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Abstract

We introduce a constraint system calledFT. This system offers a theoretical and practical
alternative to the usual Herbrand system of constraints over constructor trees. Like Herbrand,
FT provides a universal data structure based on trees. However, the trees ofFT (called feature
trees) are more general than the constructor trees of Herbrand, and the constraints ofFT are
of finer grain and of different expressiveness. The essential novelty ofFT is provided by
functional attributes called features which allow representing data as extensible records, a
more flexible way than that offered by Herbrand’s fixed arity constructors. The feature tree
structure determines an algebraic semantics forFT. We establish a logical semantics thanks to
three axiom schemes presenting the first-order theoryFT. We propose usingFT as a constraint
system for logic programming. We provide a test for constraint unsatisfiability, and a test
for constraint entailment. The former corresponds to unification and the latter to matching.
The combination of the two is needed for advanced control mechanisms. We use the concept
of relative simplification of constraints, a normalization process that decides entailment and
unsatisfiability simultaneously. The two major technical contributions of this work are: (1) an
incremental system performing relative simplification forFT that we prove to be sound and
complete; and (2) a proof showing thatFT satisfies independence of negative constraints, the
property that conjoined negative constraints may be handled independently.

Résumé

Nous présentons un syst`eme de contraintes appel´e FT. Ce syst`eme constitue une alternative
théorique et pratique `a Herbrand, le syst`eme usuel de contraintes sur les arbres `a constructeurs.
Comme Herbrand,FT fournit une structure de donn´ees d’arbres. Cependant, les arbres deFT
(appelés arbres `a traits) sont plus g´enéraux que les arbres `a constructeurs de Herbrand, et les
contraintes deFT sont d’une granularit´e plus fine et d’expressivit´e différente. L’innovation
essentielle deFT est dûeà des attributs fonctionnels appel´es traits qui permettent de repr´esenter
les données sous forme de structure d’enregistrement extensible, de mani`ere plus flexible que
celle offerte par les constructeurs d’arit´e fixe de Herbrand. La structure d’arbre `a traits
détermine une s´emantique alg´ebrique pourFT. Nousétablissons une s´emantique logique grˆace
à trois sch´emas d’axiomes pr´esentant la th´eorie du premier ordreFT. Nous proposons d’utiliser
FT comme un syst`eme de contraintes pour la programmation logique. Nous produisons un
critère de satisfaisabilit´e de contrainte, et un crit`ere de validation d’implication de contrainte.
Le premier correspond `a l’unification et le deuxi`eme au filtrage. La combinaison des deux
est nécessaire pour des m´ecanismes de contrˆole avanc´es. Nous utilisons le concept de
simplification relative, un processus de normalisation qui d´ecide simultan´ement la validation
d’implication et la non-satisfaisabilit´e. Les deux contributions techniques majeures de ce
travail sont : (1) un syst`eme incrémental effectuant la simplification relative pourFT, que nous
démontrons ˆetre cohérent et complet; et (2) une preuve montrantqueFT jouit de l’indépendance
des contraintes n´egatives, propri´eté qui permet `a des contraintes n´egatives conjointes d’ˆetre
traitées s´eparément.
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A Feature Constraint System 1

1 Introduction

An important structural property of many logic programming systems is the fact that they
factorize into a constraint system and a relational facility. Colmerauer’s Prolog II [10]
is an early language design making explicit use of this property. CLP (Constraint Logic
Programming [12]), ALPS [18], CCP (Concurrent Constraint Programming [23]), and KAP
(Kernel Andorra Prolog [11]) are recent logic programming frameworks that exploit this
property to its full extent by being parameterized with respect to an abstract class of constraint
systems. The basic operation these frameworks require of a constraint system is a test for
unsatisfiability. In addition, ALPS, CCP, and KAP require a test for entailment between
constraints, which is needed for advanced control mechanisms such as delaying, coroutining,
synchronization, committed choice, and deep constraint propagation. LIFE [5, 6], formally
a CLP language, employs a related, but limited, suspension strategy to enforce deterministic
functional application. Given this situation, constraint systems are a central issue in research
on logic programming.

The constraint systems of most existing logic programming languages are variations and
extensions of Herbrand [16], the constraint system underlying Prolog. The individuals of
Herbrand are trees corresponding to ground terms, and the atomic constraints are equations
between terms. Seen from the perspective of programming, Herbrand provides a universal
data structure as a logical system.

This paper presents a constraint systemFT, which we feel is an intriguing alternative to
Herbrand both theoretically and practically. Like Herbrand,FT provides a universal data
structure based on trees. However, the trees ofFT (called feature trees) are more general than
the trees of Herbrand (called constructor trees), and the constraints ofFT are of a finer grain and
of different expressiveness. The essential novelty ofFT is due to functional attributes called
features, which provide for record-like descriptions of data avoiding the overspecification
intrinsic in Herbrand’s constructor-based descriptions. For the special case of constructor
trees, features amount to argument selectors for constructors.

Constructor trees are useful for structuring data in modern symbolic programming languages;
e.g., Prolog and ML. This gives the more flexible feature trees an interesting potential. More
precisely, feature trees model extensible record structures. They form the semantics of record
calculi like [1], which are used in symbolic programming languages [5] and in computational
linguistics (for example, see [3, 24] and the book [8]). Generally, these extensible record
structures allow hierarchical representation of partial knowledge. They lend themselves to
object-oriented programming techniques [3].

Let us suppose that we want to say thatx is a wine whose grape isriesling and whose
color iswhite . To do this in Herbrand, one may write the equation:

x = wine (riesling ;white ; y1; . . .; yn)

with the implicit assumption that the first argument of the constructorwine carries the
“feature” grape , the second argument carries the “feature”color , and the remaining
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Figure 1: Examples of Feature Trees.

argumentsy1; . . .; yn carry the remaining “features” of the chosen representation of wines.
The obvious difficulty with this description is that it says more than we want to say; namely,
that the constructorwine hasn + 2 arguments and that the “features”grape andcolor are
represented as the first and the second argument.

The constraint systemFT avoids this overspecification by allowing the description

x : wine [grape ) riesling ; color ) white ] (1)

saying thatx has sort wine, its featuregrape is riesling , and its featurecolor is white .
Nothing is said about other features ofx, which may or may not exist.

The individuals ofFT are feature trees. A feature tree is a possibly infinite tree whose nodes are
labeled with symbols called sorts, and whose edges are labeled with symbols called features.
The labeling with features is deterministic in that all edges departing from a node must be
labeled with distinct features. Thus, every direct subtree of a feature tree can be identified by
the feature labeling the edge leading to it. The constructor trees of Herbrand can be represented
as feature trees whose edges are labeled with natural numbers indicating the corresponding
argument positions.

Examples of feature trees are shown in Figure 1. All but the second and third feature tree in
Figure 1 satisfy the description (1).

The constraints ofFT are ordinary first-order formulae taken over a signature that accommo-
dates sorts as unary predicates and features as binary predicates. Thus the description (1) is
actually syntactic sugar for the formula:

wine(x) ^ 9y (grape(x; y) ^ riesling(y))
^ 9y (color(x; y) ^ white(y)):
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A Feature Constraint System 3

The set of all rational feature trees is made into a corresponding logical structureT by letting
A(x) hold if and only if the root ofx is labeled with the sortA, and lettingf (x; y) hold if and
only if x hasy as direct subtree via the featuref . The feature tree structureT fixes an algebraic
semantics forFT.

We will also establish a logical semantics, which is given by three axiom schemes fixing a
first-order theoryFT. Backofen and Smolka [7] show thatT is a model ofFT and thatFT is in
fact a complete theory, which means thatFT is exactly the theory induced byT . However, we
will not use the completeness result in the present paper, but show explicitly that entailment
with respect toT is the same as entailment with respect toFT.

The two major technical contributions of this paper are (1) an incremental simplification
system for entailment that is proven to be sound and complete, and (2) a proof showing that
the “independence of negative constraints” property [9, 16, 17] holds forFT.

The incremental entailment simplification system is the prerequisite forFT’s use with either of
the constraint programming frameworks ALPS, CCP, KAP or LIFE mentioned at the beginning
of this section. Roughly, these systems are concurrent thanks to a new effective discipline
for procedure parameter-passing that we could describe as “call-by-constraint-entailment” (as
opposed to Prolog’s call-by-unification).

The independence property is important since it means thatnegative constraintson feature
trees can be solved (exactly like in Colmerauer’s work on disequations over infinite trees [9]).
Namely, thanks to independence, a conjunction with more than one negated constraints
� ^ :�1 ^ . . . ^ :�n can be solved by testing separately each negated constraint�i for
entailment, fori = 1; . . .; n. This, of course, is done by our simplification system for
entailment.

One origin ofFT is Aı̈t-Kaci’s  -term calculus [1], which is at the heart of the programming
languageLOGIN [3] and further extended in the languageLIFE [5] with functions over feature
structures thanks to a generalization of the concept of residuation of Le Fun [4].1 Other
precursors ofFT are the feature descriptions found in unification grammars [15, 14] developed
for natural language processing, and also the formalisms of Mukai [19, 20] (for a thorough
survey of precursors in this field,cf., [8]). These early feature structure formalisms were
presented in a non logical form. Major steps in the process of their understanding and logical
reformulation are the articles [22, 25, 13, 24]. Feature trees, the feature tree structureT , and
the axiomatization ofT were first given in [7]. The technique of relative simplification of
constraints was first introduced and used in [6] to explain the behavior of functions as passive
constraints in LIFE.

The paper is organized as follows. Section 2 defines the basic notions and discusses the
differences in expressivity between Herbrand andFT. Section 3 gives a basic simplification
system that decides satisfiabilityof positive constraints. The material of Section 4 is not limited

1Le Fun [4] is an extension of Prolog seen as a constraint logic programming system over Herbrand terms
extended with applicative expressions. Le Fun’s constraint solver achieves implicit coroutining thanks to an
automatic suspension mechanism called “residuation” delaying equations with unsufficiently instantiated function
arguments. Resumption is triggered asynchronously by function argument matching.
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4 Hassan Aı̈t-Kaci, Andreas Podelski, and Gert Smolka

to FT but discusses the notion of incremental entailment checking and its connection with the
independence property and negation. Section 5 gives the entailment simplification system,
proves it sound, complete and terminating, and also proves thatFT satisfies the independence
property.

2 Feature Trees and Constraints

To give a rigorous formalization of feature trees, we first fix two disjoint alphabetsS andF ,
whose symbols are calledsortsand features, respectively. The lettersA, B, C will always
denote sorts, and the lettersf , g, h will always denote features. Words overF are called paths.
The concatenation of two pathsv andw results in the pathvw. The symbol" denotes the
empty path,v" = "v = v, andF? denotes the set of all paths.

A tree domainis a nonempty setD � F? that is prefix-closed; that is, ifvw2 D, thenv 2 D.
Thus, it always contains the empty path.

A feature treeis a mappingt : D! S from a tree domainD into the set of sorts. The paths in
the domain of a feature tree represent the nodes of the tree; the empty path represents its root.
The letterssandt are used to denote feature trees.

When convenient, we may consider a feature treet as a relation,i.e., t � F? � S, and write
(w;A) 2 t instead oft(w) = A. (Clearly, a relationt � F? � S is a feature tree if and only
if D = fw j 9A: (w;A) 2 tg is a tree domain andt is functional; that is, if(w;A) 2 t and
(w;B) 2 t, thenA = B.) As relations,i.e., as subsets ofF? � S, feature trees are partially
ordered by set inclusion. We say thats is smaller than(or, is a prefix-subtree of; or, subsumes;
or, approximates) t if s� t.

The subtree wtof a feature treet at one of its nodesw is the feature tree defined by (as a
relation):

wt := f(v;A) j (wv;A) 2 tg:

If D is the domain oft, then the domain ofwt is the setw�1D = fv j wv 2 Dg. Thus,wt is
given as the mappingwt : w�1D! S defined on its domain bywt(v) = t(wv). A feature tree
s is called asubtreeof a feature treet if it is a subtrees= wt at one of its nodesw, and a direct
subtree ifw 2 F .

A feature treet with domainD is calledrational if (1) t has only finitely many subtrees and
(2) t is finitely branching; that is: for everyw 2 D, wF \ D = fwf 2 D j f 2 Fg is finite.
Assuming (1), the condition (2) is equivalent to saying that there exist finitely many features
f1; . . .; fn such thatD � ff1; . . .; fng?.

Constraints over feature treeswill be defined as first-order formulae. We first fix a first-order
signatureS ] F by taking sorts as unary and features as binary relation symbols. Moreover,
we fix an infinite alphabet ofvariablesand adopt the convention thatx, y, z always denote
variables. Under this signature, every term is a variable and anatomic formulais either
a feature constraintxfy (f (x; y) in standard notation), a sort constraintAx (A(x) in standard
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A Feature Constraint System 5

notation), an equationx :
= y, ? (“false”), or> (“true”). Compound formulae are obtained as

usual by the connectiveŝ, _, !, $, : and the quantifiers9 and8. We use9̃� and 8̃� to
denote the existential and universal closure of a formula�, respectively. Moreover,V(�) is
taken to denote the set of all variables that occur free in a formula�. The letters� and will
always denote formulae. In the following we will not make a distinction between formulae
and constraints; that is, aconstraintis a formula as defined above.

S ] F -structuresandvalidity of formulae inS ] F -structures are defined as usual. Since we
consider onlyS ] F -structures in the following, we will simply speak of structures. Atheory
is a set of closed formulae. Amodelof a theory is a structure that satisfies every formula of
the theory. A formula� is aconsequenceof a theoryT (T j= �) if 8̃� holds in every model
of T. A formula� is satisfiablein a structureA if 9̃� holds inA. Two formulae�,  are
equivalentin a structureA if 8̃(�$  ) holds inA. We say that a formula� entailsa formula
 in a structureA [theory T] and write� j=A  [� j=T  ] if 8̃(� !  ) holds inA; i.e.,
A j= 8̃(�!  ) [is a consequence ofT; i.e., FT j= 8̃(�!  )]. A theoryT is completeif for
every closed formula� either� or:� is a consequence ofT.

The feature tree structureT is theS ] F -structure defined as follows:

� the domain ofT is the set of all rational feature trees;

� t 2 AT if and only if t(") = A (t’s root is labeled withA);

� (s; t) 2 f T if and only if f 2 Ds andt = fs (t is the subtree ofsat f ).

Roughly, the Herbrand constrainty = A(x1; x2), whereA is a binary constructor symbol, and
the feature constraintAy^y1x1^y2x2, whereA is a sort and1; 2; . . . are features, correspond to
each other. (We will see later that this correspondance is a formal one for satisfiability, but nor
for entailment.) Now it becomes clear what we mean by saying that feature constraints are finer
grained. Also, feature trees are more general in the sense that they satisfy more constraints.
For example, no constructor treey satisfies bothy = A(x1; x2) andy = A(x1; x2; x3).

Next we discuss the expressivity of our constraints with respect to feature trees (that is, with
respect to the feature tree structureT ) by means of examples. The constraint:

:9y(xfy)

says thatx has no subtree atf ; that is, that there is no edge departing fromx’s root that is
labeled withf . To say thatx has subtreey at pathf1 � � � fn, we can use the constraint:

9z1 � � � 9zn�1(xf1z1 ^ z1f2z2 ^ . . .^ zn�1fny):

Now let us look at statements we cannot express. One simple unexpressible statement is “y is
a subtree ofx” (that is, “9w: y = wx”). Moreover, we cannot express thatx is smaller than
y. Finally, if we assume that the alphabetF of features is infinite, we cannot say thatx has
subtrees at featuresf1; . . .; fn but no subtree at any other feature. In particular, we then cannot
say thatx is a primitive feature tree; that is, has no proper subtree.

The theoryFT0 is given by the following two axiom schemes:
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6 Hassan Aı̈t-Kaci, Andreas Podelski, and Gert Smolka

(Ax1) 8x 8y 8z (xfy^ xfz! y :
= z) (for every featuref )

(Ax2) 8x (Ax^ Bx! ?) (for every two distinct sortsA andB).

The first axiom scheme says that features are functional and the second scheme says that
sorts are mutually disjoint. Clearly,T is a model ofFT0. Moreover,FT0 is incomplete (for
instance,9x(Ax) holds inT but not in other models ofFT0). We will see in the next section
thatFT0 plays an important role with respect to basic constraint simplification.

Next we introduce some additional notation needed in the rest of the paper. This notation will
also allow us to state a third axiom scheme that, as shown in [7], extendsFT0 to a complete
axiomatization ofT .

Throughout the paper we assume that conjunction of formulae is an associative and commu-
tative operator that has> as neutral element. This means that we identify� ^ ( ^ �) with
� ^ ( ^ �), and� ^ > with � (but not, for example,xfy^ xfy with xfy). A conjunction of
atomic formulae can thus be seen as the finite multiset of these formulae, where conjunction is
multiset union, and> (the “empty conjunction”) is the empty multiset. We will write � �

(or  2 �, if  is an atomic formula) if there exists a formula 0 such that ^  0 = �.

We will use an additional atomic formulaxf" (“ f undefined onx”) that is taken to be equivalent
to:9y(xfy), for some variabley (other thanx).

Only for the formulation of the third axiom we introduce the notion of asolved-clause, which
is either> or a conjunction� of atomic formulae of the formxfy, Ax or xf" such that the
following conditions are satisfied:

1. if Ax2 � andBx2 �, thenA = B;

2. if xfy2 � andxfz2 �, theny = z;

3. if xfy2 �, thenxf" =2 �.

Given a solved-clause�, we say that a variablex is dependentin � if � contains a constraint
of the formAx, xfy or xf", and useDV(�) to denote the set of all variables that are dependent
in �.

The theoryFT is obtained fromFT0 by adding the axiom scheme:

(Ax3) 8̃ 9X� (for every solved-clause� andX = DV(�)).

Theorem 1 The feature tree structureT is a model of the theory FT.

Proof: We will only show thatT is a model of the third axiom. LetX be the set of dependent
variables of the solved-clause�, X = DV(�). Let � be anyT -valuation defined onV(�) � X; we
write the tree�(y) asty. We will extend� onX such thatT ; � j= �.
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A Feature Constraint System 7

Givenx 2 X, we define the “punctual” treetx = f(";A)g, whereA 2 S is the sort such thatAx2 �,
if it exists, and arbitrary, otherwise. Now we are going to use the notion oftree sumof Nivat [21],
wherew�1t = f(wv;A) j (v;A) 2 tg (“the treet translated byw”), and we define:

�(x) =
]
fw�1ty j x

w
; y for some y2 V(�); w 2 F?g:

Here the relation
w
; is given by:x

"

; x, andx
wf
; y if x

w
; y0 andy0fy 2 �, for somey0 2 V(�) and

somef 2 F . Since:

�(x) =
[
fw�1�(y) j . . . g

and, for a nodew of �(x), w�(x) = �(y), it follows that�(x) is a rational tree and thatT ; � j= �.

For another proof of this theorem see [7], which also proves thatFT is a complete theory if the
alphabets of sorts and features are infinite.

A practical motivation for the assumption on the infiniteness ofF (and ofS as well) is the
need to account for dynamic record field updates. It turns out that this semantical point of
view has advantages in efficiency as well. Thus, the algorithms we present in this paper for
entailment and for solving negative constraints on feature trees rely on the infiniteness ofF

andS.

3 Basic Simplification

A basic constraintis either? or a possibly empty conjunction of atomic formulae of the form
Ax, xfy, andx :

= y. The following fivebasic simplificationrules constitute a simplification
system for basic constraints, which, as we will see, decides whether a basic constraint is
satisfiable inT .

1.
xfy^ xfz^ �

xfz^ y :
= z^ �

2.
Ax^ Bx^ �

?
A 6= B

3.
Ax^ Ax^ �

Ax^ �

4.
x :
= y^ �

x :
= y^ �[x y]

x 2 V(�) andx 6= y

5.
x :
= x^ �
�
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8 Hassan Aı̈t-Kaci, Andreas Podelski, and Gert Smolka

The notation�[x  y] is used to denote the formula that is obtained from� by replacing
every occurrence ofx with y. We say that a constraint� simplifies toa constraint by a
simplification rule� if �

 
is an instance of�. We say that a constraint� simplifies toa constraint

 if either� =  or � simplifies to in finitely many steps each licensed by one of the five
simplification rules given above.

Example 3.1 In order to check whether the two feature descriptionsx[f ) u : A] and
y[f ) v : A] are unifiable, in the sense of [3], we will simplify the basic constraint
xfu^ yfv^ Au^ Av^ z :

= x^ y :
= z.

The following basic simplification chain, leads to a solved constraint (which, as shown
in [24, 5], exhibits unifiability):

xfu^ yfv^ Au^ Av^ z :
= x^ y :

= z

by Rule 4 ) xfu^ yfv^ Au^ Av^ z :
= x^ y :

= x

by Rule 4 ) xfu^ xfv^ Au^ Av^ z :
= x^ y :

= x

by Rule 1 ) xfv^ Au^ Av^ u :
= v^ z :

= x^ y :
= x

by Rule 4 ) xfv^ Av^ Av^ u :
= v^ z :

= x^ y :
= x

by Rule 3 ) xfv^ Av^ u :
= v^ z :

= x^ y :
= x

Using the same steps up to the last one, the constraintxfu^ yfv^ Au^ Bv^ z :
= x^ y :

= z
simplifies to? (in the last step, Rule 2 instead of Rule 3 is applied).

Proposition 1 If the basic constraint� simplifies to , then FT0 j= �$  .

Proof: The rules 3, 4 and 5 perform equivalence transformations with respect to every structure.
The rules 1 and 2 correspond exactly to the two axiom schemes ofFT0 and perform equivalence
transformations with respect to every model ofFT0.

We say that a basic constraint� bindsa variablex to y if x :
= y 2 � andx occurs only once in

�. At this point it is important to note that we consider equations as ordered; that is, assume
thatx :

= y is different fromy :
= x if x 6= y. We say that a variablex is eliminated, or bound by

�, if � bindsx to some variabley.

Proposition 2 The basic simplification rules are terminating.

Proof: First observe that the simplification rules do not add new variables and preserve eliminated
variables. Furthermore, Rule 4 increases the number of eliminated variables by one. Hence we know
that if an infinite simplification chain exists, we can assume without loss of generality that it only
employs the Rules 1, 3 and 5. Since Rule 1 decreases the number of feature constraints “xfy”, which
is not increased by Rules 3 and 5, we know that if an infinite simplification chain exists, we can
assume without loss of generality that it only employs Rules 3 and 5. Since this is clearly impossible,
an infinite simplification chain cannot exist.
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A Feature Constraint System 9

A basic constraint is callednormal if none of the five simplification rules applies to it. A
constraint is called anormal formof a basic constraint� if � can be simplified to and is
normal. Asolved constraintis a normal constraint that is different from?.

So far we know that we can compute for any basic constraint� a normal form by applying
the simplification rules as long as they are applicable. Although the normal form may not
be unique for�, we know that� and are equivalent in every model ofFT0. It remains to
show that every solved constraint is satisfiable inT .

Every basic constraint� has a unique decomposition� = �N ^ �G such that�N is a possibly
empty conjunction of equations “x :

= y” and and�G is a possibly empty conjunction of feature
constraints “xfy” and sort constraints “Ax”. We call �N thenormalizerand and�G thegraph
of �.

Proposition 3 A basic constraint� 6= ? is solved if and only if the following conditions hold:

1. an equation x:= y appears in� only if x is eliminated in�;

2. the graph of� is a solved clause;

3. no primitive constraint appears more than once in�.

Proposition 4 Every solved constraint is satisfiable in every model of FT.

Proof: Let � be a solved constraint andA be a model ofFT. Then we know by axiom schemeAx3
that the graph�G of a solved constraint� is satisfiable in anFT-modelA. A variable valuation�
intoA such thatA; � j= �G can be extended on all eliminated variables simply by�(x) = �(y) if
x
:
= y 2 �, such thatA; � j= �.

The following theorem states that basic simplification yields a decision procedure for satisfia-
bility of basic constraints.

Theorem 2 Let be a normal form of a basic constraint�. Then� is satisfiable inT if and
only if 6= ?.

Proof: Since� and are equivalent in every model ofFT0 andT is a model ofFT0, it suffices
to show that is satisfiable inT if and only if  6= ?. To show the nontrivial direction, suppose
 6= ?. Then is solved and we know by the preceding proposition that is satisfiable in every
model ofFT. SinceT is a model ofFT, we know that is satisfiable inT .

The next theorem implies the elementary equivalence of all models ofFT with respect to
satisfiability of basic constraints. Namely, satisfiability in any of the models ofFT means
satisfiability in all of them. Also, it is sufficient to test satisfiability in the modelT alone.
Finally, only the first two axioms are relevant for satisfiability.

Research Report No. 20 November 1992



10 Hassan Aı̈t-Kaci, Andreas Podelski, and Gert Smolka

Theorem 3 For every basic constraint� the following statements are equivalent:

T j= 9̃� , 9modelA of FT0: A j= 9̃� , FT j= 9̃�:

Proof: The implication1) 2 holds sinceT is a model ofFT0. The implication3) 1 follows from
the fact thatT is a model ofFT. It remains to show that2) 3.

Let � be satisfiable in some model ofFT0. Then we can apply the simplification rules to� and
compute a normal form such that� and are equivalent in every model ofFT0. Hence is
satisfiable in some model ofFT0. Thus 6= ?, which means that is solved. Hence we know by
the preceding proposition that is satisfiable in every model ofFT. Since� and are equivalent in
every model ofFT0�FT, we have that� is satisfiable in every model ofFT.

4 Entailment, Independence and Negation

In this section we discuss some general properties of constraint entailment. This prepares the
ground for the next section, which is concerned with entailment simplification in the feature
tree constraint system.

Throughout this section we assume thatA is a structure,
 and� are formulae that can be
interpreted inA, and thatX is a finite set of variables.

We say that
 disentails� inA if 
 entails:� inA. If 
 is satisfiable inA, then
 cannot both
entail and disentail9X� in A. We say that
 determines� in A if 
 either entails or disentails
� in A.

Given 
, � and X, we want to determine in anincrementalmanner whether
 entails or
disentails9X�. Typically, 
 will not determine9X� when9X� is considered first, but this
may change when
 is strengthened to
 ^ 
 0. To this end, we use the concept ofrelative
simplificationof constraints first introduced in [6]. The basic idea leading to an incremental
entailment checker is to simplify� with respect to (relatively to) thecontext
 and thelocal
variables X. Given
, X and�, simplification must yield a formula such that:


 j=A 9X�$ 9X :

The following facts provide some evidence that this is the appropriate invariant for entailment
simplification.

Proposition 5 Let 
 j=A 9X�$ 9X . Then:

1. 
 j=A 9X� if and only if
 j=A 9X ;

2. 
 j=A :9X� if and only if
 j=A :9X ;

3. if  = ?, then 
 j=A :9X�;

4. if 9X holds in inA, then 
 j=A 9X�.
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Statements 1 and 2 say that it does not matter whether entailment and disentailment are decided
for � or  . Statement 3 gives a local condition for disentailment, and Statement 4 gives a
local condition for entailment. The entailment simplification system for feature trees given in
the next section will in fact decide entailment and disentailment by simplifying such that the
condition of Statement 4 is met in the case of entailment, and that the condition of Statement
3 is met in the case of disentailment.

In practice, one can ensure by variable renaming that no variable ofX occurs in
. The
next fact says that then it suffices if entailment simplification respects the more convenient
invariant:

A j= 
 ^ �$ 
 ^  :

This is the invariant respected by our system (cf. Proposition 8).

Proposition 6 Let X\ V(
) = ;. Then:

1. if A j= 
 ^ �$ 
 ^  , then 
 j=A 9X�$ 9X ;

2. 
 j=A :9X� if and only if
 ^ � is unsatisfiable inA.

That is, the conjunction
 ^ � is satisfiable if and only if
 either entails9X�, or it does not
determine9X�.

The independence of negative constraints [9, 16, 17] is an important property of constraint
systems. If it holds, simplification of conjunctions of positive and negative constraints can be
reduced to entailment simplification of conjunctions of positive constraints. In order to see
why, observe that
 ^ :�1 ^ . . .^ �n is unsatisfiable if and only if
 entails�1 _ . . ._ �n.

To define the independence property, we assume that a constraint system is a pair consisting
of a structureA and a set of basic constraints. From basic constraints one can build more
complex constraints using the connectives and quantifiers of predicate logic. We say that a
constraint system satisfies theindependence propertyif:


 j=A 9X1�1 _ . . ._ 9Xn�n if and only if9i: 
 j=A 9Xi�i

for all basic constraints
, �1; . . .; �n and all finite sets of variablesX1; . . .;Xn.

Proposition 7 If a constraint system satisfies the independence property, then the following
statements hold (
, � and�1; . . .; �n are basic constraints):

1. 
 ^ :9X1�1 ^ . . .^ :9Xn�n unsatisfiable inA if and only if9i: 
 j=A 9Xi�i ;

2. if 
^:9X1�1^. . .^:9Xn�n is satisfiable inA, then
^:9X1�1^. . .^:9Xn�n j=A 9X�
if and only if
 j=A 9X�.
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5 Entailment Simplification

We will now use the general setting of the previous section for the specific case of feature tree
constraints. Throughout this section we assume that
 is a solved constraint andX is a finite
set of variables not occurring in
. We will call 
 thecontext, the variables inX local, and all
other variablesglobal. Relative simplification is always carried out with respect to the context.

If T is a theory and� and are possibly open formulae, we write� j=T  (read:� entails 
in T) if 8̃(�!  ) holds inT.

The next theorem expresses the same observations stated before Theorem 3 regarding
disentailment rather than satisfiability.

Theorem 4 For every basic constraint�, the following equivalences hold:


 j=T :9X� if and only if
 j=FT0 :9X� if and only if
 j=FT :9X�:

Proof: Implication “2) 3” holds sinceFT0 �FT. Implication “3) 1” holds sinceT is a model of
FT. To show implication “1 ) 2”, suppose
 j=T :9X�. Then we know by Proposition 6 that
 ^�
is unsatisfiable inT . Thus we know by Theorem 3 that
 ^ � is unsatisfiable in every model ofFT0.
Hence we know by Proposition 6 that
 j=FT0 :9X�.

For every basic constraint� and every variablex we define:

�x :=
�

y if x :
= y 2 � and x is eliminated;

x otherwise.

A basic constraint� is X-orientedif x :
= y 2 � always impliesx 2 X or y 62 X. A basic

constraint� is pivotedif x :
= y 2 � implies thatx is eliminated in� (and theny is a “pivot”).

The following entailment simplification rulessimplify basic constraints to basic constraints
with respect to a context
 and local variablesX.

1.
xfu^ �

u :
= v^ �

yfv2 
 ^ �; �y = x

2.
�

�u :
= �v^ �

8><
>:

xfu^ yfv� 
;
�x = �y; �u 6= �v;
� X-oriented and pivoted

3.
�

?
Ax^ By� 
 ^ �; �x = �y; A 6= B

4.
Ax^ �
�

Ay2 
 ^ �; �y = x
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5.
x :
= y^ �

x :
= y^ �[x y]

(
x 6= y; x 2 V(�);
(x 2 X or y =2 X)

6.
x :
= y^ �

y :
= x^ �

x =2 X; y 2 X

7.
�

�[x y]
x :
= y 2 
; x 2 V(�)

8.
x :
= x^ �
�

We say that a basic constraint� simplifiesto a constraint� with respect to
 and Xif � =  or
� simplifies to in finitely many steps each licensed by one of the eight simplification rules
given above. The notions ofnormalandnormal form with respect to
 are defined accordingly.

Example 5.1 Assume, in the context of functions in LIFE [6] (the case of guarded Horn
clauses [18] is quite similar), that a functionfun is defined in the formfun(z; z)! . . ., and
that it is called asfun(x[f ) u : A]; y[f ) v : B]). That is, the actual parameter pair of
feature descriptions(x[f ) u : A]; y[f ) v : B]) has to be tested upon matching of (and
incompatibility with) the formal parameter pair(z; z). (This is in order to know whether
that function call fires, fails, orresiduates.) As shown in [24, 5], this corresponds to testing
whether thecontext
 = xfu^ yfv^ Au^ Bventails theguard9z(x :

= z^ y :
= z).

Let X = fzg. Then we have the following simplification chain with respect to
 andX:

x :
= z^ y :

= z

by Rule E6 )
;X z :
= x^ y :

= z

by Rule E5 )
;X z :
= x^ y :

= x

by Rule E2 )
;X u :
= v^ z :

= x^ y :
= x

by Rule E3 )
;X ?

Let us now take as context
̃ = xfu^ yfv^ Au. Then �̃ = u :
= v ^ z :

= x ^ y :
= x is

normal with respect tõ
 andX. We shall see that this normal form tells us that
̃ does not
determine�̃. If 
̃ gets strengthened either to
̃ ^ Bv (as above), or tõ
 ^ x :

= y, then the
strengthened context does determine: it disentails in the first and entails in the second case.
The basic normal form of̃
 ^ x :

= y is yfu^Au^ v :
= u^ x :

= y; with respect to this context
�̃ simplifies toz :

= y.

In the previous example,� = z :
= x^ y :

= x simplifies to�1 = u :
= v^ z :

= x^ y :
= x with

respect to
 = xfu^ yfv^ Au^ BvandX = fzg. This corresponds to a basic simplification as
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14 Hassan Aı̈t-Kaci, Andreas Podelski, and Gert Smolka

follows:

 ^ �

= xfu^ yfv^ Au^ Bv ^ z :
= x^ y :

= x

by Rule B4 ) xfu^ xfv^ Au^ Bv ^ z :
= x^ y :

= x

by Rule B1 ) xfv^ Au^ Bv ^ u :
= v^ z :

= x^ y :
= x

= 
0 ^ �01

We observe that
 ^ �1 is equal to
0 ^ �01, modulo renamingy by �1y = x andu by �1u = v,
and modulo the repetition ofxfv.

Lemma 1 Let � simplify to�1 with respect to
 and X, not using Rule E6 (in an entailment
simplification step). Then
 ^ � simplifies to some
 0 ^ �01 which is equal to
 ^ �1 up to
variable renaming and repetition of conjuncts.

Proof: Clearly, each entailment simplification rule, except for E6, corresponds directly to a basic
simplification rule (namely, E1 and E2 to B1, E3 to B2, E4 to B3, E5 and E7 to B4, and E8 to B5).

If the application of the entailment simplification rule to� relies on a condition of the form�x = y
or �x = �y wherex 6= �x or y 6= �y, thenx

:
= �x 2 � or y

:
= �y 2 �, and Rule B4 is first applied to


 ^ �, eliminatingx by �x (y by �y).

When comparing
 ^ �1 and
0 ^ �01, renamings take account of these variable eliminations. Note
that, if the rule applied to� is E2, then
0 has one feature constraintxfv less than
 — which, after
renaming, has a repetition of exactly this constraint.

Proposition 8 If � simplifies to with respect to
 and X, then
^� and
^ are equivalent
in every model of FT0.

Proof: Follows from Lemma 1 and Proposition 1.

Proposition 9 The entailment simplification rules are terminating, provided
 and X are fixed.

Proof: First we strengthen the statement by weakening the applicability conditions�y = x in
Rules E1 and E4 to�y = �x. Then from Lemma 1 follows: (*) Each entailment simplification rule
applies to�1 with respect to
 andX if and only if it applies to�01 with respect to
0 andX — except
possibly for E5, when the corresponding variable has already been eliminated in an “extra” basic
simplification step.

If 
0 has one conjunct of the formxfu less than
, then (*) still holds; regarding a new application
of E2 this is ensured by its (therefore so complicated. . . ) applicability condition.

With Condition (*), it is possible to prove by induction onn: For every entailment simplification
chain�; �1; . . .; �n with respect to
 andX, there exists a ‘basic plus Rule E6’ simplification chain

^�; 
1^�

0

1; . . .; 
n+k^�
0

n+k, wherek� 0 is the number of “extra” variable elimination steps. Since,
according to Proposition 2, basic simplification chains are finite, so are entailment simplification
chains.
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So far we know that we can compute for any basic constraint� a normal form with respect
to 
 andX by applying the simplification rules as long as they are applicable. Although the
normal form may not be unique, we know that
 ^ � and
 ^  are equivalent in every
model ofFT0.

Proposition 10 For every basic constraint� one can compute a normal form with respect
to 
 and X. Every such normal form satisfies:
 j=T 9X� if and only if
 j=T 9X , and

 j=FT 9X� if and only if
 j=FT 9X .

Proof: Follows from Propositions 8, 9, 6 and 5.

In the following we will show that from the entailment normal form of � with respect to

 it is easy to tell whether we have entailment, disentailment or neither. Moreover, the basic
normal form of
 ^ � is exactly
 ^  in the first case (and in the second, where
 ^ ? = ?),
and “almost” in the third case (cf. Lemma 1).

Proposition 11 A basic constraint� 6= ? is normal with respect to
 and X if and only if the
following conditions are satisfied:

1. � is solved, X-oriented, and contains no variable that is bound by
;

2. if �x = y and xfu2 
, then yfv62 � for every v;

3. if �x = �y and xfu2 
 and yfv2 
, then�u = �v;

4. if �x = y and Ax2 
, then By62 � for every B;

5. if �x = �y and Ax2 
 and By2 
, then A= B.

Lemma 2 If � 6= ? is normal with respect to
 and X, then
 ^� is satisfiable in every model
of FT.

Proof: Let� 6= ? be normal with respect to
 andX. Furthermore, let
 = 
N^
G and� = �N^�G

be the unique decompositions into normalizer and graph. Since the variables bound by
N occur
neither in
G nor in�, it suffices to show that
G ^ �N ^ �G is satisfiable in every model ofFT.

Let �N(
G) be the basic constraint that is obtained from
G by applying all bindings of�N. Then

G^�N^�G is equivalent to�N^�N(
G)^�G and no variable bound by�N occurs in�N(
G)^�G.
Hence it suffices to show that�N(
G) ^ �G is satisfiable in every model ofFT. With Conditions 2–5
of the preceding proposition it is easy to see that�N(
G)^ �G is a solved clause. Hence we know by
axiom schemeAx3 that�N(
G) ^ �G is satisfiable in every model ofFT.

The following theorem states that relative simplification yields a decision procedure for
disentailment of basic constraints.
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Theorem 5 (Disentailment) Let  be a normal form of� with respect to
 and X. Then

 j=T :9X� if and only if = ?.

Proof: Suppose = ?. Then
 j=T :9X and hence
 j=T :9X� by Proposition 10.

To show the other direction, suppose
 j=T :9X�. Then
 j=T :9X by Proposition 10 and hence

 ^  unsatisfiable inT by Proposition 6. SinceT is a model ofFT (Theorem 1), we know by the
preceding lemma that = ? (since is assumed to be normal).

We say that a variablex is dependentin a solved constraint� if � contains a constraint of
the formAx, xfy or x :

= y. (Recall that equations are ordered; thusy is not dependent in the
constraintx :

= y.) We useDV(�) to denote the set of all variables that are dependent in a
solved constraint�.

In the following we will assume that the underlying signatureS ] F has at least one sort and
at least one feature that does not occur in the constraints under consideration. This assumption
is certainly satisfied if the signature has infinitely many sorts and infinitely many features.

Lemma 3 Let�1; . . .; �n be basic constraints different from?, and X1; . . .;Xn be finite sets of
variables disjoint fromV(
). Moreover, for every i= 1; . . .; n, let�i be normal with respect to

 and Xi, and let�i have a dependent variable that is not in Xi. Then
^:9X1�1^ . . .^:9Xn�n

is satisfiable in every model of FT.

Proof: Let 
 = 
N ^ 
G be the unique decomposition of
 into normalizer and graph. Since the
variables bound by
N occur neither in
G nor in any�i , it suffices to show that
G ^:9X1�1 ^ . . .^
:9Xn�n is satisfiable in every model ofFT. Thus it suffices to exhibit a solved clause� such that

G � � and, for everyi = 1; . . .; n, V(�) is disjoint withXi and� ^ �i is unsatisfiable in every model
of FT.

Without loss of generality we can assume that everyXi is disjoint withV(
) andV(�j)� Xj for all j.
Hence we can pick in every�i a dependent variablexi such thatxi =2 Xj for any j.

Let z1; . . .; zk be all variables that occur on either side of equationxi
:
= y 2 �i , i = 1; . . .; n (recall

thatxi is fixed for i). None of these variables occurs in anyXj since every�i is Xi-oriented. Next we
fix a featureg and a sortB such that neither occurs in
 or any�i .

Now � is obtained from
 by adding constraints as follows: ifAxi 2 �i , then addBxi ; if xi fy 2 �i ,
then addxi f"; to enforce that the variablesz1; . . . ; zk are pairwise distinct, add:

zkgzk�1 ^ . . . ^ z2gz1 ^ z1g" :

It is straightforward to verify that these additions to
 yield a solved clause� as required.

Proposition 12 If � is solved andDV(�) � X, then FTj= 8̃9X�.

Proof: Let � = �N ^ �G be the decomposition of� in normalizer and graph. Since every variable
bound by� is in X, it suffices to show that̃89X�G is a consequence ofFT. This follows immediately
from axiom schemeAx3since�G is a solved clause.
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The following theorem states that relative simplification yields a decision procedure for
entailment of basic constraints.

Theorem 6 (Entailment) Let  be a normal form of� with respect to
 and X. Then

 j=T 9X� if and only if  6= ? and DV( ) � X.

Proof: Suppose
 j=T 9X�. Then we know
 j=T 9X by Proposition 10, and thus
 ^ :9X is
unsatisfiable inT . Since
 is solved, we know that
 is satisfiable inT and hence that
 ^ 9X is
satisfiable inT . Thus 6= ?. Since
 ^ :9X is unsatisfiable inT andT is a model ofFT, we
know by Lemma 3 thatDV( ) � X.

To show the other direction, suppose 6= ? andDV( ) � X. ThenFT j= 8̃9X by Proposition 12,
and henceT j= 8̃9X . Thus
 j=T 9X , and hence
 j=T 9X� by Proposition 10.

The next theorem shows that it does not matter whether entailment of basic constraints is
interpreted in the algebraic semantics (i.e., in the feature tree structureT ) or in the logical
semantics (given by the axioms ofFT). Now, of course, the third axiom is necessary (take, for
example, as context the true constraint>).

Theorem 7 Let� be a basic constraint. Then
 j=T 9X� if and only if
 j=FT 9X�.

Proof: One direction holds sinceT is a model ofFT. To show the other direction, suppose

 j=T 9X�. Without loss of generality we can assume that� is normal with respect to
 andX.
Hence we know by Theorem 6 that� 6= ? andDV( ) � X. ThusFT j= 8̃9X� by Proposition 12
and hence
 j=FT 9X�.

We finally show that our constraint system enjoys the property which allows one to solve
conjunctions of negative constraints through relative simplification.

Theorem 8 (Independence) Let �1; . . .; �n be basic constraints, and X1; . . .;Xn be finite
sets of variables. Then:


 j=T 9X1�1 _ . . ._ 9Xn�n if and only if9i: 
 j=T 9Xi�i :

Proof: To show the nontrivial direction, suppose
 j=T 9X1�1 _ . . ._ 9Xn�n. Without loss of
generality we can assume that, for alli = 1; . . .; n, Xi is disjoint fromV(
), �i is normal with respect
to 
 andXi , and�i 6= ?. Since
 ^:9X1�1^ . . .^:9Xn�n is unsatisfiable inT andT is a model of
FT, we know by Lemma 3 thatDV(�k) � Xk for somek. Hence
 j=T 9Xk�k by Theorem 6.

6 Conclusion

We have presented a constraint systemFT for logic programming providing a universal data
structure based on rational feature trees.FT accommodates record-like descriptions. We think
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that these are superior to the constructor-based descriptions of Herbrand in that they allow
expressing partial knowledge in a more flexible way.

The declarative semantics ofFT is specified both algebraically (the feature tree structureT )
and logically (the first-order theoryFT given by three axiom schemes).

The operational semantics forFT is given by an incremental constraint simplification system,
which can check satisfiability of and entailment between constraints. SinceFT satisfies the
independence property, the simplification system can also check satisfiability of conjunctions
of positive and negative constraints.

We see four directions for further research.

First,FT should be strengthened such that it subsumes the expressivity of rational constructor
trees [9, 10]. As is,FT cannot express thatx is a tree having direct subtrees at exactly the
featuresf1; . . .; fn. It turns out that the systemCFT [26] obtained fromFT by adding the
primitive constraint:

xff1; . . .; fng

(x has direct subtrees at exactly the featuresf1; . . .; fn) has the same nice properties asFT. In
contrast toFT, CFTcan express constructor constraints; for instance, the constructor constraint
x :
= A(y; z) can be expressed equivalently asAx^ xf1; 2g^ x1y^ x2z, if we assume thatA is a

sort and the numbers1; 2 are features.

Second, it seems attractive to extendFT such that it can accommodate a sort lattice as used
in [1, 3, 4, 5, 25]. One possibility to do this is to assume a partial order� on sorts and replace
sort constraintsAxwith quasi-sort constraints[A]x whose declarative semantics is given as:

[A]x �
_

B�A

Bx:

Given the assumption that the sort ordering� has greatest lower bounds if lower bounds exist,
it seems that the results and the simplification system given forFT carry over with minor
changes.

Third, the worst-case complexity of entailment of basic constraints checking inFT should be
established. We conjecture it to be quasi-linear in the size of
 and�, provided the available
features (finitely many) are fixeda priori.

Lastly, implementation techniques forFT at the level of the Warren abstract machine [2] need
to be developed.
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