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Abstract

We introduce a constraint system called. This system offers a theoretical and practical
alternative to the usual Herbrand system of constraints over constructor trees. Like Herbrand,
FT provides a universal data structure based on trees. However, the tFeeéocafled feature

trees) are more general than the constructor trees of Herbrand, and the constriaintsef

of finer grain and of different expressiveness. The essential novel&f a§ provided by
functional attributes called features which allow representing data as extensible records, a
more flexible way than that offered by Herbrand'’s fixed arity constructors. The feature tree
structure determines an algebraic semanticETolWe establish a logical semantics thanks to
three axiom schemes presenting the first-order thE®ryVe propose usingT as a constraint
system for logic programming. We provide a test for constraint unsatisfiability, and a test
for constraint entailment. The former corresponds to unification and the latter to matching.
The combination of the two is needed for advanced control mechanisms. We use the concept
of relative simplification of constraints, a normalization process that decides entailment and
unsatisfiability simultaneously. The two major technical contributions of this work are: (1) an
incremental system performing relative simplification For that we prove to be sound and
complete; and (2) a proof showing tHarf satisfies independence of negative constraints, the
property that conjoined negative constraints may be handled independently.

Résumé

Nous pEsentons un syaie de contraintes appdFT. Ce syséme constitue une alternative
théorique et pratiqua Herbrand, le syste usuel de contraintes sur les arlaresnstructeurs.
Comme Herbrand; T fournit une structure de doers d’arbres. Cependant, les arbregde
(appeks arbres traits) sont plusgr¥raux que les arbresconstructeurs de Herbrand, et les
contraintes dé-T sont d’'une granularit’plus fine et d'expressitdifféerente. L'innovation
essentielle dET est diea des attributs fonctionnels appsitraits qui permettent de regsenter

les donmes sous forme de structure d’enregistrement extensible, demmahiis flexible que
celle offerte par les constructeurs d'arifixe de Herbrand. La structure d’arbaetraits
détermine uneeshantique algbrique pouFT. Nousétablissons uneesiantique logique gice

a trois scleimas d’axiomes psentant la drie du premier ordrET. Nous proposons d'utiliser
FT comme un sysime de contraintes pour la programmation logique. Nous produisons un
critere de satisfaisabititle contrainte, et un ceité de validation d’implication de contrainte.
Le premier correspond lunification et le deuxime au filtrage. La combinaison des deux
est récessaire pour deseawdnismes de comti€ avanes. Nous utilisons le concept de
simplification relative, un processus de normalisation guaide simultaament la validation
d’'implication et la non-satisfaisabiéit’Les deux contributions techniques majeures de ce
travail sont : (1) un systhe incémental effectuant la simplification relative pdtr, que nous
démontrongfre colerent et complet; et (2) une preuve montranti§ligouit de I'indépendance
des contraintesagatives, propdte qui permet’des contraintesagatives conjointes dtfe
traitées gpagment.
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A Feature Constraint System 1

1 Introduction

An important structural property of many logic programming systems is the fact that they
factorize into a constraint system and a relational facility. Colmerauer’s Prolog 1l [10]

is an early language design making explicit use of this property. CLP (Constraint Logic
Programming [12]), ALPS [18], CCP (Concurrent Constraint Programming [23]), and KAP
(Kernel Andorra Prolog [11]) are recent logic programming frameworks that exploit this
property to its full extent by being parameterized with respect to an abstract class of constraint
systems. The basic operation these frameworks require of a constraint system is a test for
unsatisfiability. In addition, ALPS, CCP, and KAP require a test for entailment between
constraints, which is needed for advanced control mechanisms such as delaying, coroutining,
synchronization, committed choice, and deep constraint propagation. LIFE [5, 6], formally
a CLP language, employs a related, but limited, suspension strategy to enforce deterministic
functional application. Given this situation, constraint systems are a central issue in research
on logic programming.

The constraint systems of most existing logic programming languages are variations and
extensions of Herbrand [16], the constraint system underlying Prolog. The individuals of
Herbrand are trees corresponding to ground terms, and the atomic constraints are equations
between terms. Seen from the perspective of programming, Herbrand provides a universal
data structure as a logical system.

This paper presents a constraint system which we feel is an intriguing alternative to
Herbrand both theoretically and practically. Like Herbrakd, provides a universal data
structure based on trees. However, the tredsIafcalled feature trees) are more general than
the trees of Herbrand (called constructor trees), and the constraifsaoé of a finer grain and

of different expressiveness. The essential noveltybfs due to functional attributes called
features, which provide for record-like descriptions of data avoiding the overspecification
intrinsic in Herbrand’s constructor-based descriptions. For the special case of constructor
trees, features amount to argument selectors for constructors.

Constructor trees are useful for structuring data in modern symbolic programming languages;
e.g, Prolog and ML. This gives the more flexible feature trees an interesting potential. More
precisely, feature trees model extensible record structures. They form the semantics of record
calculi like [1], which are used in symbolic programming languages [5] and in computational
linguistics (for example, see [3, 24] and the book [8]). Generally, these extensible record
structures allow hierarchical representation of partial knowledge. They lend themselves to
object-oriented programming techniques [3].

Let us suppose that we want to say tRas a wine whose grape igesling and whose
color iswhite . To do this in Herbrand, one may write the equation:

X = wine (riesling  ,white ,y1,...,¥n)

with the implicit assumption that the first argument of the construaioe carries the
“feature” grape , the second argument carries the “featuoslor , and the remaining
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2 Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka

wine wine wine
grapt/\)lor grape grape color
riesling white riesling riesling red
wine
wine grap/\)lor
grape/\year riesling white
color
riesling white 1988 origin
alsace

Figure 1: Examples of Feature Trees.

argumentsy/1, ..., yn carry the remaining “features” of the chosen representation of wines.
The obvious difficulty with this description is that it says more than we want to say; namely,
that the constructorine hasn + 2 arguments and that the “featuragrape andcolor are
represented as the first and the second argument.

The constraint systefaT avoids this overspecification by allowing the description
X:wine [grape =-riesling , color = white ] (1)

saying thak has sort wine, its featuigrape isriesling , andits featureolor iswhite .
Nothing is said about other featuresxpfvhich may or may not exist.

The individuals ofT are feature trees. A feature tree is a possibly infinite tree whose nodes are
labeled with symbols called sorts, and whose edges are labeled with symbols called features.
The labeling with features is deterministic in that all edges departing from a node must be
labeled with distinct features. Thus, every direct subtree of a feature tree can be identified by
the feature labeling the edge leading to it. The constructor trees of Herbrand can be represented
as feature trees whose edges are labeled with natural numbers indicating the corresponding
argument positions.

Examples of feature trees are shown in Figure 1. All but the second and third feature tree in
Figure 1 satisfy the description (1).

The constraints oF T are ordinary first-order formulae taken over a signature that accommo-
dates sorts as unary predicates and features as binary predicates. Thus the description (1) is
actually syntactic sugar for the formula:

wing(x) A 3y (grapgx,y) A riesling(y))
A 3y (color(x,y) A whitgy)).
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A Feature Constraint System 3

The set of all rational feature trees is made into a corresponding logical strdctwréetting
A(x) hold if and only if the root ok is labeled with the sor, and lettingf (X, y) hold if and
only if x hasy as direct subtree via the featdreThe feature tree structutefixes an algebraic
semantics foFT.

We will also establish a logical semantics, which is given by three axiom schemes fixing a
first-order theoryT. Backofen and Smolka [7] show thatis a model of~T and thatT isin

fact a complete theory, which means thdtis exactly the theory induced ¥%. However, we

will not use the completeness result in the present paper, but show explicitly that entailment
with respect tdI” is the same as entailment with respeckEio

The two major technical contributions of this paper are (1) an incremental simplification
system for entailment that is proven to be sound and complete, and (2) a proof showing that
the “independence of negative constraints” property [9, 16, 17] holdSTtor

The incremental entailment simplification system is the prerequisit€lfsruse with either of

the constraint programming frameworks ALPS, CCP, KAP or LIFE mentioned at the beginning
of this section. Roughly, these systems are concurrent thanks to a new effective discipline
for procedure parameter-passing that we could describe as “call-by-constraint-entailment” (as
opposed to Prolog’s call-by-unification).

The independence property is important since it meansnibgative constraintsen feature

trees can be solved (exactly like in Colmerauer’s work on disequations over infinite trees [9]).
Namely, thanks to independence, a conjunction with more than one negated constraints
o AN -g1 A...A ¢, can be solved by testing separately each negated consgrafot
entailment, fori = 1,...,n. This, of course, is done by our simplification system for
entailment.

One origin ofFT is Ait-Kaci’s ¢-term calculus [1], which is at the heart of the programming
languaga OGIN [3] and further extended in the languagd€ek [5] with functions over feature
structures thanks to a generalization of the concept of residuation of Le Féin Q@ther
precursors oF T are the feature descriptions found in unification grammars [15, 14] developed
for natural language processing, and also the formalisms of Mukai [19, 20] (for a thorough
survey of precursors in this fielaf., [8]). These early feature structure formalisms were
presented in a non logical form. Major steps in the process of their understanding and logical
reformulation are the articles [22, 25, 13, 24]. Feature trees, the feature tree stfictune

the axiomatization off” were first given in [7]. The technique of relative simplification of
constraints was first introduced and used in [6] to explain the behavior of functions as passive
constraints in LIFE.

The paper is organized as follows. Section 2 defines the basic notions and discusses the
differences in expressivity between Herbrand &Td Section 3 gives a basic simplification
system that decides satisfiability of positive constraints. The material of Section 4 is not limited

'Le Fun [4] is an extension of Prolog seen as a constraint logic programming system over Herbrand terms
extended with applicative expressions. Le Fun’s constraint solver achieves implicit coroutining thanks to an
automatic suspension mechanism called “residuation” delaying equations with unsufficiently instantiated function
arguments. Resumption is triggered asynchronously by function argument matching.
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4 Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka

to FT but discusses the notion of incremental entailment checking and its connection with the
independence property and negation. Section 5 gives the entailment simplification system,
proves it sound, complete and terminating, and also prove&thsatisfies the independence

property.

2 Feature Trees and Constraints

To give a rigorous formalization of feature trees, we first fix two disjoint alpha®eisd F,
whose symbols are callesbrtsand features respectively. The letterd, B, C will always
denote sorts, and the lettdrgy, h will always denote features. Words ovErare called paths.
The concatenation of two patlwsandw results in the pativw. The symbole denotes the
empty pathye = ev = v, andF* denotes the set of all paths.

A tree domainis a nonempty sdd C F* that is prefix-closed; that is, Wiw € D, thenv € D.
Thus, it always contains the empty path.

A feature treds a mappingd : D — S from a tree domai into the set of sorts. The paths in
the domain of a feature tree represent the nodes of the tree; the empty path represents its root.
The letterss andt are used to denote feature trees.

When convenient, we may consider a feature trag a relationi.e, t C F* x &, and write
(w, A) € tinstead oft(w) = A. (Clearly, a relation C F* x S is a feature tree if and only
if D= {w | 3JA:(w,A) € t} is a tree domain antlis functional; that is, if(w,A) € t and
(w,B) € t, thenA = B.) As relationsj.e, as subsets af* x §, feature trees are partially
ordered by set inclusion. We say ttsds smaller than(or, is a prefix-subtree ¢br, subsumes
or, approximatept if s C t.

The subtree wtof a feature tred¢ at one of its nodesv is the feature tree defined by (as a
relation):

wt = {(v,A) | (wv,A) € t}.

If D is the domain of, then the domain ofvt is the sew D = {v | wv € D}. Thus,wt is
given as the mappingt : w—D — S defined on its domain byt(v) = t(wv). A feature tree
sis called asubtreeof a feature treeif it is a subtrees = wt at one of its nodew, and a direct
subtree ifw € F.

A feature treda with domainD is calledrational if (1) t has only finitely many subtrees and

(2) t is finitely branching; that is: for everywy € D, wF N D = {wf € D | f € F} is finite.
Assuming (1), the condition (2) is equivalent to saying that there exist finitely many features
f1,...,fasuchthaD C {fy,...,f.}*.

Constraints over feature treasill be defined as first-order formulae. We first fix a first-order
signatureS W F by taking sorts as unary and features as binary relation symbols. Moreover,
we fix an infinite alphabet ofariablesand adopt the convention thaty, z always denote
variables. Under this signature, every term is a variable andtamic formulais either

a feature constraintfy (f(x,y) in standard notation), a sort constrafum (A(x) in standard
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A Feature Constraint System 5

notation), an equatior =y, 1 (“false”), or T (“true”). Compound formulae are obtained as
usual by the connectives, V, —, «<», - and the quantifierd and¥. We used¢ and¥¢ to
denote the existential and universal closure of a formgyleespectively. Moreovel/(¢) is
taken to denote the set of all variables that occur free in a forgwlehe lettersp and will
always denote formulae. In the following we will not make a distinction between formulae
and constraints; that is,anstraintis a formula as defined above.

S @ F-structuresandvalidity of formulae inS v F-structures are defined as usual. Since we
consider only§ v F-structures in the following, we will simply speak of structuresth&ory

is a set of closed formulae. #odelof a theory is a structure that satisfies every formula of
the theory. A formulap is aconsequencef a theoryT (T |= @) if V¢ holds in every model

of T. A formula ¢ is satisfiablein a structureA if §I¢ holds in.A. Two formulaeg, ¢ are
equivalenin a structureA if 9(¢ < %) holds inA. We say that a formula entailsa formula

¥ in a structureA [theory T] and write¢ =4 ¥ [¢ 1 ¢] if 9(¢ — ) holds in 4; i.e,

A |= V(¢ — ) [is a consequence df i.e, FT |= V(¢ — %)]. A theoryT is completeif for
every closed formula either¢ or —¢ is a consequence ot

Thefeature tree structurd is theS w F-structure defined as follows:

¢ the domain off is the set of all rational feature trees;
o tc AT ifand only ift(¢) = A (t's root is labeled withh);
o (s,t) e f7 ifand only iff € Dsandt = fs(t is the subtree o atf).

Roughly, the Herbrand constramt= A(xi, X2), whereA is a binary constructor symbol, and

the feature constraimyA ylx; Ay2xp, whereAisasortand, 2, ... are features, correspond to

each other. (We will see later that this correspondance is a formal one for saitigfiat nor

for entailment.) Now it becomes clear what we mean by saying that feature constraints are finer
grained. Also, feature trees are more general in the sense that they satisfy more constraints.
For example, no constructor trgeatisfies botly = A(xq, X2) andy = A(x1, X2, X3).

Next we discuss the expressivity of our constraints with respect to feature trees (that is, with
respect to the feature tree struct@rgby means of examples. The constraint:

=3y(xfy)
says thatx has no subtree dt that is, that there is no edge departing frais root that is
labeled withf. To say thak has subtreg at pathf; - - - f,, we can use the constraint:
dz;--- Hzn_l(xflzl ANzfozo AL A zn_lfny).

Now let us look at statements we cannot express. One simple unexpressible stategnisnt is “
a subtree ok’ (that is, “dw: y = wx’). Moreover, we cannot express thats smaller than

y. Finally, if we assume that the alphalsgtof features is infinite, we cannot say thahas
subtrees at featurds, . . ., f, but no subtree at any other feature. In particular, we then cannot
say thaixis a primitive feature tree; that is, has no proper subtree.

The theoryFTy is given by the following two axiom schemes:
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6 Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka

(AXl) VYxVyVz(xfyAaxfz—y=2) (forevery featurd)

(AX2) Vx(AXABx— L) (forevery two distinct sorté andB).

The first axiom scheme says that features are functional and the second scheme says that
sorts are mutually disjoint. Clearly; is a model ofFTy. Moreover,FTy is incomplete (for
instance Ax(Ax) holds in7" but not in other models d¥Tp). We will see in the next section
thatFTg plays an important role with respect to basic constraint simplification.

Next we introduce some additional notation needed in the rest of the paper. This notation will
also allow us to state a third axiom scheme that, as shown in [7], exEehd® a complete
axiomatization of7 .

Throughout the paper we assume that conjunction of formulae is an associative and commu-
tative operator that has as neutral element. This means that we idengify (¢ A 8) with

6 A (¢ A @), andg A T with ¢ (but not, for examplexfy A xfy with xfy). A conjunction of
atomic formulae can thus be seen as the finite multiset of these formulae, where conjunction is
multiset union, and’ (the “empty conjunction”) is the empty multiset. We will write C ¢

(ory € ¢, if ¢ is an atomic formula) if there exists a formulsuch that) A ¢’ = ¢.

We will use an additional atomic formukd] (“f undefined ox”) that is taken to be equivalent
to -3y (xfy), for some variablg (other tharx).

Only for the formulation of the third axiom we introduce the notion ebéved-clausewhich
is either T or a conjunctiong of atomic formulae of the fornxfy, Ax or xfT such that the
following conditions are satisfied:

1. if Ax€ ¢ andBx € ¢, thenA = B;
2. ifxfy € ¢ andxfze ¢, theny = z
3. if xfy € ¢, thenxfT ¢ ¢.

Given a solved-clausg, we say that a variabbeis dependenin ¢ if ¢ contains a constraint
of the formAx, xfy or xfT, and useDV(¢) to denote the set of all variables that are dependent

in ¢.
The theoryFT is obtained fronFTg by adding the axiom scheme:

(AB) V3IXé (for every solved-clausg andX = DV(g)).
Theorem 1 The feature tree structurg is a model of the theory FT.

Proof: We will only show that7 is a model of the third axiom. LeX be the set of dependent
variables of the solved-clauge X = DV(¢). Leta be any7 -valuation defined o (¢) — X; we
write the treex(y) asty. We will extenda on X such thatf, o = 4.

November 1992 Digital PRL



A Feature Constraint System 7

Givenx € X, we define the “punctual” treig = {(e, A)}, whereA € S is the sort such thakx € ¢,
if it exists, and arbitrary, otherwise. Now we are going to use the notigreefsunof Nivat [21],
wherew=1t = {(wy, A) | (v, A) € t} (“the treet translated byv"), and we define:

a(X) = [H{w 'ty | x5 y for some ye V(8), w € F*}.

Here the relation’ is given by:x ~5 X, andx 4 yif x5 y andy'fy € ¢, for somey € V(¢) and
somef € F. Since:

a(¥) = Jw ey | ...}

and, for a nodev of a(X), we(X) = a(y), it follows thate(x) is a rational tree and thét, o = ¢. 1

For another proof of this theorem see [7], which also provesilias a complete theory if the
alphabets of sorts and features are infinite.

A practical motivation for the assumption on the infinitenessFafand of S as well) is the

need to account for dynamic record field updates. It turns out that this semantical point of
view has advantages in efficiency as well. Thus, the algorithms we present in this paper for
entailment and for solving negative constraints on feature trees rely on the infiniternigss of
ands.

3 Basic Simplification

A basic constrainis either L or a possibly empty conjunction of atomic formulae of the form

Ax, xfy, andx = y. The following five basic simplificatiorrules constitute a simplification
system for basic constraints, which, as we will see, decides whether a basic constraint is
satisfiable in7".

1 xfy A XfzA ¢

" xfzZAy=zA ¢

AXA BXA ¢ A£B

1

AXA AXA ¢
AXA ¢

X=YA¢
X=YA@[X Y]

X € V(¢) andx £y

X=XA¢
¢
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8 Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka

The notationg[x < V] is used to denote the formula that is obtained frgrby replacing
every occurrence of with y. We say that a constraigt simplifies toa constrainty by a
simplification rulep if % is an instance gf. We say that a constraigtsimplifies taa constraint

¢ if either ¢ = v or ¢ simplifies tov in finitely many steps each licensed by one of the five
simplification rules given above.

Example 3.1 In order to check whether the two feature descriptigifis= u : A] and
y[f = v : A] are unifiable, in the sense of [3], we will simplify the basic constraint
XfUA YIVA AUANAVA Z=XAYy = Z

The following basic simplification chain, leads to a solved constraint (which, as shown
in [24, 5], exhibits unifiability):
XfuA YIVA AUA AVA Z= XAy =2Z

by Rule4 = xfuA yfvA AUA AVA Z= XAy =X

by Rule4 = xfuA XfvA AUA AVA Z=XAYy =X

byRulel = XxfVAAUAAVA U=VAZ=XAY=X

byRule4 = XxiVAAVAAVA U=VAZ=XAY=X

byRule3 = XxIVAAVA U=VAZ=XAYy=X

Using the same steps up to the last one, the consi@intyfvA AUA BVAZ= XAy =z
simplifies to L (in the last step, Rule 2 instead of Rule 3 is applied).

Proposition 1 If the basic constraing simplifies tay, then Flp |= ¢ « .

Proof: The rules 3, 4 and 5 perform equivalence transformations with respect to every structure.
The rules 1 and 2 correspond exactly to the two axiom schem&3 pand perform equivalence
transformations with respect to every modeFaf,. ]

We say that a basic constraibindsa variablexto y if x = y € ¢ andx occurs only once in

¢. At this point it is important to note that we consider equations as ordered; that is, assume
thatx = y is different fromy = xif X # y. We say that a variabbeis eliminated or bound by

¢, if ¢ bindsx to some variablg.

Proposition 2 The basic simplification rules are terminating.

Proof: First observe that the simplification rules do not add new variables and preserve eliminated
variables. Furthermore, Rule 4 increases the number of eliminated variables by one. Hence we know
that if an infinite simplification chain exists, we can assume without loss of generality that it only
employs the Rules 1, 3 and 5. Since Rule 1 decreases the number of feature congfgéinthich

is not increased by Rules 3 and 5, we know that if an infinite simplification chain exists, we can
assume without loss of generality that it only employs Rules 3 and 5. Since this is clearly impossible,
an infinite simplification chain cannot exist. ]
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A Feature Constraint System 9

A basic constraint is calledormal if none of the five simplification rules applies to it. A
constraintp is called anormal formof a basic constraint if ¢ can be simplified t@ and+ is
normal. Asolved constrainis a normal constraint that is different from

So far we know that we can compute for any basic constgaamnormal forme) by applying
the simplification rules as long as they are applicable. Although the normalfamay not
be unique forg, we know thatp and are equivalent in every model &fTp. It remains to
show that every solved constraint is satisfiabl&in

Every basic constrairg has a unique decompositign= ¢y A ¢ such thaipy is a possibly
empty conjunction of equationg ‘= y” and andgg is a possibly empty conjunction of feature
constraints fy’ and sort constraints&x’. We call ¢y thennormalizerand andps thegraph

of ¢.
Proposition 3 A basic constraing # L is solved if and only if the following conditions hold:

1. an equation x= y appears inp only if x is eliminated inp;
2. the graph ofp is a solved clause;

3. no primitive constraint appears more than oncein

Proposition 4 Every solved constraint is satisfiable in every model of FT.

Proof: Let ¢ be a solved constraint andl be a model ofT. Then we know by axiom schenfe3
that the graphpg of a solved constraing is satisfiable in afFT-model. A. A variable valuatiorw
into A such that4, o = ¢ can be extended on all eliminated variables simplyxoy) = «(y) if
X=Yy € ¢,such that4, o E ¢. ]

The following theorem states that basic simplification yields a decision procedure for satisfia-
bility of basic constraints.

Theorem 2 Lety be a normal form of a basic constraigit Theng is satisfiable in7” if and
onlyify # L.

Proof: Since¢ and are equivalent in every model &To and7 is a model ofFTy, it suffices
to show thaty is satisfiable in7 if and only if ¢ # 1. To show the nontrivial direction, suppose
¥ # L. Theny is solved and we know by the greding poposition thaty is satisfiable in every
model of FT. SinceT is a model ofFT, we know thaty is satisfiable ir7". |

The next theorem implies the elementary equivalence of all modefsT okith respect to
satisfiability of basic constraints. Namely, satisfiability in any of the modeETofmeans
satisfiability in all of them. Also, it is sufficient to test satisfiability in the mo@ehlone.
Finally, only the first two axioms are relevant for satisfiability.
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10 Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka

Theorem 3 For every basic constraing the following statements are equivalent:

T =3¢ < Imodeldof FTp: AE J¢ < FTE 3¢

Proof: The implicationl = 2 holds sincel is a model oFTy. The implicatior8 = 1 follows from
the fact thaZ is a model of~T. It remains to show th& = 3.

Let ¢ be satisfiable in some model &g. Then we can apply the simplification rules ¢oand
compute a normal formg such thatyp and+ are equivalent in every model &To. Hencey is
satisfiable in some model &To. Thusy # 1, which means thap is solved. Hence we know by
the preceding mposition that) is satisfiable in every model &T. Since¢ andy are equivalent in
every model oFToCFT, we have thas is satisfiable in every model &iT. 1

4 Entailment, Independence and Negation

In this section we discuss some general properties of constraint entailment. This prepares the
ground for the next section, which is concerned with entailment simplification in the feature
tree constraint system.

Throughout this section we assume tbis a structure;y and¢ are formulae that can be
interpreted in4, and thatX is a finite set of variables.

We say thaty disentailsp in A if y entails—¢ in A. If v is satisfiable in4, theny cannot both
entail and disentaidX¢ in A. We say thaty determines in A if 4 either entails or disentails
¢in A

Given v, ¢ and X, we want to determine in aimcrementalmanner whethet entails or
disentails3X¢. Typically, ¥ will not determinedX¢ whendXe¢ is considered first, but this
may change when is strengthened tg A 4’. To this end, we use the conceptrefative
simplificationof constraints first introduced in [6]. The basic idea leading to an incremental
entailment checker is to simplify with respect to (relatively to) theontexty and thelocal
variables X Given~y, X and¢, simplification must yield a formulg such that:

¥ Ea IX¢p « IXP.
The following facts provide some evidence that this is the appropriate invariant for entailment
simplification.

Proposition 5 Let v =4 3X¢ « IXy. Then:

1. vy Ea 3Xg ifand only ify =4 3Xg;
2. v =4 23X if and only ify =4 —IXe;
3. if ¥ = L, theny =4 —3X4;

4. if 3Xy holdsininA, theny =4 3X¢.
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A Feature Constraint System 11

Statements 1 and 2 say that it does not matter whether entailment and disentailment are decided
for ¢ or ¢. Statement 3 gives a local condition for disentailment, and Statement 4 gives a
local condition for entailment. The entailment simplification system for feature trees given in
the next section will in fact decide entailment and disentailment by simplifying such that the
condition of Statement 4 is met in the case of entailment, and that the condition of Statement
3 is met in the case of disentailment.

In practice, one can ensure by variable renaming that no variabkeanfcurs iny. The
next fact says that then it suffices if entailment simplification respects the more convenient
invariant:

AETANp o yAY.

This is the invariant respected by our systefn Proposition 8).

Proposition 6 Let XN V(y) = 0. Then:

LifAEYANd o yAY, theny E4 IXP « IXY;

2. v E4 —3X¢ if and only ify A ¢ is unsatisfiable inA.

That is, the conjunction A ¢ is satisfiable if and only ify either entailsiX¢, or it does not
determinedXe.

The independence of negative constraints [9, 16, 17] is an important property of constraint
systems. If it holds, simplification of conjunctions of positive and negative constraints can be
reduced to entailment simplification of conjunctions of positive constraints. In order to see
why, observe thay A —¢1 A ... A ¢ is unsatisfiable if and only i entails¢y V ...V ¢n.

To define the independence property, we assume that a constraint system is a pair consisting
of a structure4 and a set of basic constraints. From basic constraints one can build more
complex constraints using the connectives and quantifiers of predicate logic. We say that a
constraint system satisfies timelependence propertfy

vy Ea X191 V...V IXndn if and only ifJi: v =4 IX @i

for all basic constraints, ¢1, . . ., ¢, and all finite sets of variables, . . ., Xp.

Proposition 7 If a constraint system satisfies the independence property, then the following
statements holdy( ¢ and ¢4, . . ., ¢, are basic constraints):

1.y A=3X191 A .. A =3Xndn  unsatisfiable ind if and only if3i: v =4 3Xi¢i;

2. ifyA=IX191A. . AT Xnen is satisfiableind, themy A—3IXi91A. . AT =4 IXD
if and only ify =4 3X¢.
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12 Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka

5 Entailment Simplification

We will now use the general setting of the previous section for the specific case of feature tree
constraints. Throughout this section we assume-hata solved constraint andis a finite

set of variables not occurring in We will call 4 thecontext the variables irX local, and all

other variableglobal. Relative simplification is always carried out with respect to the context.

If Tis a theory andp ands) are possibly open formulae, we writel=r 9 (read: ¢ entailsy
inT) if V(¢ — v) holdsinT.

The next theorem expresses the same observations stated before Theorem 3 regarding
disentailment rather than satisfiability.

Theorem 4 For every basic constraing, the following equivalences hold:

v =7 —3Xg if and only ify Egr, —3X¢ if and only ify Egr —3Xe.

Proof: Implication “2 = 3" holds sinceFTy CFT. Implication “3 = 1" holds since7 is a model of
FT. To show implication 1 = 2", supposey =7 —3X¢. Then we know by Proposition 6 thatA ¢
is unsatisfiable ir¥. Thus we know by Theorem 3 thatA ¢ is unsatisfiable in every model B1T,.
Hence we know by Proposition 6 that=Fr, ~3X¢é. |

For every basic constraigtand every variablg we define:

X = { y ifx=ye ¢andxis eliminated:;
" Ix otherwise.

A basic constrainy is X-orientedif x = y € ¢ always impliesx € X ory ¢ X. A basic
constraintp is pivotedif x =y € ¢ implies thatx is eliminated inp (and thery is a “pivot”).

The following entailment simplification rulesimplify basic constraints to basic constraints
with respect to a context and local variableX.

XfuA ¢ B
TERvW yive vy A ¢, ¢y =X
xfun yfv C v,

¢
2. ———— PX = @y, U ¢V,
QU= VA ¢ X-oriented and pivoted

3.2 AXABYyCyng, ¢x=dy, A#B

e

AXA ¢

+ 7

AYETAG, gy=X
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5. XZYNO {x#y,xevw),

X=YA@[X Y] (xe Xory ¢ X)
X=YA¢
7. * X=Y€7, XEV(¢)
$lx vl ’
X=XA¢
8 —
¢

We say that a basic constraisimplifiesto a constrain® with respect tey and Xif ¢ = v or
¢ simplifies toe in finitely many steps each licensed by one of the eight simplification rules
given above. The notions abrmalandnormal form with respect tg are defined accordingly.

Example 5.1 Assume, in the context of functions in LIFE [6] (the case of guarded Horn
clauses [18] is quite similar), that a functiumis defined in the fornfun(z, z) — ..., and
that it is called asun(x[f = u: A], y[f = v: B]). That is, the actual parameter pair of
feature descriptions(f = u: Al,y[f = v : B]) has to be tested upon matching of (and
incompatibility with) the formal parameter pdiz, z). (This is in order to know whether
that function call fires, fails, oresiduateg As shown in [24, 5], this corresponds to testing
whether thecontexty = xfu A yfvA AuA Bventails theguard3z(x = zAy = 2).

Let X = {z}. Then we have the following simplification chain with respecj ndX:

X=ZAYy=12Z

by RuleE6 =, x zZ=XAy=12Z

by RuleES =, x Z=XAy=X

byRUuleE2 =,x U=VAZ=XAYy=X

byRule E3 =,x L
Let us now take as context = xfu A yfv A Au. Thend = u=VAZ=XA y = Xis
normal with respect t§ andX. We shall see that this normal form tells us thatoes not
determinep. If 4 gets strengthened eitherjoA Bv (as above), or t§ A x =y, then the
strengthened context does determine: it disentails in the first and entails in the second case.

The basic normal form 6f A x = yisyfuA AUA vV = UA X = y; with respect to this context
¢ simplifiestoz = y.

In the previous examplej = z = x Ay = x simplifies tog; = U=VA zZ= XAy = X with
respect toy = xfuA yfvA AuA BvandX = {z}. This corresponds to a basic simplification as
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14 Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka

follows:
Yy AN

= XfuAYlVAAUABVY AzZ=XAy=X
by Rule B4 = xfuA xftvVAAUABV AZ=XAy=X
by Rule B1 = XVAAUABY AU=VAZ=XAYy=X
= 7 A
We observe that A ¢, is equal toy’ A ¢}, modulo renaming by ¢y = x andu by ¢1u = v,
and modulo the repetition offv.

Lemma 1 Let ¢ simplify tog, with respect toy and X, not using Rule E6 (in an entailment
simplification step). Then A ¢ simplifies to someg’ A ¢} which is equal toy A ¢1 up to
variable renaming and repetition of conjuncts.

Proof: Clearly, each entailment simplification rule, except for E6, cpuoess directly to a basic
simplification rule (namely, E1 and E2 to B1, E3 to B2, E4 to B3, E5 and E7 to B4, and E8 to B5).

If the application of the entailment simplification rulegaelies on a condition of the forgx = y

or ¢x = ¢y wherex # ¢gxory # ¢y, thenx = ¢x € ¢ ory = ¢y € ¢, and Rule B4 is first applied to

¥ A ¢, eliminatingx by ¢x (y by ¢y).

When comparingy A ¢1 andy’ A ¢}, renamings take account of these variable eliminations. Note
that, if the rule applied t@ is E2, theny’ has one feature constraixfiv less thany — which, after
renaming, has a repetition of exactly this constraint. ]

Proposition 8 If ¢ simplifies tay with respect tey and X, thery A ¢ and~y A ¢ are equivalent
in every model of F{.

Proof: Follows from Lemma 1 and Proposition 1. ]

Proposition 9 The entailment simplification rules are terminating, provigexhd X are fixed.

Proof: First we strengthen the statement by weakening the applicability condigipnrs x in

Rules E1 and E4 tgy = ¢x. Then from Lemma 1 follows: (*) Each entailment simplification rule
applies top;1 with respect toy andX if and only if it applies tog} with respect tey” andX — except
possibly for E5, when the corresponding variable has already been eliminated in an “extra” basic
simplification step.

If ' has one conjunct of the forxfu less thany, then (*) still holds; regarding a new application
of E2 this is ensured by its (therefore so complicated. . .) applicability condition.

With Condition (*), it is possible to prove by induction an For every entailment simplification
chaing, ¢1, .. ., ¢n With respect toy andX, there exists a ‘basic plus Rule E6’ simplification chain
YA, VIAPY, ..., Tnk AP Wherek > 0is the number of “extra” variable elimination steps. Since,
according to Roposition 2, basic simplification chains are finite, so are entailment simplification
chains. |
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So far we know that we can compute for any basic constgamhormal formy) with respect

to 4 and X by applying the simplification rules as long as they are applicable. Although the
normal forms may not be unique, we know thatA ¢ andy A ¢ are equivalent in every
model of FTy.

Proposition 10 For every basic constraint one can compute a normal forgnwith respect
toy and X. Every such normal formh satisfies:y =7 3X¢ if and only ify =7 3X¢, and
Y |:|:T E|X¢ if and onIy If‘)’ |:|:T E|X’l/1.

Proof: Follows from Propositions 8, 9, 6 and 5. ]

In the following we will show that from the entailment normal forfnof ¢ with respect to

~ it is easy to tell whether we have entailment, disentailment or neither. Moreover, the basic
normal form ofy A ¢ is exactlyy A ¥ in the first case (and in the second, where L = 1),

and “almost” in the third casef. Lemma 1).

Proposition 11 A basic constraing # L is normal with respect tg and X if and only if the
following conditions are satisfied:

¢ is solved, X-oriented, and contains no variable that is boung;by

if px = y and xfue ~, then yfv¢ ¢ for every v;

if px = ¢y and xfue v and yfve v, thengu = ¢v;

if px = y and Axe v, then By¢ ¢ for every B;

a » 0 bd e

if px = ¢y and Axe v and Bye v, then A= B.

Lemma 2 If ¢ # L is normal with respect tg and X, theny A ¢ is satisfiable in every model
of FT.

Proof: Let¢$ # 1 be normal with respect tpandX. Furthermore, lef = yy Ayg andé = ¢n A dc
be the unique decompositions into normalizer and graph. Since the variables bogdbgur
neither inyg nor in ¢, it suffices to show thaic A ¢n A éc is satisfiable in every model &iT.

Let ¢n(vs) be the basic constraint that is obtained fregby applying all bindings offy. Then
Y6 A PN A ¢ IS equivalent tapn A dn(va) A ¢ and no variable bound by occurs ingn(yc) A de.
Hence it suffices to show that(vs) A ¢c is satisfiable in every model &T. With Conditions 2-5
of the preceding mposition it is easy to see that(ys) A ¢c is a solved clause. Hence we know by
axiom schem@x3thatén(vc) A ¢c is satisfiable in every model &1T. ]

The following theorem states that relative simplification yields a decision procedure for
disentailment of basic constraints.
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16 Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka

Theorem 5 (Disentailment) Let be a normal form ofp with respect toy and X. Then
v =1 —3X¢ if and only ifyp = 1.

Proof: Suppose) = L. Theny =7 —3Xy and hencey =7 —3X¢ by Proposition 10.

To show the other direction, suppogé=7 —3X¢. Theny =7 —3Xy by Proposition 10 and hence
¥ A 9 unsatisfiable ir?” by Proposition 6. Sinc& is a model ofFT (Theorem 1), we know by the
preceding lemma thai = L (sincey is assumed to be normal). ]

We say that a variablg is dependentin a solved constraing if ¢ contains a constraint of
the formAx, xfy or x = y. (Recall that equations are ordered; tlyus not dependent in the
constraintx = y.) We useDV(¢) to denote the set of all variables that are dependent in a
solved constraing.

In the following we will assume that the underlying signatsire F has at least one sort and
at least one feature that does not occur in the constraints under consideration. This assumption
is certainly satisfied if the sighature has infinitely many sorts and infinitely many features.

Lemma 3 Letgy,..., ¢, be basic constraints different from, and X, .. ., X, be finite sets of
variables disjoint fronV(y). Moreover, for every + 1, ..., n, let¢; be normal with respect to
~ and X, and letg; have a dependent variable thatis notin Xheny A —3X1¢1 A .. .A=3Xqén
is satisfiable in every model of FT.

Proof: Lety = vy A vc be the unique decomposition gfinto normalizer and graph. Since the
variables bound byy occur neither inyg nor in anyg;, it suffices to show thags A =3IXgd1 A ... A
—3Xnhon is satisfiable in every model ¢fT. Thus it suffices to exhibit a solved clauSeuch that
v C 6 and, for every = 1,...,n, V(6) is disjoint withX; andé A ¢; is unsatisfiable in every model
of FT.

Without loss of generality we can assume that evéng disjoint withV(y) andV(¢;) — X; for all j.
Hence we can pick in every a dependent variable such that; ¢ X for anyj.

Letz, ...,z be all variables that occur on either side of equakio y € ¢;,i = 1,...,n (recall
thatx; is fixed fori). None of these variables occurs in aysince every; is X;-oriented. Next we
fix a featureg and a sorB such that neither occurs 4nor any¢;.

Now é is obtained fromy by adding constraints as follows: A € ¢;, then addBx; if xfy € ¢,
then addkfT; to enforce that the variables, . . ., z are pairwise distinct, add:

Z9%-1 A ... N 29z A gl .

It is straightforward to verify that these additionsytgield a solved clausé as required. ]
Proposition 12 If ¢ is solved andV(¢) C X, then FT= V3Xg.

Proof: Let ¢ = ¢n A ¢ be the decomposition af in normalizer and graph. Since every variable
bound by is in X, it suffices to show that3X¢¢ is a consequence &fT. This follows immediately
from axiom schemé\x3sincedg is a solved clause. |
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The following theorem states that relative simplification yields a decision procedure for
entailment of basic constraints.

Theorem 6 (Entailment) Let ¢ be a normal form of¢ with respect toy and X. Then
v =7 3Xé ifand only if ¢ # L and DV(y) C X.

Proof: Supposey =7 3X¢. Then we knowy =7 3Xt by Proposition 10, and thusA —3Xy is
unsatisfiable irf7. Sincew is solved, we know that is satisfiable il and hence that A 3Xy is
satisfiable in7. Thusy # L. Sincey A =3Xy is unsatisfiable ir¥” and7T is a model ofFT, we
know by Lemma 3 thabV(y) C X.

To show the other direction, suppage# | andDV(y) C X. ThenFT = QEIX¢ by Proposition 12,
and hencg = V3Xy. Thusy =7 3Xy, and hence =7 3X¢ by Proposition 10. ]

The next theorem shows that it does not matter whether entailment of basic constraints is
interpreted in the algebraic semantice.( in the feature tree structurE) or in the logical
semantics (given by the axiomsBT). Now, of course, the third axiom is necessary (take, for
example, as context the true constraint

Theorem 7 Let ¢ be a basic constraint. Thenl=7 3X¢ if and only ify =g 3Xé.

Proof: One direction holds sinc€ is a model of FT. To show the other direction, suppose
v = 3Xé. Without loss of generality we can assume thas normal with respect tg and X.
Hence we know by Theorem 6 that£ L andDV(¢) C X. ThusFT = V3X¢ by Proposition 12
and hencey g7 3Xé. ]

We finally show that our constraint system enjoys the property which allows one to solve
conjunctions of negative constraints through relative simplification.

Theorem 8 (Independence) Let ¢4, ..., ¢n be basic constraints, andiX . ., X, be finite
sets of variables. Then:

Y |:T dX1¢1 V ...V IXne, if and onIy ifdi: ¥ |:T IXi ;.

Proof: To show the nontrivial direction, supposel=7 IX1¢1 V...V IX dn. Without loss of
generality we can assume that, foria# 1,...,n, X is disjointfromY (%), ¢; is normal with respect
toy andX;, andg; # L. Sincey A ~3X 1 A ... A ~IX,hp IS unsatisfiable ir and7 is a model of
FT, we know by Lemma 3 th&®V(¢«) C X« for somek. Hencey =7 IXy¢« by Theorem 6. 1

6 Conclusion

We have presented a constraint syst€mfor logic programming providing a universal data
structure based on rational feature trdes.accommodates record-like descriptions. We think
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that these are superior to the constructor-based descriptions of Herbrand in that they allow
expressing partial knowledge in a more flexible way.

The declarative semantics BT is specified both algebraically (the feature tree strucitye
and logically (the first-order theofyT given by three axiom schemes).

The operational semantics fBil is given by an incremental constraint simplification system,
which can check satisfiability of and entailment between constraints. Sificatisfies the
independence property, the simplification system can also check satisfiability of conjunctions
of positive and negative constraints.

We see four directions for further research.

First, FT should be strengthened such that it subsumes the expressivity of rational constructor
trees [9, 10]. As isFT cannot express thatis a tree having direct subtrees at exactly the
featuresfq, ..., f,. It turns out that the systei@FT [26] obtained fromFT by adding the
primitive constraint:

X{fl, .. .,fn}

(x has direct subtrees at exactly the featdies. ., f,) has the same nice propertiesras In
contrast td=T, CFT can express constructor constraints; for instance, the constructor constraint
x = A(y, z) can be expressed equivalentlyfash x{1, 2} A x1y A X2z, if we assume tha is a

sort and the numbefs 2 are features.

Second, it seems attractive to extdfil such that it can accommodate a sottit& as used
in[1, 3, 4, 5, 25]. One possibility to do this is to assume a partial orden sorts and replace
sort constraint&x with quasi-sort constraintpA]x whose declarative semantics is given as:

[Alx = \/ Bx

B<A

Given the assumption that the sort orderit@as greatest lower bounds if lower bounds exist,
it seems that the results and the simplification system giver-focarry over with minor
changes.

Third, the worst-case complexity of entailment of basic constraints checkif@ should be
established. We conjecture it to be quasi-linear in the sizeafd¢, provided the available
features (finitely many) are fixealpriori.

Lastly, implementation techniques fBl at the level of the Warren abstract machine [2] need
to be developed.
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