
Mobile Gateway

Mikael Degermark*, Björn Nordgren*
Internet Research Institute
HP Laboratories Bristol
HPL-IRI-98-004
September, 1998

IP performance,
TCP, UDP,
mobile gateway,
network
performance,
wireless network,
header compression,
snoop protocol,
fast handoff

We present an architecture that addresses a number of
issues that would otherwise severely hamper network
performance in a wireless network. By combining a
number of techniques that improve IP performance, on
low bandwidth links, both throughput and bandwidth
utilization are increased. Special attention has been
devoted to ensure good performance of TCP but other
protocols such as UDP will also benefit from
deployment of the Mobile Gateway techniques.

*Swedish Institute of Computer Science, Box 1263, SE-164 29 Kista, Sweden
©Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

1 Introduction

Wireless links are becoming more popular as a means of accessing corporate Intranets and

the Internet. As computers get smaller, portable computers are becoming more popular

which is fueling a demand for users to be able to access a network from more locations

than just their desktop. Wireless technology is also becoming a promising way to network

various appliances. The recent release of new radio spectrum at 5GHz by the FCC for

unlicensed in-building use is both a response to these demands and a fuel for the rapid

development and deployment of high speed wireless links. In addition to providing conve-

nient Intranet access, such links could very well replace existing telephony infrastructure

in many corporate environments. Wireless links have di�erent characteristics from wired

links. These di�erences can cause a serious loss of performance when a protocol, for ex-

ample TCP, which was designed to run over fast, relatively reliable links, are run over a

wireless link.

2 Mobile Gateway

The project combines several methods for improving performance when transmitting

TCP/IP tra�c over a wireless network with frequent movement between base stations.

The methods originate from several researchers [1, 2, 5], but have never been combined be-

fore. Together they improve wireless performance for both bulk transfers and audio/video

tra�c in the presence of bit-errors on the wireless link and frequent handovers between

base stations.

The means for achieving mobility at the network protocol level is Mobile IP. In conjunction

with using Mobile IP, we have combined

� header compression - which reduces the header size and thus the overhead and

packet-error rate.

� the snoop protocol - a scheme for local retransmissions that snoops into TCP headers

to deduce the state of TCP connections and thus can make better decisions on what

and when to retransmit.

� fast hando� - a mechanism that avoids exposing local movements of a mobile host.

This avoids wide-area signaling and reduces processing at corresponding hosts.

These are combined such that the performance of header compression and the snoop

protocol are maintained across hando�s.

2

3 Mobile IP

Mobile IP is a routing protocol operating at the IP level (level-3). It allows mobile

hosts to retain their IP address when changing their point-of-attachment to the Internet.

That would otherwise be impossible because each IP address encodes a speci�c point-of-

attachment. Two important consequences of using Mobile IP are that a mobile host, MH,

can be reached with its usual IP address regardless of where it happens to be attached

to the Internet, and that sessions involving the mobile host can be maintained across

movements. The latter is bene�cial for mobile hosts that use wireless technologies and

during movement may attach to several di�erent subnets.

There are Mobile IP speci�cations for both IPv4 and IPv6. Unless stated otherwise, the

short description given here is for IPv4. Mobile IP for IPv6 is simpler in several ways

because IPv6 is a newer protocol with more functionality, where mobility was a goal from

the start.

Mobile IP introduces two new architectural entities, the home agent, HA, and the foreign

agent, FA. The home agent is attached to the home network of the mobile host, i.e., the

network where packets sent to its home address end up. When the mobile host is away

from its home network, the home agent captures packets sent to the home address and

tunnels them to where the mobile host happens to be at the time.

Tunneling means that the original packet is encapsulated with an additional IP header

whose destination address is the end-point of the tunnel. At the tunnel end-point, the

extra header is stripped o� and the packet is forwarded to the mobile host.

A foreign agent, FA, serves as the tunnel end-point in Mobile IP. In addition to decap-

sulating tunneled packets, it allows the MH to obtain a care-of address which belongs to

the foreign network, i.e., packets with that address are routed there. The MH contacts

the HA and registers the care-of address with it. It is the care-of address that serves as

the tunnel destination address. In addition, the FA may participate in handovers to a

new FA by forwarding packets that arrive after the MH has left. This requires that the

MH informs its old FA of its new care-of address.

To summarize, a packet sent to the mobile host will be routed to the home agent which

tunnels it to the foreign agent which forwards it to the mobile host. This detour can be

avoided by a technique called route optimization. Route optimization requires that the

corresponding host, CH, the host that sends packets to the MH, has a binding cache in

which it can remember bindings between home addresses and care-of addresses. The MH

can then inform the CH of its care-of address and the CH can tunnel packets directly to

the FA without involving the HA. With route optimization, the MH needs to inform its

HA, the old FA, and all its CHs of its new care-of address whenever it moves.

3

There are really two kinds of users of mobile IP: those who are attached to the wired

network and those who use a wireless link layer. For the former user mobile IP works

well, but for the latter a number of challenges arise that are not explicitly addressed by

mobile IP.

The bandwidth limitations of some wireless links are causing problems. This is further

accentuated by the larger headers imposed by mobile IP. Consider the case when two

mobile nodes are sending packets to each other, for example during a phone conversation,

and route optimization is being used. The outgoing packets going over the wireless links

will all have an extra IP header (IPv4) or routing header (IPv6). The header is likely to

bel larger than the actual audio data in the payload, an obvious waste of bandwidth. For

IPv4 there is a standardized way to reduce the inner header of an encapsulated IP header

from 20 bytes to 8-12 bytes [9], that can reduce the overhead somewhat on the wireless

link and over the wired Internet. Although this technique reduces the header from 48

bytes to 32-40 bytes, the large headers are still a problem.

Wireless user roam more than their wired counterparts. This becomes a problem when

you realize that all movement is exposed to the home agent.1 Apart from causing excess

control tra�c over the Internet the potentially large distances between home agents and

foreign agents produces latency and packet loss during the hando� phase.

Wireless media typically also has bit-error rates orders of magnitude higher than wired

media. While this is not caused by mobile IP it will noticeably degrade the performance of

TCP, as TCP was designed under the assumption that packet loss is caused by congestion

and will reduce its sending rate whenever it detects that a packet is lost.

4 Header Compression

To battle the ill e�ects of increasing headers and limited bandwidth we deploy a method

known as header compression, originally invented by Van Jacobson [7]. Header compres-

sion is described in [6] and [5]. The major bene�t with our scheme compared to Van

Jacobsons is that his scheme handled only TCP/IPv4 whereas our copes with both TCP

and non TCP tra�c, most notably UDP. Our scheme also handles all kinds of tunneling2.

Header compression is di�erent from general compression algorithms such as Lempel Ziv

compression. The header compression algorithm makes use of detailed knowledge of how

1There is work within IETF that addresses this problem but to the best of our knowledge there is

nothing standardized yet.
2We are by no means trying to indicate that Van Jacobson has made a mistake. The reason he did

not include support for other things than TCP/IPv4 in his scheme is merely that there were no incentive

for doing so at that point in time.

4

the headers are composed and how the di�erent header �elds change between successive

headers. The key observation that allows e�cient header compression is that in a packet

stream, most �elds are identical in headers of consecutive packets. For example, �gure 1

show a UDP/IPv6 header with the �elds expected to stay the same colored grey. As a �rst

approximation, you may think of a packet stream as all packets sent from a particular

source address and port to a particular destination address and port using the same

transport protocol.

Payload Length Hop Limit

Source Address

Destination Address

Checksum

Source Port

Length

Flow LabelPrio

Next Hdr

Vers

IPv6 header followed by UDP header (48 bytes)

Destination Port

Figure 1: Unchanging �elds of UDP/IPv6 packet.

With this de�nition of packet stream, in �gure 1 addresses and port numbers will clearly

be the same in all packets belonging to the same stream. The IP version is 6 for IPv6 and

the Next Hdr �eld will have the value representing UDP. If the Flow Label �eld is nonzero,

the Prio �eld should by speci�cation not change frequently. If the Flow Label �eld is zero,

it is possible for the Prio �eld to change frequently, but if it does, the de�nition of what

a packet stream is can be changed slightly so that packets with di�erent values of the

Prio �eld belong to di�erent packet streams. The Hop Limit �eld is initialized to a �xed

value at the sender and is decremented by one by each router forwarding the packet.

Because packets usually follow the same path through the network, the value of the �eld

will change only when routes change.

The Payload length and Length �elds give the size of the packet in bytes. Those �elds

are not really needed since that information can be deduced from the size of the link-level

frame carrying a packet, provided there is no padding of that frame.

The only remaining �eld is the UDP checksum. It covers the payload and the pseudo

header, the latter consisting of the Nxt Hdr �eld, the addresses, the port numbers and

5

Checksum could be computed from payload and values of
decompressed header, but is always included in the
compressed header as a safety precaution.

Grey fields of full header stored as compression state.
Generation field ensures correct matching of compressed
and full headers for decompression.

Destination Port

Hop Limit

Source Address

Destination Address

Checksum

Source Port

Flow LabelPrio

Next Hdr

Vers

CID

Unused

Full UDP header with CID and Generation association

ChecksumCID Generat

Generat

Corresponding compressed UDP header (4 bytes)

Figure 2: Full and compressed headers.

the UDP Length. Because the checksum �eld is computed from the payload, it will change

from packet to packet.

To compress the headers of a packet stream a compressor sends a packet with a full header,

essentially a regular header establishing an association between the non-changing �elds

of the header and a compression identi�er, CID, a small unique number also carried by

compressed headers. The full header is stored as compression state by the decompressor.

The CIDs in compressed headers are used to lookup the appropriate compression state

to use for decompression. In a sense, all �elds in the compression state are replaced by

the CID. Figure 2 shows full and compressed headers. The size of a packet might be

optimized for the MTU3 of the link, to avoid increasing the packet size for full headers,

the CID is carried in length �elds. Full UDP headers also contain a generation �eld used

for detection of obsolete compression state (see section 4.1).

All �elds in headers can be classi�ed into one of the following four categories depending

on how they are expected to change between consecutive headers in a packet stream. [6]

provides such classi�cations for IPv6 basic and extension headers, IPv4, TCP, and UDP

headers.

nochange The �eld is not expected to change. Any change means that a full header

must be sent to update the compression state.

inferred The �eld contains a value that can be inferred from other values, for exam-

ple the size of the frame carrying the packet, and thus need not be included in

3Maximum Transmission Unit, maximum size of packets transmitted over the link.

6

compressed headers.

delta The �eld may change often but usually the di�erence from the �eld in the previous

header is small, so that it is cheaper to send the change from the previous value

rather than the current value. This type of compression is used for �elds in TCP

headers only.

random The �eld is included as-is in compressed headers, usually because it changes

unpredictably.

Because a full header must be sent whenever there is a change in nochange �elds, it is

essential that packets are grouped into packet streams such that changes occur seldomly

within each packet stream.

The compression method outlined above would work very well in the ideal case of a

lossless link. In the real world bit-errors will result in lost packets and the loss of a

full header can cause inconsistent compression state at compressor and decompressor,

resulting in incorrect decompression, expanding headers to be di�erent than they were

before compressing them. A header compression method needs mechanisms to avoid

incorrect decompression due to inconsistent compression state and it needs to update the

compression state if it should become inconsistent. Our scheme use di�erent mechanisms

for UDP and TCP, covered in sections 4.1 and 4.2.

If header compression would result in signi�cantly increased loss rates, the gains from the

reduced header size could be less than the reduced throughput due to loss. All in all,

header compression would then decrease throughput. In the following, we show how this

can be avoided and the potential gain from header compression can be realized even over

lossy links.

4.1 UDP header compression

For UDP packet streams the compressor will send full headers periodically to refresh the

compression state. If not refreshed, the compression state is garbage collected away. This

is an application of the soft state principle introduced by Clark [3] and used for example

in the RSVP [13] resource reservation setup protocol, and the PIM [4] multicast routing

protocol.

The periodic refreshes of soft state provide the following advantages.

� If the �rst full header is lost, the decompressor can install proper compression state

when a refreshing header arrives. This is also true when there is a change in a

nochange �eld and the resulting full header is lost.

7

� When a decompressor is temporarily disconnected from the compressor, a common

situation for wireless, it can install proper compression state when the connection

is resumed and a refresh header arrives.

� In multicast groups, periodic refreshes allow new receivers to install compression

state without explicit communication with the compressor.

� The scheme can be used over simplex links as no upstream messages are necessary.

4.1.1 Header Generations

We do not use incremental encoding of any header �elds that can be present in the header

of a UDP packet. This means that loss of a compressed header will not invalidate the

compression state. It is only loss of a full header that would change the compression state

that can result in inconsistent compression state and incorrect decompression.

To avoid such incorrect decompression, each version of the compression state is associated

with a generation, represented by a small number, carried by full headers that install or

refresh that compression state and in headers that were compressed using it. Whenever

the compression state changes, the generation number is incremented. This allows a de-

compressor to detect when its compression state is out of date by comparing its generation

to the generation in compressed headers. When the compression state is out of date, the

decompressor may drop or store packets until a full header installs proper compression

state.

4.1.2 Compression Slow-Start

To avoid long periods of packet discard when full headers are lost, the refresh interval

should be short. To get high compression rates, however, the refresh interval should be

long. We use a new mechanism we call compression slow-start to achieve both these

goals. The compressor starts with a very short interval between full headers, one packet

with a compressed header, when compression begins and when a header changes. The

refresh interval is then exponentially increased in size with each refresh until the steady

state refresh period is reached. Figure 3 illustrates the slow-start mechanism, tall lines

represents packets with full headers and short lines packets with compressed headers. If

the �rst packet is lost, the compression state will be synchronized by the third packet and

only a single packet with a compressed header must be discarded or stored temporarily.

If the �rst three packets are lost, two additional packets must be discarded or stored, etc.

We see that when the full header that updates the compression state after a change is lost

in an error burst of x packets, at most x� 1 packets are discarded or stored temporarily

due to obsolete compression state.

8

Change Full headers

Figure 3: Compression slow-start after header change. All refresh headers carry the same

generation number.

With the slow-start mechanism, choosing the interval between header refreshes becomes

a tradeo� between the desired compression rate and how long it is acceptable to wait

before packets start coming through after joining a multicast group or coming out from

a radio shadow. We propose a time limit of at most 5 seconds between full headers and

a maximum number of 256 compressed headers between full headers. These limits are

approximately equal when packets are 20 ms apart.

4.1.3 Soft-state

We are able to get soft state by trading o� some header compression. A hard-state based

scheme does not send refresh messages and so will get more compression. The amount

of compression lost in our soft state approach, however, is minimal. Figure 4 shows the

0

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50 60 70 80 90 100

H
e
a
d
e
r

s
i
z
e

(
b
y
t
e
s
)

Full header interval(packets)

Average header size

Compressed header size

(H+(x-1)*C)/x
C

Figure 4: Average header size. H = 48, C = 4.

average header size when full headers of size H are sent every xth packet, and the others

9

have compressed headers of size C. For comparison, the diagram also shows the size of

the compressed header. The values used for H and C are typical for UDP/IPv6. It is

clear from �gure 4 that if the header refresh frequency is increased past the knee of the

curve, the size of the average header is very close to the size of the compressed header.

For example, if we decide to send 256 compressed headers for every full header, roughly

corresponding to a full header every �ve seconds when there are 20 ms between packets,

the average header is 1.4 bits larger than the compressed header.

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

B
a
n
d
w
i
d
t
h

e
f
f
i
c
i
e
n
c
y

Full header interval (packets)

Bw fraction used for data

D/((H+(x-1)*C)/x+D)
D/(C+D)

Figure 5: Bandwidth E�ciency. H = 48, C = 4, D = 36.

Figure 5 shows the bandwidth e�ciency, i.e., the fraction of the consumed bandwidth

used for actual data. The bandwidth e�ciency when all headers are compressed is shown

for comparison. The size of the data, D, is 36 bytes, which corresponds to 20 ms of GSM

encoded audio samples.

Figures 4 and 5 show that, when operating to the right of the knee of the curve, the size

of the compressed header is more important than how often the occasional full header is

sent due to soft state refreshes or changes in the header. The cost is slightly higher than

for handshake-based schemes, but we think that is justi�ed by the ability of our scheme

to compress on simplex links and compress multicast packets on multi-access links.

4.1.4 Error-free compression state

Header compression may cause the error model for packet streams to change. Without

header compression, a bit-error damages only the packet containing the bit-error. When

header compression is used and bit-errors occur in a full header, a single error could cause

loss of subsequent packets. This is because the bit-error might be stored as compression

10

state and when subsequent headers are expanded using that compression state they will

contain the same bit-error.

If the link-level framing protocol uses a strong checksum, this will never happen because

frames with bit-errors will be discarded before reaching the decompressor. However, some

framing protocols, for example SLIP [10], lack strong checksums. PPP[11] has a strong

checksum if HDLC-like framing [12] is used, but that is not required.

IPv6 must not be operated over links that can deliver a signi�cant fraction of corrupted

packets. This means that when IPv6 is run over a lossy wireless link the link layer must

have a strong checksum or error correction. Thus, the rest of this discussion about how

to protect against bit-errors in the compression state is not applicable to IPv6. These

mechanisms are justi�ed only when used for protocols where a signi�cant fraction of

corrupted packets can be delivered to the compressor.

It is su�cient for compression state to be installed properly in the decompressor if one

full header is transmitted undamaged over the link. What is needed is a way to detect

bit-errors in full headers. The compressor extends the UDP checksum to cover the whole

full header rather than just the pseudo-header since the pseudo-header doesn't cover all

the �elds in the IP header. The decompressor then performs the checksum before storing

a header as compression state. In this manner erroneous compression state will not be

installed in the decompressor and no headers will be expanded to contain bit-errors. The

decompressor restores the original UDP checksum before passing the packet up to IP.

Once the compression state is installed, there will be no extra packet losses with UDP

header compression. If the decompressor temporarily stores packets for which it does not

have proper compression state and expands their headers when a matching full header

arrives, there will be no packet loss related to header compression. The stored packets

will be delayed, however, and hard real-time applications may not be able to utilize them,

although adaptive applications might.

4.1.5 Reduced packet loss rate

Header compression reduces the number of bits that are transmitted over a link. So for

a given bit-error rate the number of transmitted packets containing bit-errors is reduced

by header compression. This implies that header compression will improve the quality of

service over wireless links with high bit-error rates, especially when packets are small, so

that the header is a signi�cant fraction of the whole packet.

Figure 6 shows the packet loss rate as a function of the bit-error rate of the media with

and without header compression. The packet loss rates for compressed packets assume

that the compression state has been successfully installed. Compressed headers, C, are 4

11

1e-05

0.0001

0.001

0.01

1e-07 1e-06

P
k
t

l
o
s
s

r
a
t
e

Bit error rate

1-(1-x)**(H+D100)
1-(1-x)**(C+D100)
1-(1-x)**(H+D_36)
1-(1-x)**(C+D_36)

Figure 6: Packet loss rate as a function of bit-error rate, with and without header compression

and for payloads of 36 and 100 bytes.

bytes, full and regular headers, H, are 48 bytes (IPv6/UDP). D is the size of the payload.

Thus, our header compression scheme for UDP/IP in addition to decreasing the required

header bandwidth, also reduces the rate of packet loss. The packet loss rate is decreased

in direct proportion to the decrease in packet size due to header compression. For the 36

byte payload, the packet loss rate is decreased by 52% and for the 100 byte payload by

30%. With tunneling, the packet loss rate decreases by 68% and 45%, respectively.

If bit-errors occur in bursts whose length is of the same order as the packet size, there will

be little or no improvement in the packet loss frequency because of header compression.

The numbers above assume uniformly distributed bit-errors.

4.2 TCP header compression

The currently used header compression method for TCP/IPv4 is by Jacobson [7], and is

known as VJ header compression. Jacobson carefully analyzes how the various �elds in

the TCP header change between consecutive packets in a TCP connection. Utilizing this

knowledge, his method can reduce the size of a TCP/IPv4 header to 3{6 bytes.

It is straightforward to extend VJ header compression to TCP/IPv6. It is important to

do this since not only are the base headers in IPv6 larger than IPv4, multiple headers

needed to support Mobile IPv6[8], i.e., routing headers with 16 byte addresses tunneled

to the mobile host, will produce a large overhead on wireless networks.

12

4.2.1 Compression of TCP header

TCP header (20 bytes)

H Len

Acknowledgment Number

Sequence Number

Source Port

Reserved P SUA R F Window Size

Destination Port

Urgent PointerTCP Checksum

Figure 7: TCP header. Grey �elds usually do not change.

PIC S A W U

Figure 8: Flag byte of compressed TCP header.

Most �elds in the TCP header are transmitted as the di�erence from the previous header.

The changes are usually by small positive numbers and the di�erence can be represented

using fewer bits than the absolute value. Di�erences of 1-255 are represented by one byte

and di�erences of 0 or 256-65535 are represented by three bytes.

A
ag byte, see �gure 8, encodes the �elds that have changed. Thus no values need to

be transmitted for �elds that do not change. The S, A, and W bits of the
ag byte

corresponds to the Sequence Number, Acknowledgment Number, and Window Size �elds

of the TCP header. The I bit is associated with an identi�cation �eld in the IPv4 header,

encoded in the same way as the previously mentioned �elds. The U and P bits in the

ag byte are copies of the U and P
ags in the TCP header. The Urgent Pointer �eld

is transmitted only when the U bit is set. Finally, the C bit allows the 8-bit CID to be

compressed away when several consecutive packets belong to the same TCP connection.

If the C bit is zero, the CID is the same as on the previous packet. The TCP checksum

is transmitted unmodi�ed.

VJ header compression recognizes two special cases that are very common for the data

stream of bulk data transfers and interactive remote login sessions, respectively. Using

special encodings of the
ag byte, the resulting compressed header is then four bytes, one

byte for the
ag byte, one byte of the CID, and the two byte TCP checksum.

13

4.2.2 Updating TCP compression state

VJ header compression uses a di�erential encoding technique called delta encoding which

means that di�erences in the �elds are sent rather than the �elds themselves. Using

delta encoding implies that the compression state stored in the decompressor changes

for each header. When a header is lost, the compression state of the decompressor is

not incremented properly and the compressor and decompressor will have inconsistent

state. This is di�erent from UDP where loss of compressed headers do not make the state

inconsistent. Inconsistent compression state for TCP/IP streams will result in a situation

where sequence numbers and/or acknowledgment numbers of decompressed headers are

o� by some number k, typically the size of the missing segment. The TCP receiver

(sender) will compute the TCP checksum which reliably detects such errors and the

segment (acknowledgment) will be discarded by the TCP receiver (sender).

TCP receivers do not send acknowledgments for discarded segments, and TCP senders

do not use discarded acknowledgments, so the TCP sender will eventually get a timeout

signal and retransmit. The compressor peeks into TCP segments and acknowledgments

and detects when TCP retransmits, and then sends a full header. The full header updates

the compression state at the decompressor and subsequent headers are decompressed

correctly.

The problem with this scenario is that it completely disables TCPs fast repair mechanism

and forces TCP into slow start every time a packet is lost. Unless this problem is properly

dealt with header compression will actually lower the throughput over a link with high bit

error rate. The methods used by the mobile gateway to re-synchronize the compression

state are known as \the twice mechanism" and \header request", both of which are

explained in great detail in [5].

5 Snoop

To improve TCP performance over the wireless link we use the Snoop protocol [1]. Snoop

is an alternative to using a link-layer protocol that deals with packet loss by local re-

transmission and acknowledgments. The Snoop protocol is a protocol booster for TCP,

it enhances TCP performance but does not change the semantics of TCP. Snoop under-

stands some of the semantics of TCP and tries to avoid triggering TCP congestion control

mechanisms that would otherwise reduce TCP throughput.

Snoop bu�ers TCP segments passing by and performs local retransmissions whenever it

detects that a TCP segment has been lost on the wireless link. Provided the link RTT is

small compared to the end-to-end RTT, this avoids triggering TCPs end-to-end retrans-

14

mission policies. Snoop also �lters duplicate acknowledgments to avoid triggering TCPs

fast repair mechanisms when the segment was lost was over the wireless link and is being

retransmitted locally. Snoop avoids transmitting a TCP segment multiple times, when

the segment has reached the mobile node. The latter two functions are not performed by a

naive link retransmission protocol. For some scenarios they will improve the performance

signi�cantly compared to such protocols.

6 Mobile IP hierarchy

As mentioned earlier, mobile IP does not behave well when mobile hosts roam extensively.

Among the �rst to draw attention to this shortcoming was the authors of [2]. In their

article they propose a hierarchical structure for supporting movement of the mobile host.

The purpose of the hierarchy is as indicated above to hide local movement from the higher

levels of the hierarchy. This results in faster hando�s and less signaling over the Internet.

Figure 9: The di�erent levels of the Mobile IP hierarchy.

15

The hierarchy has three levels:

� Local mobility, supports movement between base stations attached to the same

subnet.

� Administrative domain mobility, supports movement between base stations within

the same administrative domain

� Global mobility, supports movement between di�erent administrative domains

In the mobile gateway project we have implemented the lowest level, the local hando�, of

this hierarchy. This is su�cient to verify that our augmented hando� mechanisms work.

7 Hando�s revisited

This section describes the hando� that occurs when the mobile host moves between two

mobile gateways that are on the same local area network. The local hando� is designed

to minimize the service disruption the mobile user experiences during a hando� while

maintaining the performance of header compression and the snoop protocol. This is an

augmented version of the hando� described in [2]. The scenario is depicted in �gure

10. Figure 11 shows the messages exchanged during the hando�. Each base station

periodically sends beacons on its wireless interface. The mobile host uses the beacons to

determine out which BS that is best to use as gateway. The decision to switch to a new

BS is made solely by the mobile host and is based on a metric provided by the beacon.

Apart from giving the mobile host a measure of the performance of the connection to the

BS the beacon also contains the IP and MAC addresses of the wireless interface of the

sending BS.

Once the mobile host has decided to switch to a new base station the following message

exchange occur:

� The MH sends a Greet message to the new BS. The Greet message contains the IP

address of the MH, the MAC (Ethernet) address of the corresponding interface and

the IP address of the wired interface of the old BS. It also makes the new BS it

default gateway. If header compression is in use the MH migrates its compression

state, see section 8. Furthermore the Greet message tells the new BS if the MH

wants to use header compression and if so the size of the compression tables.

� The new BS creates a routing table entry for the MH so that packets are be for-

warded to the MH. It also responds to the Greet message by sending a Greet Ack

message to the MH.

16

Figure 10: The mobile host moves from the old BS to the new BS

� The new BS sends a Notify message to the old BS. This message informs the old BS

that it is relieved of its packet forwarding duties for MH. It also conveys the wired

IP address of the new BS.

� The old BS removes its routing table entry for MH. It then sends the compression

state tables associated with MH to the new BS. The old BS then sends a Notify

Ack message. The last thing sent by the old BS to the new BS is the contents of

its snoop bu�ers (for TCP), if any, and the contents of its retransmission bu�ers if

any.

� When the new BS has received the compression state tables it sends a Comp Ack

message to the MH.

� The new BS then broadcasts a redirect message on the local subnet so that other

nodes are noti�ed of the the whereabouts of the MH.

8 Migrating compression state

In order to save bandwidth on the wireless media the mobile gateway will migrate com-

pression state during a hando�. The purpose of this is to avoid sending many full headers

between the MH and the new BS immediately after a hando�.

The delta encoding of the compressed TCP headers makes it di�cult to compute the

17

Figure 11: Messages exchanged during hando�.

correct compression state after a hando�, since any number of packets could have been

lost. As compression state for TCP needs only one full header to synchronize there is

little point in migrating compression state for TCP.

For UDP on the other hand there is a strong case for migrating compression state. The

UDP headers change infrequently and the compressed headers are not delta encoded.

There is also a larger penalty involved here since each UDP
ow would trigger a compres-

sion slow-start, see section 4.1.2. It is important to note that the state of the slow-start

needs to be migrated as well as the actual compression state.

When doing header compression over point-to-point links the compression state tables are

associated with an interface. However, when doing header compression over shared media

there has to be separate compression state tables for each peer on the shared media. In

other words, both the interface and the MAC address of the peer are needed to index the

compression state tables.

When migrating compression state the MH takes the UDP compression state tables as-

sociated with the old BS and makes them UDP compression state tables for the new BS.

It then clears the TCP compression state tables for the new BS. The MH performs these

actions after sending the Greet message. The new BS will receive the necessary UDP com-

pression state tables from the old BS in conjunction with the Notify Ack. It also clears the

18

TCP compression state tables. The MH should refrain from sending compressed headers

using the newly migrated compression state tables until receiving a Comp Ack message

indicating that the new BS has the corresponding tables installed. The old compression

state tables will time out and be available for garbage collection.

9 Memory requirements and CPU usage

Nothing is free, at least not protocol boosters. The tribute that has to be payed in this

case is increased cpu usage and memory consumption.

The size of the compression state table for a host using 16 compression states and a

maximum header size of 128 bytes is at most

4� 16� 128 = 8192 bytes:

The memory consumption for the Snoop booster is approximately

2� RTT� bandwidth:

Where RTT is the round trip time on the wireless link. On a wireless lan where the RTT

is 5 ms and bandwidth is 2 Mbit/s the memory consumption is approximately 2500 bytes

per active TCP connection. On a 28.8 modem with RTT equal to 120 ms we would have

432 bytes per active TCP connection.

Assuming a bu�er of four4 packets of size 100 bytes each for UDP packet retransmissions

during hando� gives us 400 bytes per active UDP connection. A busy mobile host using

header compression that has ten active TCPs and ten active UDP connections would then

use about 37K bytes of memory on the BS. The memory usage on the MH is limited to

the 8K bytes required for the compression state table.

Currently we have no reliable measurements of how much cpu power is required for each

booster. However, our implementation has shown no problems doing header compression

at full speed over a WaveLAN using a 90Mhz Pentium running NetBSD.

4Four packets is the recommended bu�er size according to [2].

19

10 Implementation issues and status

It may appear to be an overwhelming amount of processing that has to be performed

within a BS before actually sending a packet to the MH. But the situation is not as severe

as it may appear at �rst. The key observation here is that you only have to parse each

packet header once. After parsing the packet header you will know which compression

state it matches, if any, and you will also know whether to put it in the snoop bu�er

(TCP) or if it should go into the retransmission bu�er (UDP). Thus all three protocol

boosters can be implemented using a single lookup/parsing.

When implementing the mobile gateway we have discovered a serious
aw in BSD net-

working code. It turns out that later versions of BSD for various reasons has integrated the

ARP lookup into routing lookup routines. Albeit bene�cial in many ways this approach

disables BSD from correctly handling situations where one IP address may have di�erent

MAC addresses depending on the interface it is accessed through. The BS needs to speak

to the mobile host on one shared media interface (the wireless link) and proxy-arp for it

on another (the local subnet). This means that the ARP lookup must return di�erent

MAC addresses for di�erent interfaces. The most common case for proxy-arping is when

the machine you are proxy-arping for is on a point-to-point interface, typically PPP. This

case is handled gracefully by BSD since point-to-point links does not have MAC addresses

and thus there is only one ARP entry for that particular IP address. A workaround that

temporarily solves the problem is to have another host on your local area network doing

the proxy-arping on behalf of the mobile gateway. The mobile gateway then controls the

proxy-arping host by sending gratuitous arps that forces the proxy-arping host to update

its arp cache contents accordingly. Although this workaround solves our problem it has

some drawbacks: it adds complexity, it requires the presence of another host that is not

running a mobile gateway, a dropped proxy-arp packet causes the proxy-arping host to

continue to advertise the old MAC address. We are currently looking into if its reasonable

to modify the BSD kernel

Our current implementation handles header compression over the wireless media and

supports the augmented hando�s. The testbed consists of two machines, running NetBSD,

acting as base stations and two laptops, running FreeBSD, acting as mobile hosts. We are

currently performing measurements to determine and tune the performance of the mobile

gateway.

11 Further work

The current implementation of header compression is based on the point-to-point speci�-

cation. This is su�cient for testing purposes. However, a speci�cation for shared media is

20

needed for realistic deployment of the mobile gateway. We are �nalizing a draft specifying

header compression over multi-access links.

12 Acronyms

BS base station | a router connected to both the wired network and the wireless net-

work, routing packets to and from MHs.

CH corresponding host | a host communicating with the mobile host.

CID compresssion state identi�er

FA foreign agent

HA home agent

IETF Internet Engineering Task Force

IP Internet Protocol

MH mobile host

MG mobile gateway | a piece of software that runs on the BS.

PPP Point-to-point Protocol

RTT round trip time

TCP Transmisssion Control Protocol

UDP User Datagram Protocol

References

[1] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz. Improving tcp/ip performance

over wireless networks. In Proceedings of First Annual International Conference on

Mobile Computing and Networking (Mobi Com '95), pages 1{11, New York, Nov.

1995. IEEE/ACM, ACM Press.

[2] R. Caceres and V. Padmanabhan. Fast and scalable hando�s for wireless internet-

works. In Proceedings 2Nd Annual International Conference on Mobile Computing

and Networking (Mobi Com '96), pages 56{66, New York, Nov. 1996. IEEE/ACM,

ACM Press.

21

[3] D. D. Clark. The Design Philosophy of the DARPA Internet Protocols. ccr,

18(4):106{114, Aug. 1988. Proceedings ACM SIGCOMM '88 Symposium. Also in

Computer Communication Review, 25(1):102{111.

[4] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei. An Archi-

tecture for Wide-Area Multicast Routing. ccr, 24(4):126{135, Oct. 1994. Proceedings

ACM SIGCOMM '94 Conference.

[5] M. Degermark, M. Engan, B. Nordgren, and S. Pink. Low-loss TCP/IP header com-

pression for wireless networks. In Proceedings 2Nd Annual International Conference

on Mobile Computing and Networking (Mobi Com '96), pages 1{14, New York, Nov.

1996. IEEE/ACM, ACM Press.

[6] M. Degermark, B. Nordgren, and S. Pink. Header compression for ipv6. Internet

draft (work in progress), Internet Engineering Task Force, Dec. 1997.

[7] V. Jacobson. Compressing TCP/IP headers for low-speed serial links. Request for

Comments (Proposed Standard) RFC 1144, Internet Engineering Task Force, Feb.

1990.

[8] C. Perkins. IP mobility support. Request for Comments (Proposed Standard) 2002,

Internet Engineering Task Force, Oct. 1996.

[9] C. Perkins. Minimal encapsulation within IP. Request for Comments (Proposed

Standard) 2004, Internet Engineering Task Force, Oct. 1996.

[10] J. Romkey. Nonstandard for transmission of IP datagrams over serial lines: SLIP.

Request for Comments (Standard) RFC 1055, Internet Engineering Task Force, June

1988.

[11] W. Simpson. The point-to-point protocol (PPP). Request for Comments (Standard)

STD 51, RFC 1661, Internet Engineering Task Force, July 1994.

[12] W. Simpson. PPP in HDLC-like framing. Request for Comments (Standard) STD

51, RFC 1662, Internet Engineering Task Force, July 1994.

[13] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New Resource

ReSerVation Protocol. IEEE Network Magazine, 7(5):8{18, Sept. 1993.

22

