(ﬁ/” HEWLETT®

PACKARD

Quality of Service Agents

Olov Schelén*

Internet Research Institute
HP Laboratories Bristol
HPL-IR1-98-003
September, 1998

agents, We describe some implications of providing quality of
quality of service, service by using Integrated Services and RSVP. We
RSVP, then present an architecture where clients can make
integrated services, resource reservations in the network through agents.
resource reservations For each domain in the network there is an agent

responsible for immediate and advance admission
control. Reservations from different sources to the same
destination are aggregated as their paths merge toward
the destination. In addition, reservations can be prefix
aggregated so that a reservation can be used for many
end points in a destination domain. Agents are
responsible for setting up police points at edge routers
for checking granted commitments.
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1 Introduction

A substantial amount of work has been done in the IETF on developing router support and
protocols for setting up quality of service in the Internet. Originally, the two key groups
where the Integrated Services group and the RSVP group. The Integrated services group
has defined router support for the transport of audio, video, real-time, and classical data
traffic within a single network infrastructure. The router support includes admission
control, packet classification and packet scheduling.

The RSVP group has developed a protocol for carrying users admission requests for ad-
mission control in RSVP /Intserv capable routers along the path of a data flow. RSVP is
multicast capable and receiver oriented, i.e., it is the receivers that make resource reser-
vations for obtaining better quality of service. RSVP together with Integrated services
provide fine service granularity to end users by setting up service commitments on a

per-flow basis.

Recently it has been identified that there are scaling problems with the RSVP /Intserv
model. This is because the amount of state may grow too large in backbone routers where
there is a large number of flows. Furthermore, per-packet classification cost depends on
the number of reservations in a router. This is because every packet handled by a router
must be classified against all reservations to find out which service it should be given.

The current focus in the IETF is on defining a more light-weight service model. For
this purpose, the differentiated services group has been formed. The group is focused on
scalable router support for service discrimination. The idea is that routers have a small
set of pre-configured well-known service classes. Packets contain a field in the IP-header
to define which service class they belong to. The service can be compared with the well-
known postal service, where there are only a few service classes, e.g., express, budget,
etc. Differentiated services offer a more scalable and less fine granular service model than
integrated services. For differentiated services to work, there must be police points in the
network to ensure that the amount of traffic is low enough in the better service classes. If
there would be too much traffic in a service class, the service quality would drop below the
expected level. Police points distinguish traffic that is allowed to use reserved resources
from the traffic that is not allowed to use it. The work in differentiated services includes
defining a field in the IP header to identify which service class packets belong to, some
well-known service classes, and policing mechanisms in edge routers.

Differentiated services relies on external support for admission control and accounting.
Also, external support is needed to set up appropriate police points. However, defining
the admission control architecture is not within the framework of differentiated services.
Neither is the mechanisms for setting up police points at appropriate places. Therefore,
we have performed work on designing such an admission control architecture. The ar-
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chitecture is based on agents, located in end-systems (servers), which are responsible for
handling resource reservations. For each domain in the network there is an agent re-
sponsible for admission control. The offered service corresponds to unidirectional virtual
leased lines. In this architecture aggregation is done to keep down the reservation state in
agents. Reservations from different sources to the same destination domain are aggregated
as their paths merge toward the destination.

1.1 Outline

This paper starts with an overview of Integrated services (section 2) and RSVP (section
3). In section 4, we explain the scaling properties of RSVP /Intserv and explain within
which constraints the model is viable. In section 5, we describe our architecture. In
section 6, we explain the relevance of these results to Hewlett Packard. In section 7, we
list the deliverables that have been given to HP. This has been in the form of research
papers and presentations given at different HP sites.

2 Integrated Services

The Integrated services group in the IETF has defined router support for providing
quality-of-service in the Internet. The objective is to provide service for audio, video,
real-time, and classical data traffic within a single network infrastructure. The router
support includes admission control, packet classification, packet scheduling, and router
validation schemes. Each router manages resources on their outgoing links only.

There are three service classes defined in the routers: guaranteed service (2], controlled-
load service [7], and the traditional best-effort service. Both guaranteed service and
controlled load service are admission controlled. Guaranteed service provides a guaranteed
rate (bandwidth) that can be used to also compute a guaranteed delay-bound. Controlled
load service is comparable to best-effort service when the network is unloaded. The results
have been taken to proposed standard.

Admission requests involve a traffic specification in the form of a token bucket specifica-
tion. To obtain better service quality end-to-end, admission should be requested at each
hop along the path. This can be done through a management protocol, or by a specific
reservation setup protocol.



3 RSVP

The Resource ReSerVation Protocol (RSVP) was jointly developed at the Information
Sciences Institute of the University of California (ISI) and Xerox Corp.’s Palo Alto Re-
search Center (PARC). Development is now carried on in the RSVP working group in the
IETF.

RSVP is designed for supporting integrated services in the Internet. It is used to request
QoS for specific data flows (i.e., application data streams). A data flow is defined by the
sender and destination addresses and optionally also by the TCP/UDP ports.

RSVP carries admission requests to the admission control modules in each RSVP capable
router along the path of a data flow. RSVP does not perform routing. Instead, it relies
on the routing-mechanisms used for ordinary best-effort traffic. RSVP was designed to
support both unicast and multicast reservations. To work well with multicast, reservations
are unidirectional and initiated by individual receivers. This is because receivers in a
multicast group may have different quality demands. In cases where receives do not
send data themselves, uni-directional reservations use resources efficiently. Bi-directional
(or multi-directional) reservations can be set up by making separate reservations in each
direction. Receiver initiated reservations are scalable for senders as they have no overhead
depending on the number of receivers involved. ’

To allow receivers to reserve, senders transmit path messages containing traffic specifi-
cations. Path messages set up state in all RSVP capable routers along the path. This
state contains a traffic specification and the address of the previous RSVP hop. Receivers
receive path messages and can use the information in those messages for sending reserva-
tion (resv) messages upstream toward senders. The path state in RSVP routers is used
to route the reservation requests hop-by-hop back towards the senders.

RSVP relies on soft state. This means that reservations must be periodically refreshed.
This is done by senders periodically sending path messages and receivers periodically
reissuing reservation messages. Reservations that are not refreshed are automatically
deleted after a certain period of time. The refresh period is variable, but is in current
implementations typically around 30 seconds. The timeout period should be sufficiently
large so that reservations stay in place even if some refresh messages are lost. Soft-state
means that reservations that are not needed, e.g., after a route change or because a
receiver machine crashed, will be automatically removed.

Since RSVP must adapt to route changes, Path/Resv messages are used to update the
corresponding path and reservation states. For example, if there is a route change, then
a Path message will inform the new nodes of the path change. A corresponding Resv
message will be sent which will set the reservation states within the new nodes. The
nodes which were in the old path and are no longer in the new path will time-out and
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delete their path states using tear messages. Thus, refresh messages which update state
information must be sent immediately when route changes are detected.

One reason why RSVP is not widely used is that there is still no support for charging
and accounting. This is vital to support any kind of differentiated services. Current work
on policy servers for RSVP aims at solving this problem. It is, however, still an open
question how well this will work.

4 Scaling problems with RSVP

RSVP and Intserv have some inherent scaling problems. The number of RSVP control
messages processed by each router is proportional to the number of QoS flows going
through the router. Also, there is reservation state stored for each QoS flow. Thus, the
amount of state and the processing overhead for control messages both scale linearly with
the number of flows. This puts a heavy load on backbone routers with large interfaces.
The primary function of routers is packet forwarding. Managing state information and
performing additional lookups degrades router performance.

Unicast routing for best-effort service has good scaling properties as it involves no per-
flow state. With RSVP, per-flow state is added. Compared to ordinary routing states,
a reservation state is relatively short-lived and thus frequently changed. Due to these
problems, one can expect that large backbone routers may have problems in keeping
per-flow state. Some form of aggregation will be necessary.

Enforcement of reservations involve scaling problems as well. All incoming packets are
classified to determine which QoS the flow should get. In current implementations of
RSVP, a packet is classified not only according to fields in its network layer header but
also according to transport layer headers, making the classification more expensive. The
processing time for determining the QoS is proportional to the number of packets travers-
ing the router. Today, even without reservation state, routers are considered to be bot-
tlenecks in the Internet. From that point of view, Integrated Services implies undesirable

overhead.

Although RSVP has scaling problems, it may work well in intranets where there are few
large routers and few flows. It may also work well in the global network if the overall
usage is controlled, e.g., by pricing. Most important, RSVP may work well for multicast
in a global network. This is because multicast routing in itself is stateful, i.e., there is
state per flow (multicast group) in the multicast routing table. RSVP may not add much
state in the multicast case.

The problems with RSVP scalability are obvious when providing resource reservations
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for unicast in the global Internet. Internet telephony is mostly unicast and involves a
large number of small flows. With differentiated services it would be possible to provide
a service class that is used for the aggregate of IP telephony traffic.

5 Our agent architecture

We are designing a resource reservation architecture where clients make admission requests
through agents [4, 5, 6]. For each routing domain in the network there is an agent
responsible for admission control. Each agent knows the topology and static link resources
in its domain (figurel). The agent is an end-system that is configured for passively
participating in a link-state routing protocol (e.g., OSPF) where each participating router
has an identical topological database over the domain. Thus, an agent obtains a copy
of the topological database with little signaling overhead, i.e., link-state advertisements
are sent from the nearest router to the agent. Agents retrieve link properties, such as
static bandwidths, by querying routers seen in the topological database. For this, we use
a network management protocol (e.g., SNMP). Queries are done at startup and when
topology changes are detected by the routing protocol. Routers need no extensions to
allow agents to build a resource map through the management protocol. Agents use the
resource map to perform admission control in their domain.

Figure 1: Reservation agents and their domains

Admission requests contain the bandwidth to be reserved, a source and a destination
address. For each request, agents can find where traffic will enter a domain and therefore
agents can setup police points in edge routers checking that incoming traffic conforms.
Packets using reserved resources are marked by applications or edge routers and checked
by police points when entering a domain. Similar ideas, known as differentiated services,

have been proposed in [1, 3.

In the differentiated services model, packets are marked to obtain either low drop prob-
ability or high scheduling priority. In this paper, we abstract from these details and use
the term priority packets to denote marked packets, and the term priority traffic for all
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priority packets collectively. A key point of differentiated service and our agent archi-
tecture is to avoid non-scalable signaling state and expensive per packet processing in
routers. Therefore resource reservations are handled by agents (end systems), and packet
classification in routers involves only a small number of fixed service classes.

Independently of which packet scheduling model is used, there must be an admission
control architecture to make sure that the amount of priority traffic is low enough to
receive good quality of service. One issue is whether the admission control architecture
should reserve resources over the links that are actually going to be used, or just limit
the overall rights to send priority traffic. A scheme that doesn’t consider exactly where
traffic will go cannot give reliable commitments without very low utilization. Thus, it is
likely that such a scheme would need to gamble and accept occasional service loss.

In this work we focus on agent-based admission control where the objective is to administer
resources exactly, i.e., admission control in an agent maintains information about reserved
resources on each link in its domain. Our objective is to find out if such a scheme
can scale. The architecture offers a service comparable to unidirectional virtual leased
lines. In this model, requests may be immediate and open-ended or made in advance by
including starting time and duration for the reservations. In [5] we show the implications
of supporting a mix of immediate and advance reservations.

5.1 Reservation Model

An admission request can be directed to any agent, e.g., an agent that manages a user’s
account. Each agent sets up reservations between any two points in the network by
invoking other agents. Thus there is no difference between reservations for sending or
receiving data, reservations for nomadic computing, or reservations paid by a third-party.

Each reservation request contains a bandwidth to be reserved, a source and a destination
address. The source address determines the point where the reservation starts (i.e, the
point where traffic using the reservation will enter) and the destination address determines
the point where it ends. An agent receiving a request first considers whether the starting
point is in its domain. If the starting point is not in its domain, it finds an agent closer
to the starting point and repeats the request with that agent. Technically speaking, it is
possible to directly identify the agent that is responsible for the source domain, but in
practice clients may prefer using a particular agent. Also, agents may prefer to deal with
only a few adjacent agents. This means that a request is repeated in several steps. In
figure 2, it is shown how a request is issued by node Dx for reserving resources from Ax
to Dx.

If an agent finds that the starting point given in the request is in its domain, admission
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10 from Ax to Dx

Figure 2: A receiver Dx requesting a reservation to receive data from Ax

control is performed on the links from the starting point towards the destination, defined
by the routing protocol. This is possible since all routers and the agent in a domain have
the same topological database. Thus, an agent can perform admission control on the links
from the starting point to an edge router in its domain.

An agent cannot perform admission control beyond its domain. Therefore, if the destina-
tion is outside of the agent’s domain it must request a reservation with the neighboring
agent, giving the edge point where traffic will cross the borders as the source address of
the reservation (figure 2). Without distinguishing between reservations to different desti-
nations it would be impossible for agents to grant reservations to other domains. This is
because there is no way to make sure that there are sufficient reservations along any path
in other domains further downstream (unless we accept very low utilization for priority

traffic).

5.2 Aggregation

If reservations were always done “on demand” there would be signaling between all neigh-
boring agents along the path for each end-to-end admission request. Therefore, our ar-
chitecture supports several ways of aggregating reservation state in agents.

To grant requests spanning many routing domains, there must be a commitment from all
agents along the path involved in the request. When an agent is making a reservation
with a neighboring agent, the source address included in the request determines the point
(router interface) where the traffic will cross the borders, i.e., enter the domain of the
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neighboring agent. The neighboring agent does not care where traffic came from origi-
nally. Thus, priority packets can use reserved resources as long as the destination address
matches the reservation. This allows agents to aggregate traffic with different sources into
one single reservation made with a neighboring agent.

40 to Dx

Figure 3: Funnels and aggregate reservations for one destination

An end-to-end resource reservation can be seen as a number of consecutive funnels (figure
3). Priority packets poured into any of these consecutive funnels use reserved resources all
the way to the destination. Agents may aggregate several requests with different source
addresses into the same funnel, as long as they all specify the same destination. Agent
C (in fig. 3) may set up a funnel starting at its edge by pre-reserving resources with
neighboring agent D to a distant destination and then aggregate requests for resources
between domains C and D into the established funnel. This bulk reservation implies that
downstream agents only keep state for the aggregate. The agent that decides to aggregate
into a bulk reservation keeps information about its individual commitments constituting
the aggregate. Aggregation by merging reservations towards each destination can be done
with full control over the resources. The funnels form a sink-tree with the root towards
the destination. At each merging point, the reserved bandwidth on the outgoing link will
be equal to, or larger than, the sum of the reserved bandwidth on the incoming links.

Requests that specify different destinations can not easily be aggregated into a funnel
in the general case. If we allow funnels to split out in different directions, upstream
agents must keep information about which destinations are involved and how resources
are divided between them. This means that the aggregate cannot be seen as one unit.
However, a reservation can cover different destinations if resources for the whole aggregate
are reserved to any of the involved destinations. In addition, there should be a scalable
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way of representing the set of destination addresses. Both of these requirements are often
met for well provisioned destination domains in the Internet.

Figure 4: Funnels and prefix aggregation

Therefore, we allow aggregation to be increased by generalizing a reservation to be valid
for all destinations within the same destination domain. It is only the agent responsible for
the destination domain that can judge if resources are sufficient for allowing generalization.
Consider the example in figure 4. Agent D can judge if the resources in D are sufficient
to let incoming funnels be valid for the whole domain. Thus, agent D decides when a
reservation request for a particular destination node within D can be replaced with a
reservation for any node in domain D (or a subnet within domain D).

In IP networks an address prefiz is often used to represent a domain (individual nodes
within the domain are distinguished by the remaining suffix). An address prefix is repre-
sented by an IP address and an associated mask telling how many bits that are part of
the prefix. An agent generalizes a request by replying with an address prefiz to be used
as destination address for the reservation (figure 4). The aggregation that results from
generalizing a reservation is therefore called prefiz aggregation.

Clients or agents that have been granted a prefix aggregated reservation can use it for any
destination matching the prefix of the reservation. Agents providing prefix aggregated
reservations must provide the committed bandwidth of priority traffic to any destination
in the domain denoted by the prefix. A conservative agent would therefore allow prefix
aggregation up to a value equal to the bandwidth of the narrowest link. In practice we
believe that this can be quite useful for well provisioned local area networks.

To sum up, aggregation is happening in the agents as routers are not dealing with admis-
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sion control at all. The motivation for aggregation may be less when reservation state is
stored in agents with plenty of memory and disc. However, a per-flow reservation model
has inherent scaling problems, both in terms of state and processing cost in agents. There-
fore, it is important to show that agents can provide exact resource reservations with good
scaling properties. Since agents have immediate access to the routing database, they can
also handle changing routes and topologies with an outcome as favorable as possible.

5.3 Policing and classification

The source address in an admission request is used by agents to set up an ingress police
point, i.e., in the router closest to the source. Egress policing can be setup by using the
destination address, i.e., the routing protocol can find the point where traffic is leaving
the domain. By policing at the edges, a provider can check that the rate of priority traffic
stays within commitments. At each edge point, there may be several commitments to
different destinations. Policing of individual commitments would therefore involve clas-
sifying priority packets by their destination addresses before measuring used bandwidth.
Although the number of commitments are kept low through aggregation, policing is de-
manding as it involves per-packet processing compared to reservation setup which involves
only per-commitment signaling. At the edge routers, close to the original sources of data,
per-commitment policing may be affordable as there are generally few commitments and
a low aggregate data rate. If all agents police correctly at the original sources, and we
have an architecture that reserves resources along exact routes end-to-end, there is little
need for policing in the backbone.

However, a model relying on policing at original sources only, would be volatile as it is
based on global trust. Therefore, we suggest adding a model for scalable policing at edges
of backbone domains. The method is to check a dynamic subset of the commitments. The
agent can go through its commitments associated with the actual edge point and set up
close policing by matching different destinations one-by-one, or randomly, in the router.
The key idea is that the agent has knowledge about any policing that could be done, but
saves per-packet policing overhead in the routers by not checking all commitments at once.
When violating traffic is found, it is reported to the agent (the agent sets up policing and
a trap with the router by using a management protocol). When an agent gets a report
from a police point about a violated commitment, the agent should report it back to the
upstream agent. The upstream agent has knowledge about the constituent parts that
were aggregated into the violated commitment. By performing the same method at each
agent, the police point for catching the violating traffic will gradually move back towards
the sender (as far as there are cooperating agents), where it should have been regulated
in the first place. For managing policing from agents, one architectural requirement is to
standardize an interface to allow trusted agents to set up police points in their routers.
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5.4 Interoperation with RSVP

In RSVP [8], reservations are made for individual data flows (i.e., application data
streams). In that model, per-flow reservations are maintained in the routers. This re-
sults in scaling problems due to reservation state and packet classification overhead in
routers. This model inherently relies on per-flow semantics and therefore it is hard to
perform aggregation across different administrative domains. This has led some of the
RSVP designers and others to advise keeping RSVP out of the backbone.

Having per-flow reservation state in the routers, as in RSVP, is not advisable for unicast
reservations. Even if aggregation is supported over some parts of the path, there would
generally be an explosion in state and packet processing overhead compared to ordinary
best-effort routing. For multicast, the overhead for RSVP can probably be motivated.
Already with best-effort multicast, the network trades off bandwidth savings for per-flow
state in the routing table. The extra state for RSVP would probably not add too much
overhead. One should, however, make sure that multicast and RSVP are used only when
resulting multicast trees are sufficiently dense (branched) to justify the control state.
Therefore, the agent architecture can be used for unicast reservations, while RSVP is
used for multicast reservations.

5.5 Conclusion

The agent architecture can provide resource reservations in a global network for offering
virtual leased lines from any point to any point (i.e., independently of where reservation
requests originate). The key ideas of our architecture are aggregation as paths merge
towards destinations, prefiz aggregation over destination domains, advance reservations,

and minimal flexible policing.
The architecture separates functionality between packet forwarding in routers and QoS

negotiation in agents. For enforcement, agents must set up police points in their edge
routers.

6 Relevance to HP

The project is relevant to HP as reservation agents are deployed in end-systems (servers)
with plenty of CPU power and disc space. The architecture provides an opportunity
for HP to impact an important field of networking, i.e., providing service quality and
accounting in the Internet. There is a large demand for this, both from providers and
clients. Providers will have more revenues from their networks and clients will have a
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‘ range of services to choose from to support different kinds of applications. Companies that
can deliver products concerning reservation agents in domains supporting differentiated
services is in a good position for the future.

7 Deliverables
Presentations:
o Oct 1997, HP Cupertino, “Resource Reservations in the Internet”.

e Oct 1997, HP Palo Alto, “Resource Reservations in the Internet”.

Oct 1997, HP Roseville, “Resource Reservations in the Internet”.

Nov 1997, HP Bristol, “An Agent-based Architecture for Advance Reservations”.

Dec 1997, HP Grenoble, “An Agent-based Architecture for Advance Reservations”.

Papers:

e Olov Schelén, Stephen Pink: Resource Reservation Agents in the Internet. Position
paper. To appear in proceedings of 8th International Workshop on Network and Op-
erating Systems Support for Digital Audio and Video (NOSSDAV’98), Cambridge,
United Kingdom, July 1998. ’

e Olov Schelén, Stephen Pink: Aggregating Resource Reservations over Multiple
Routing Domains. Short paper. Proceedings of IFIP Sixth International Work-
shop on Quality of Service (IWQo0S’98), Napa Valley, California, May 1998.

e Olov Schelén, Stephen Pink: An Agent-based Architecture for Advance Reser-

vations. Proceedings of IEEE 22nd Annual Conference on Computer Networks
(LCN’97), Minneapolis, Nov 1997.

Slides for the presentations can be found at “http://www.cdt.luth.se/ olov/slides/”. More
papers can be found at “http://www.cdt.luth.se/ olov/publications/”.
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