update request may be placed on the path that
is typically used for replies? Furthermore, designs with multiple level cache hierarchies may require the

1Thisturns out to be safe from a deadl ock avoidance perspective; the original update request can simply be nack’ ed through the reply
lane in casethe request lane isfull.

2The incoming update request is acknowledged as soon as it arrives at the cache hierarchy in virtually all practical cache designs
(see Section 5.4.1). Therefore, no reply needsto be generated for the update request after it enters the cache hierarchy. This allowsthe
update request to be sent on the same path that is used by incoming replies (see deadlock avoidancediscussionin Section 5.2.3).
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incoming update reply to carry back the datafrom the origina update request so that copiesin thelower level
caches can be updated on the incoming path; updating the copies on the incoming instead of the outgoing
path simplifies the task of performing updatesin the same order they are seriaized by the home.

Another important order is between an incoming read reply and an incoming update request (to the same
address) from the home to a given cache copy. This order can be maintained within the network and the
cache hierarchy using similar techniques to the ones discussed above. Ordering these messages within the
network may be unnecessary in protocolsthat disallow the home from servicing aread request whiletheline
has outstanding updates that have not been acknowledged.® Finally, protocols that allow multiple update
requests to the same address to be in transit from the home to a target cache must ensure the serialization
order is maintained among the update requests sent to each cache.* Even if the protocol disallows multiple
update requests within the network from the home to a target cache (e.g., by disallowing an update request
to be sent while there are update requests from a previous write that have not been acknowledged), it may
still be necessary to maintain the order among incoming update requests to the same address within the cache
hierarchy in designs with early update acknowledgements (see Section 5.4.1).

The second update-based implementation, that retires the write into the cache before it is serialized with
respect to other writes, is dightly trickier. Assume the smallest granularity for an update is a word. While
an outgoing update request is pending (i.e., not seriaized), the cache must ignore incoming update requests
to the same word. This is simple to achieve with a bit per word as long as the cache only alows a single
outstanding update per word in the line. Caches that allow multiple outstanding updates per word require
a more sophisticated mechanism for determining when to stop ignoring incoming update requests. For
example, more than a single bit may be associated with each word to keep a count of the outstanding updates
to that word.®> This count is incremented on an outgoing update request and decremented when the reply
that signals the serialization of the update returns. A count of greater than zero is anal ogousto the valid bit
being set, and incoming updates to that word are simply ignored. When the count reaches its maximum, no
more updates to the same word can be accepted from the processor. As discussed Section 5.3.3, alowing
multi ple outgoing updates (from the same processor) to the same word can also make it difficult to satisfy the
uniprocessor dependence condition especially if such requests can be forced to retry (e.g., through a negative
acknowledgement reply by the home).

3|t is till necessary to note the reception of an incoming update request while the read request is pending. Such updates must either
be applied to the read reply databeforeit is cached, or the data must be dropped without being caching.

4As shown in Section 5.3.5, the gathering of update acknowledgements can also become more tricky in this case especially if the
acknowledgements are gathered at the home node.

5Aswith the valid bits discussed in Section 5.2.3, these counts are only needed for cache lines with outstanding requests and not all
cachelines.
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Appendix N

Subtle Implementation | ssuesfor
L oad-L ocked and Store-Conditional
| nstructions

This appendix describes some of the more challenging issues in implementing the load-locked and store-
conditiona instructions described in Section 5.3.7. Much of the complexity involves aleviating livelock
conditionswhereby no process can successfully compl ete aload-1ocked/store-conditional sequence. Thefirst
requirement for avoiding livelock is to disallow unnecessary replacements of the cache line corresponding to
the lock-address which could in turn lead to the clearing of the lock-flag. Such replacements can be induced
by either instruction or data fetches in the middle of the sequence. Solutionsfor avoiding replacements due
to instruction fetches include using split instruction and data caches, using two-way set associativity within
a unified cache (imposes the constraint that the sequence is only guaranteed to succeed on the fall through
path if there are any branches), or disallowing instruction fetches from displacing the lock-address line. A
common solution for avoiding replacements due to other read and write memory operationsisto disallow the
use of such operationsin between the load-locked and the store-condition sequence. Instruction prefetching,
speculative execution, and out-of-order issue cause further complexity since instruction and data fetches for
instructionsfrom outside the sequence may a so lead to the replacement of theline.

The second requirement for avoiding livel ock isto avoid unnecessary invalidation or update messages that
cause other processors store-conditionalsto fail. For example, a failing store-conditional or a load-locked
operation should not cause invalidations or updates that would lead to the clearance of another processor’s
lock-flag. This latter requirement requires specia support within a cache coherence protocol since a store
conditional cannot be treated in the same way as an ordinary write operation; the protocol must ensure that a
store-conditional fails, without sending any coherence messages to other copies, if another writebeatsit tothe
seriadization point. Ensuring this requirement in a bus-based scheme involves forcing the store-conditional
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to fail if the cache no longer has a vaid copy of the line or if cross checking the incoming messages at the
externa interface indicates a match with an invalidation request; both conditions above indicate that another
write may have beaten the store-conditional to the seridization point. A directory-based protocol with a
general network makes satisfying the above requirement more challenging since the simple cross-checking
isno longer sufficient (or necessary). In an invalidation-based scheme, the exclusive request resulting from a
store-conditional must check the list of sharers at the home directory to see whether the requesting processor
is «ill on thelist. Failure to find the requester on the list indicates that another write successfully reached
the home before the store-conditional and the store-conditional must be forced to fail without generating any
invalidations. An update-based schemeis even more difficult to support since the state at the directory cannot
beeasily used to tell whether another write operation has beaten the store-conditional to the serialization point.
Here is one possible solution. The store conditional request can lock down the line at the home to disallow
any other requests and proceed to send a message back to the regquesting processor (point-to-point order with
other incoming updates is important). On receiving the message, the processor checks the lock-flag. If the
lock-flag is still set (indicating no updates were received), an update request is sent to the home, the lineis
released at the home, and the update is forwarded to all sharers. Otherwise, the store-conditional isforced to
fail and a message is sent back to the hometo release theline.
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Appendix O

Early Acknowledgement of Invalidation
and Update Requests

Thisappendix providessevera examples, and further intuition, for thefirst techniquedescribedin Section 5.4.1
for dealing with early acknowledgements. Thistechniquesguarantees correctness by imposing specific orders
among incoming messages.

Assume the technique described above with an underlying invalidation-based protocol. Figure O.1
shows an example of a category three multiprocessor dependence chain (same chain as in Figure 5.14(d)).
Figure O.1(a) and (b) show the ordering among eventsin designs without and with early acknowledgements,
respectively. Assume the first solution described in Section 5.3.5 for satisfying the third category of chains,
whereby thewrite must complete or commit with respect to al processors before another processor isallowed
to read the new value. For the conservative design, the write of A is clearly guaranteed to complete with
respect to P3 before the read of A. For the aggressive design, the ordering shows that the write of A is
committed with respect to P3 beforetheread of A completes on P3. However, we need to show that the write
of A also completes with respect to P3 before the read of A (i.e., the dashed arrow). Consider the commit
event for thewrite of B with respect to P3 which occurs before theread of B on P3, implying that P3 receives
an incoming reply to the read sometime after the write of B commitswith respect to it. We also know that the
writeof A iscommitted with respect to P3 before the write of B commits. The above two observationsimply
that the write of A completes with respect to P3 before the read of B, and therefore al so before the read of A.

Figure O.2 shows the same chain as above except with the second solution (described in Section 5.3.5) for
satisfying such chains, whereby certain program ordering constraintsfrom aread to afollowing operation are
enforced by not only waiting for the read to complete but aso waiting for the write that caused the value of
the read to complete with respect to every processor (for simplicity, we assume it is complete with respect to
theissuing processor aswell). The figure showstheread of A on P2 with two events, one of them subscripted
with “g” to denote the fact that the write which provided the value for the read is “globally” committed or
performed. The reasoning for how the chain is maintained with early acknowledgements is quite similar to
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® commit event
® completion event

Figure O.1: Reasoning with a category three multiprocessor dependence chain.

the reasoning for thefirst solution depicted in Figure O.1.

Figure O.3 shows how orders are carried along a chain across conflicting pairs of operationsin themiddle
of achain® The cases for W == Rand W =% W are pretty simple. Any write that is committed with
respect to P; before the pivot event shown for each case can be shown to & so have completed with respect to
P; before the operation that follows (in program order) the conflict order. As previously seen in Figure 5.23,
theR == W conflict order isalittle bit more tricky. Figures 0.3(c) and (d) show two separate cases where
the previous operation in program order is either aread or a write. Figure O.3(c) shows a miss operation
for the read on P; which is analogous to the write miss operation described in Section 5.4.1 (in the context
of Figure 5.23). The arrow labeled (1) exists because otherwise R2 <2, W could not hold (same reasoning
asin Figure 5.23). In addition, the dashed arrow labeled (1) shows that if a write completes with respect to
P; before R1, then the atomicity relationship between R1 and its miss operation implies that the write must
complete before the miss operation as well. The arrows labeled (1) and (I1) in Figure O.3(d) are anal ogous
to the above. The dashed arrow coming into the miss operation on P; is used for reasoning with chains that
have consecutive occurrences of R <7 W.

Figure O.4 illustrates the atomicity properties of miss operations with respect to other operations to the
sameline. Figure O.4(a) showsthe atomicity with respect to read miss operations, while Figure O.4(b) shows
it for write miss operations (the dashed lines are implied by the atomicity property). To ensure the atomicity

1TheR =2 W —Z Rconflict order is not shownin the figure sinceit can be treated asacombinationof theR == W andW —2 R

cases, with the assumption that the W =% Rorderis upheld using one of the techniques described in Section 5.3.5 for maintaining
multiple copy atomicity for writes.
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® commit event
® completion event

Figure O.2: Another design choice for ensuring a category three multiprocessor dependence chain.

property shown for W =% R, a cache with a dirty exclusive copy must change the state of the line after
providingthevaueto an incoming read request (even if thereturn valueis not cached by the other processor).
For simplicity, the W1 =% W2 is shown assuming a protocol that disallows a write to be serviced until the
previouswrite to that lineis committed with respect to all processors.

Figure O.5 shows a more complex example with a category three chain comprising of R —— W conflict
orders. Figure O.5(a) and (b) show the execution orders without and with early invalidation acknowledge-
ments, respectively. Again, assume the first solution for satisfying the third category of chains, whereby the
write must complete or commit with respect to all processors before another processor is allowed to read the
new value. The reasoning for the aggressive case is similar to that in Figure 5.23.

Section 5.4.1 a so describes a second technique for dealing with early acknowledgements that maintains
correctness by servicing incoming messages as part of the enforcing of program orders. As mentioned there,
reasoning about the correctness of the second technique is simpler than reasoning about the first technique.
The examplein Figure 5.25 in Chapter 5 was used to illustrate this point. Figure O.6 shows another example
of the simpler reasoning with the second technique for the same chain shown in Figure O.5 with the first
technique. The observations made in the context of the example in Figure 5.25 hold here as well.
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(& Wco'R (b) W1 co’ W2
@ commit event
® completion event
A pivot event

(c) Rl1poR2co W (d) W1 poRco W2

Figure O.3: Carrying orders along a multiprocessor dependence chain.
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(@)

@ commit event
® completion event

(b)
Figure O.4: Atomicity propertiesfor miss operations.

P1 P2 P3 P4

@
© commit event
P1 P2 P3 P4 ® completion event

(b)

Figure O.5: Category three multiprocessor dependence chain with R == W.
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@ commit event
® completion event

Figure O.6: Category three multiprocessor dependence chain with R == W,
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Appendix P

| mplementation of Speculative
Execution for Reads

Thisappendix presents an exampleimplementation of the specul ation execution technique for reads described
in Section 5.4.3. The latter part of the appendix illustrates the execution of a simple code segment with
speculative reads.

P.1 Example I mplementation of Speculative Execution

This section describes an example implementation of the speculative technique. As with the prefetching
technique described in Section 5.4.2, the specul ative techni que benefits from the lookahead in theinstruction
stream provided by dynamically scheduled processors with branch prediction capability. In addition, the
correction mechanism used by the branch prediction machinery can be easily extended to handle correction
for speculative read operations. Although such processors are complex, incorporating specul ative execution
for read operations into the design is simple and does not significantly add to the complexity. The section
begins with a description of the dynamically scheduled processor that is used as the base of the example
implementation, followed by a discussion of implementation details for speculative read operations.

The organization for the base processor is directly derived from a study by Johnson [Joh89, Joh91].
Figure P1 shows the overall structure of the processor. We describe this organization in Section 6.4 of
Chapter 6 in the context of architectures with non-blocking reads. As discussed there, the key component
in this design is the reorder buffer which is responsible for severa functions. eliminating storage conflicts
through register renaming, alowing conditional branchesto be speculatively bypassed, and providing precise
interrupts. We will discuss the effect of requiring precise interrupts on the implementation of consistency
models later in the section.

To implement the speculative read technique, only the load/store (memory) unit of the base processor
needs to be modified and the rest of the components remain virtually unchanged. Figure P2 shows the
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Figure P1: Overal structure of Johnson’s dynamically scheduled processor.

components of the memory unit. We first describe the components shown on the I eft side of thefigure. These
components are present regardl ess of whether speculative reads are supported. The only new component that
isrequired for supporting speculative reads is the specul ative-load buffer that will be described later.

The load/store reservation station holds decoded load and store instructions in program order. These
instructions are retired to the address unit in a FIFO manner. Since the effective address for the memory
instruction may depend on an unresolved operand, it is possiblethat the address for theinstruction at the head
of thereservation station isnot yet computed. Theretiring of instructionsis stalled until the effective address
for the instruction at the head can be computed.! The address unit is responsible for computing the effective
address and doing the virtual to physical trandation. Once the physical address is obtained, the address and
data (if itisaready computed) for store operationsare placed into the store buffer. Theretiring of writesfrom
the store buffer is donein a FIFO manner and is controlled by the reorder buffer to ensure precise interrupts
(the mechanism is explained in the next paragraph). Read operations are allowed to bypass the store buffer
and dependence checking is done on the store buffer to ensure a correct return value for the read. Although
the above implementation is sufficient for a uniprocessor, we need to add mechanisms to enforce consistency
congtraints for a multiprocessor.

First consider how sequential consistency can be supported. The conventional method is to delay the
completion of each operation until its previous operation is complete. Delaying the write for previous
operationsis aided by thefact that writes are aready withheld to provide precise interrupts. The mechanism
is as follows. All uncommitted instructions are allocated a location in the reorder buffer and are retired in
program order. Except for awriteinstruction, an instruction at the head of the reorder buffer isretired when it
completes. For writeinstructions, the writeisretired from thereorder buffer as soon asthe addresstrandation
is done. The reorder buffer controls the store buffer by signaling when it is safe to issue the write to the
memory system. Thissignd is given when the write reaches the head of the reorder buffer. Consequently,

1We could use a more aggressive technique for speculatively issuing reads that follow a write with an unresolved address as was
discussed in Section 5.4.3. However, the implementation described here does not exploit this optimization.
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Figure P2: Organization of the load/store functiona unit.

a write is not issued until al previous loads and computation are complete. This mechanism satisfies the
requirements placed by the SC model on a write operation with respect to previous reads. To make the
implementation simpler for SC, we change the policy for retiring writes such that the write at the head of the
reorder buffer is not retired until it completes aso (for PL1, however, the write at the head is still retired as
soon as address trandationisdone). Thus, under SC, thewriteisalso delayed for previouswritesto complete
and the store buffer ends up issuing writes one-at-a-time.

We now turn to how the restrictions on read operations are satisfied. First, we discuss the requirements
assuming the speculative read mechanism is not used. For SC, it is sufficient to delay a read until previous
reads and writes have completed. Thiscan be done by stalling the load/storereservation station on reads until
the previousread is performed and the store buffer empties.

For speculative execution of read operations, the mechanism for satisfying the restrictions on reads is
changed. The major component for supporting the mechanism isthe speculative-load buffer. The reservation
stationis no longer responsiblefor delaying certain read operationsto satisfy consistency constraints. A read
isissued as soon as its effective address is computed. The specul ation mechanism comprises of issuing the
read as soon as possible and using the speculated result when it returns.

The speculative-load buffer provides the detection mechanism by signaling when the speculated result
isincorrect. The buffer works as follows. Reads that are retired from the reservation station are put into
the buffer in addition to being issued to the memory system. There are four fields per entry (as shown in
Figure P2): load address, comp, done, and storetag. Theload address field holdsthe physical address for the
read. The comp field is set if the read is considered a competing operation. For SC, al reads are treated as
competing. The done field is set when the read completes. If the consistency constraints require the read to
be delayed for a previouswrite, the store tag uniquely identifies that write. A null store tag specifies that the
read depends on no previous writes. When a write completes, its corresponding tag in the specul ative-load
buffer isnullified if present. Entries are retired in a FIFO manner. Two conditionsneed to be satisfied before
an entry at the head of the buffer isretired. First, the storetag field should equal null. Second, the done field
should be set if the comp field is set. Therefore, for SC, an entry remains in the buffer until all previous read
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and write operations complete and theread operation it refersto completes. The original paper describes how
an atomic read-modify-write can be incorporated in the above implementation [GGH91b].

We now describe the detection mechanism. The following coherence transactions are monitored by the
speculative-load buffer: incoming invaidation (or read-exclusive) requests, incoming updates (or update-
read) requests, and cache line replacements.? The load addresses in the buffer are associatively checked for
amatch with the address of such transactions.> Multiple matches are possible. We assume the match closest
to the head of the buffer is reported. A match inthe buffer for an address that is being invalidated or updated
signalsthe possibility of an incorrect speculation. A match for an address that is being replaced signifies that
future coherence transactions for that address will not be sent to the processor. In either case, the speculated
valuefor theread isassumed to be incorrect.

Guaranteeing the constraintsfor PL1 can be donein asimilar way to SC. The conventional way to support
PL1 isto delay a competing write until its previous operations complete, to delay operations following a
competing read until the read completes, and to delay a competing read for a previous competing write. First
consider delays for writes. The mechanism that provides precise interrupts by holding back write operations
in the store buffer is sufficient for guaranteeing that writes are delayed for the previous competing read, even
though it is stricter than what PL1 requires. The same mechanism also guarantees that a competing write
is delayed for previous read operations. To guarantee a competing write is also delayed for previous write
operations, the store buffer delaystheissue of the competing write operation until al previously issued writes
are complete. In contrast to SC, however, non-competing writes are issued in a pipelined manner.

Let us consider therestriction on read operationsunder PL1. The conventiona method involvesde aying
aread operation until the previous competing read operation is complete. This can be done by stalling the
load/storereservation station after acompeting read until theread completes. However, thereservation station
need not be stalled if we use the speculative read technique. Similar to the implementation of SC, reads are
issued as soon as the address is known and the speculative-load buffer is responsible for detecting incorrect
values. The speculative-load buffer description given for SC appliesfor PL1. The only differenceisthat the
comp field is only set for read operations that are considered competing under PL1. Therefore, for PL1, an
entry remains in the specul ative-load buffer until al previous competing reads are completed. Furthermore, a
competing read entry remainsin the buffer until it compl etes al so and its previous competing write compl etes
(achieved by appropriately setting the store tag field). The detection mechanism described for SC remains
unchanged.

When the speculative-load buffer signals an incorrect speculated value, al computation that depends on
that value needs to be discarded and repeated. There are two cases to consider. The first case is that the
coherence transaction (invalidation, update, or replacement) arrives after the specul ative read has completed
(i.e, donefidd isset). Inthiscase, the speculated value may have been used by theinstructionsfollowingthe
read. We conservatively assume that all instructionspast the read instruction depend on the value of the read
and the mechanism for handling branch misprediction is used to treat the read operation as *mispredicted”.
Thus, thereorder buffer discards the read and the instructionsfollowing it and the instructionsare fetched and
executed again. The second case occurs if the coherence transaction arrives before the speculative read has

2A replacement is required if the processor accesses an addressthat maps onto a cache line with valid datafor a different address. To
avoid deadlock, a replacement request to a line with an outstanding operation is delayed until the operation compl etes.

3|t is possibleto ignore the entry at the head of the buffer if the storetag is null. The null storetag for the head entry signifies that all
previous operationsthat are required to complete have completed and the memory model constraints would have allowed the operation
to perform at such atime.
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completed (i.e., done field is not set). In this case, only the speculative read needs to be reissued, since the
instructionsfollowing it have not yet used an incorrect value. This can be done by simply reissuing the read
operation and does not require the instructions following the load to be discarded.* The next section further
illustrates speculative reads by stepping through the execution of a simple code segment.

P.2 Illustrative Example for Speculative Reads

This section steps through the execution of the code segment shown at the top of Figure P3 assuming the
sequential consistency model. Both the specul ative technique for reads and the prefetch technique for writes
are employed. Figure P.3 aso showsthe contents of severa of the buffers during the execution. We show the
detection and correction mechanism in action by assuming that the specul ated valuefor location D (originaly
in the cache) islater invalidated.

Theinstructions are assumed to have aready been decoded and placed in the reorder buffer. In addition,
the load/store reservation station is assumed to have issued the operations already. The first event shows that
both the reads and the exclusive prefetches for the writes have been issued. The store buffer is buffering the
two write operations and the speculative-load buffer has entries for the three reads. Note that the specul ated
value for read D has aready been consumed by the processor. The second event occurs when ownership
arrivesfor location B (assume delayed exclusivereplies). The completion of write B isdelayed by thereorder
buffer, however, sincethereisan uncommitted instruction ahead of the store (this observes preciseinterrupts).
Event 3signifiesthearrival of thevauefor location A. Theentry for read A isremoved from the reorder buffer
and the speculative-load buffer since the operation has completed. Once read A completes, the store buffer is
signaled by the reorder buffer to allow write B to proceed. Sincelocation B isnow cached in exclusive mode,
write B completes quickly (event 4). Thus, write C reaches the head of the reorder buffer. The store buffer
issignaled in turn to alow write C to issue and the access is merged with the previous exclusive prefetch
request for the location.

At this point, assume an incoming invalidation request arrives for location D. Since there is a match for
this location in the speculation buffer and since the speculated value is used, the read D instruction and the
following read instructionare discarded (event 5). Event 6 showsthat these two instructionsare fetched again
and a speculative read isissued to location D. The read is still speculative since the previous store (store C)
has not completed yet. Event 7 shows the arrival of the new value for location D. Since the value for D is
known now, the read operation E[D] can be issued. Note that although the operation to D has completed, the
entry remains in the reorder buffer since write C is still pending. Once the ownership for location C arrives
(event 8), write C completes and isretired form the reorder buffer and the store buffer. In addition, read D is
no longer considered a speculative load and is retired from both the reorder and the speculative-load buffers.
The execution completes when the value for E[D] arrives (event 9).

4To handle this case properly, reply values must be tagged to distinguish between the initial reply, which has not yet reached the
processor and needs to be discarded, and the reply from the repeated access, which is the one to be used. In addition, in case there
are multiple matches for the addressin the speculative-load buffer, we have to guaranteethat initial replies are not used by any of the
corresponding reads.
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Figure P3: Illustration of buffers during an execution with speculative reads.
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Appendix Q

|mplementation |Issuesfor aMore
General Set of Events

Thisappendix describes some of the practical implementationissues for supporting ordering among thelarger
set of events discussed in Section 5.9. We primarily refer to the solutions adopted by various commercia

architectures such as the Alpha [Sit92], PowerPC [MSSW94], and Sparc V9 [WG94]. The above three
architectures use explicit fence instructions as the basic mechanism for ordering memory operations. Alpha
and PowerPC provide afull fence instruction (MB in Alpha, SYNC in PowerPC), while Sparc V9 providesa
more flexiblefenceinstruction (MEMBAR). Ordering among different event typesisenforced by overloading
the above fence instructionsand using afew specialized fence instructions.

Q.1 Instruction Fetch

An ingtruction fetch can be modeled as a read from memory. As discussed in the Chapter 4 however,
instruction fetches behave differently from ordinary dataread operations. Figure Q.1 shows atypical design
with split instruction and data caches. Assume copies of locations A and B are initialy held in both caches.
First consider the order of instruction fetches with respect to previous conflicting writes from the same
processor. Because of the separate instruction and data streams and the use of instruction prefetching, an
instruction fetch can easily bypass previous conflicting writes from the same processor (e.g., consider the
writeto A shown inthefigure); thus an instruction fetch does not necessarily return the value of thelast write
to that location in program order. Second, the fact that instructionsand data reside in separate caches makes
coherence actions non-atomic with respect to the two copies. For example, consider a write to location B
by another processor that results in an incoming invalidate request to be sent to both caches. Because the
invalidate requests traverse two separate paths, the write may complete at different times with respect to the
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Figure Q.1: Split instruction and data caches.

two caches. Finally, some designs may not provide hardware coherence with respect to theinstruction cache.
The above characteristics are not unique to multiprocessor systems and arise in uniprocessors as well.

To dlow for a consistent view, most architectures provide specia fence instructions that order future
instruction fetches with respect to previous operations and eliminate stale copies by flushing operations in
various queues and in some cases flushing copies from the instruction cache. This functionality is provided
by an instruction memory barrier (IMB) in Alpha, an instruction sync (ISYNC) in PowerPC, andaFLUSH in
the Sparc V9 architectures. None of the three architectures require hardware coherence for instruction caches.
Implementations that support hardware coherence must flush the incoming queue to the instruction cache on
an instruction fence in order to service invalidation and update requests that have been previoudy committed
with respect to this processor.? The semantics of instructionfences differs among the three architectureswhen
an implementation does not support hardware coherence for the instruction cache. For the Alpha, the IMB
requires flushing the instruction cache thus eliminating any possible stale copies. The PowerPC architecture
provides an instruction cache block invalidate (icbi) instruction that isissued by the processor that writes to
theinstruction region and forces specific linesto be flushed from other processors' instructioncaches. Finally,
the Sparc V9 architecture uses the FLUSH instruction in a similar way to the block invalidate operation of
the PowerPC.

Q.2 Multiple Granularity Operations

Most architectures provide memory operations at multiple granularities, such as read and write operations
to a byte, word, and double word. A larger granularity operation such as a double word operation can be
conceptually modeled as multiple byte operations that are executed atomically with respect other conflicting
operations to the same bytes. To enforce this atomic behavior, implementations typically service larger
granularity operationsas a singleunit; to simplify this, the memory and cache line granul arities are chosen to

LEffectively, there are two completion events for a write with respect to any processor: a completion event with respect to the data
stream and another with respect to the instruction stream.

2\We are assuming an implementation with early invalidation or update acknowledgements. The second solution discussed in
Section 5.4.1 ismore appropriatein this case since instruction fences are typically infrequent.
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al: A=1; a2: u,v=AB;
bl: B =1,
(a)
P1 P2 P3 P4
al: A=1,; a2: UW=AB;, a3 B=1, ad: W, X =AB;
(b)

Figure Q.2: Examples with multiple granularity operations.

be larger than the largest granularity data operation.

To illustrate some of the implementation issues, Figure Q.2 shows a couple of examples with different
granularity operations. Assumelocations A and B are consecutive 32-bit wordson an aigned 64-bit boundary.
Consider a natural extension of a model such as sequential consistency to multiple granularity operations.
For the example in Figure Q.2(a), the outcome (u,v)=(0,1) would be disallowed. Similarly, for the example
in Figure Q.2(b), the outcome (u,v,w,x)=(1,0,0,1) or (0,1,1,0) would be disallowed.

For most part, the implementation techniques for single granularity operations can be easily extended to
deal withmultiplegranularities. A few subtleissuesdo arise, however. For example, assume an update-based
implementation of SC that uses early update acknowledgements based on the second technique described
in Section 5.4.1 where incoming updates are serviced as part of enforcing program orders. Consider the
examplein Figure Q.2(a). Assume P2 maintains cache copies for both locations A and B. With early update
acknowledgements, P1's write generates an update request for A and an update request for B into P2's
incoming queue. Since the writesto locations A and B are completely disoint (i.e., they do not overlap on
any hits), an aggressive implementation could alow the two updates to be reordered within P2’'s incoming
gueue. This could then lead to incorrect behavior since the double-word read on P2 could possibly observe
the new value for B and yet the old valuefor A. To aleviate this problem, the implementation must disallow
an update request to any part of an aligned 64-bit region from bypassing previousupdate or invalidate requests
to the same region even if the two requests do not overlap. The above requirement is aso required for the
examplein Figure Q.2(b) to behave correctly. A more conservative optionisto enforce order anongincoming
operationsto the same cache line (assumes a cache lineislarger than the largest granularity operation which
isa 64 bitsin thiscase). Notethat thisrestriction isinherently satisfied by the alternative solution for dealing
with early update acknowledgements described in Section 5.4.1 since the order between incoming update
requests and previous incoming update or invalidate requests is always upheld even if the requests are to
completely different locations.

Another subtle issue arises in enforcing multiple-copy atomicity for writes. The above discussion on the
example in Figure Q.2(b) assumes multiple-copy atomicity is enforced by disallowing any other processors
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from reading the new value for the write until the write is committed (or completed) with respect to all
processors. The dternative is to use the second technique described in Section 5.3.5, whereby another
processor is allowed to read the new value but is delayed for the write to commit (or complete) on the next
program order that it enforces. To providea correct implementation with thislatter alternative, the coherence
requirement must be extended to apply to writes to the same aligned 64-bit region even if thereis no overlap
between the write operations; this solution would aso aleviate the anomalous behavior described in the
previous paragraph.

Q.3 1/O Operations

I/O operations are typically implemented as uncached memory operationsto specific regions in the memory
space. Thenon-memory-likebehavior of 1/0 operationsrequires disallowing certain reordering optimizations
that may be safely used for ordinary data operations. Examples of such optimizationsinclude merging two
writes to the same address into a single write or forwarding the value of a writeto a later read to the same
address. Again, the Alpha, PowerPC, and Sparc V9 architectures allow the appropriate ordersto be enforced
through a combination of implicit orders and orders imposed by explicit fence operations.

Consider the order from an I/O write followed in program order by an 1/0 read to the same location. To
enforcethisorder, Alphaoverloadsthememory barrier (MB) instruction, PowerPC providestheeieio (Enforce
In-order Execution of 1/0) operation, and the Sparc V9 provides the Look-Aside barrier. |mplementations
that implicitly disallow the read forwarding optimization for I/O can treat such fence operations as a nop.
Disallowing the merging of two consecutive I/O writesto the same location is handled dlightly different. The
Alphaoverloadsthe write memory barrier (\WMB) or the ordinary M B for this purpose, the PowerPC usesthe
eielo instruction, and the Sparc V9 inherently disallows such merging on I/O writes. Enforcing orders among
I/O operations to the same I/O device (even if they are not to the same address) can be achieved in Alpha
and PowerPC by using the same fence instructions. The Sparc V9 overloads the ordinary MEMBAR for this
purpose. Enforcing the order between operationsto different 1/0O devices can be alittle bit more tricky dueto
the non-uniform behavior of different 1/0 devices. In some cases, for example, an 1/0 write may need to be
proceeded with an 1/O read to the same device to determine whether the write has actually compl eted.

The ordering between 1/0 operations and ordinary memory operations may also be important in some
cases. For example, memory operations may be used to synchronize access to an 1/0O device. The Alphaand
PowerPC enforce such orders by overloading the MB and SYNC fences, respectively, while the Sparc V9
providesa new type of fence instruction (called the memory issue barrier) for this purpose.

A major simplification for I/O operationsisthat 1/0 locations are typically not cached; therefore, issues
such as maintaining coherence or making writes appear atomic across multiple copies are not relevant. Nev-
erthel ess, detecting the compl etion of an operation such asan 1/O write may still require an acknowledgement
response.®

An implementation may provide various optimizationsfor handling I/O operations more efficiently. One
important optimization is to coalesce 1/0 writes to consecutive addresses into a single write with a larger
granularity. Another optimizationisto exploit specific ordering guaranteeswithinadesignin order to pipeline

3Most commercial processors do not expect an acknowledgement for 1/0 writes, thus requiring external logic to keep track of
outstanding I/O writes. A similar issue was described in Section 5.3.5 with respect to eager exclusivereplies.
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I/O operations. For example, point-to-point ordering guarantees within a network can be exploited to support
pipelined 1/O operations from a single processor to a single device while still maintaining the sequential
order among the I/O operations. Such optimization are especially important for uses of 1/O that require high
bandwidth, such as communicating with a fast graphics device.

Q.4 Other Miscellaneous Events

There are typically a number of other events, such as exceptions and traps, whose ordering semantics is
important. Many architectures provide yet other specialized fence instructions to ensure such orders. For
example, the Alpha architecture provides exception and trap barriers that delay future operations until all
previousarithmetic exceptionsareresolved. Similarly, the synchronization barrier in the Sparc V9 architecture
waitsfor al types of exceptions, including exceptions caused by address trandation.

Q.5 Summary of Ordering Other Events Types

Overdll, except for operationsto multiplegranularitiesof data, the ordering semantics of other types of events
is quite confusing in most architectures. Many of the same issues are also present in uniprocessor systems.
Fortunately, a lot fewer programmers have to directly deal with the semantics of such events relative to
ordinary memory operations. Furthermore, since optimizations only matter for the frequent events, simple
and potentially inefficient solutions are satisfactory for the infrequent events.
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