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1 Introduction

It has been conjectured that generically, in the semiclassical limit, quantum
spectral statistics on the scale of the mean level separation are Poissonian in
classically integrable systems [2]. However, integrable systems which do not
exhibit Poissonian statistics are also known. One obvious class of examples
are simple harmonic oscillators. Others include two-dimensional rectangular
billiards in which the square of the aspect ratio is rational.

Recent results [15] imply that these exceptional cases are far more numer-
ous than previously anticipated. This then promotes the question of how the
spectral fluctuations can best be characterized in such systems. For harmonic
oscillators, this has been investigated using a number of different approaches
[2, 13, 3, 4, 14, 6, 11]. Our purpose here is to focus on one (the simplest)
rational rectangular billiard, namely the square.

The energy levels in the square billiard, when suitably scaled, are given
by

Em,n = m2 + ’I’LQ ) (1)

where the integers m and n satisfy m > 0 and n > 0. The density of states
may thus be written

d(E) =) _ra(n)§(E —n), (2)

the degeneracy function 73(n) being the number of ways that n can be ex-
pressed as a sum of two squares. The fact that in this case the spectral
statistics are non-Poissonian is due to a semiclassically increasing density of
accidental degeneracies. which cause the level spacings distribution to tend
to a delta-function at zero spacing when E — oo (see, for example, [5]).

One way to characterize eigenvalue statistics for the square is in terms
of the spectral two-point correlation function. This is obviously determined
by the two-point correlations of ro(n). These were calculated explicitly in
[5], and shown to exhibit number-theoretical fluctuations about a Poissonian
background.

Another way is in terms of the moments of r5(n). Moments higher than
the second are related to higher-than-two-point spectral correlations, and
so contain information beyond that previously calculated. Our main result



here is a general formula for the leading-order semiclassical (n — co) asymp-
totics of any given moment of r5(n). The higher moments turn out to be
strongly determined by the accidental degeneracies, and hence represent in-
creasingly sensitive measures of the deviations from generic Poissonian form
of the spectral statistics.

This paper is structured as follows. In section 2 we outline the general
method of calculation. In section 3 we calculate the second, third and fourth
moments explicitly. For the second and third moments, we obtain terms
in the semiclassical asymptotics beyond the leading order, and compare the
results with numerical computations. Finally, in section 4 we derive a general
expression for the leading-order asymptotics of any given moment.

2 General method

Our calculation of the moments of 75(n) will be based on a well-known rela-
tionship (see, for example, [9]) between a sum

a(X)=> &n) (3)

n<X
and its associated Dirichlet series
=(s) = i 57(;:) . (4)
n=1
This is that if
1(X) = (X +e)+o(X —¢) (5)

2

is the average of the right- and left-hand limits of the step-discontinuous
function o(X), then
1 a+1i00 Xs
100 =5 [ 205 s, (©
s

27 a—100

where the real constant a is large enough to ensure the absolute convergence
of the Dirichlet series. The derivation of this equation follows immediately
upon interchange of the integral in (6) with the sum in (4).



We define the moments of 79(n) by

My(N) = 5 3" rh(n). @

The semiclassical (N — oo) asymptotics is obtained by forming a Dirichlet
series as in (4), then computing the contribution to the integral (6) from
the dominant (right-most) pole of the resulting integrand in the complex s-
plane. What allows us to do this is the fact that the Dirichlet series can be
re-expressed as an Buler-product over the primes. The right-most pole can
then be identified, and the residue calculated explicitly.

The Euler product is derived using the following formula for 75(n). Let ¢
denote the primes, p the primes congruent to 1 modulo 4, and r the primes
congruent to 3 modulo 4. The prime decomposition of an integer n may
therefore be written uniquely as

n = H qmq(n) — gma(n) Hpmp(") H pmr(n) (8)
q P "
Then [8]

() :{ 1, (m,,(n)+1) if 2 | my(n) Vr o

0 otherwise .

To give an example, the first moment (i.e. the average of ro(n)) can be
calculated using

2(5) = Y 20 (10)
n=1
1 1 2 3 (k+1)
= 1+ —+—+...+ + ..., 11
1_2]_51111_7%?11[ ps+p25 pks ( )

P

where the second equality can be checked by first re-expanding the prime
products, then using (9). Evaluating the sum in the p-product gives

=0 =2 = 1 11)2, (12

72?,,(—;,;




and so we recognize that
Ei(s) = ((s)L(s), (13)

where

1
((s) = H 1 _ L (14)
p p*
is the Riemann zeta function, and
1

=1l iz 15)

P P° T

is an entire function of s [1].

The leading-order contribution to the X — oo asymptotics of the integral
(6) comes from the right-most pole of the integrand; this is the pole of ((s)
at s=1: {(s) = (s —1)"'+0O(1) as s = 1. Thus

S ran) ~ X7 (16)
n<X
as X — oo, since [8]
1 1 1 s
L)=1— 4 -t ==
(1) 3+5 7+ 4 (17)

This clearly corresponds to the well-known asymptotics for the number of
lattice points in a quarter circle. In the notation introduced above, it is
equivalent to M;(N) ~ m/4 as N — oo.

To quantify the error in the leading order asymptotics would require a
calculation of the size of the integral along the contour deformed around the
pole at s = 1, but we do not attempt that here. In specific cases, order
estimates can be made (see, for example, [9]), however in general the true
order is not known; even in the simple example just described, this is an
viewed as an important unsolved problem [7].

It is also worth remarking that this error will depend on the type of aver-
aging used to define the moments: if (7) is replaced by an infinite sum using
a smooth characteristic function, the error will, in general, be reduced. The
method described above then still applies, but with a modified integrand in
(6). Again, since we are only concerned with the leading-order asymptotics,
this further generalization will not be pursued here.

)



3 Second, third, and fourth moments

The generating function for the second moment is given by

Eals) =) 7375—”) (18)

1 1 4 9 k+1)?
= Hl_LH[lJ“_er?*”JF(‘—)—J““ . (19)
P

1— 5t = PP pks

As in the example of the last section, this can be checked by re-expanding
the prime products, and then using (9). Performing the sum in the p-product
gives

_ 1 1 1+
:2(3):1_LH1_1H _ia' (20)
2 2 p ( p’)

which can also be written in terms of ((s) and L(s):

1 2 2
(1+2:) ¢(2s)

Substituting this into (6), the right-most pole of the integrand is again
the double pole of ¢?(s) at s = 1 (the zeros of ((s) all have Res < 1 [9]).

The leading order terms in the N — oo asymptotics of the second moment
then come from the residue at s = 1, and are

Za(s) =

1
My(N) ~ ZlogN+ a, (22)
where, with primes denoting derivatives,
vy 2, 3, 1 1
=(=+-L'(1) - = S — —) , 2
a=(F+-L'0) - 5C(@)+ 5log2 ~ (23)

which may be evaluated to give o ~ 0.504 . The first term in (22) agrees
with a calculation of Marklof [12] based on deep results from the theory of
theta sums.

In numerical computations it is more convenient to use a local average
for the moments,

n+W
1

) = g > rhm), (24)

m=n—W




rather than (7). Then

1 1
r%(k)mzlogn+a+z (25)

as n — oo. In Figure 1 we plot this asymptotic approximation against logn,
together with a numerical computation of 73(n) using (24) with W = 250 for
n € {251,10000} and W = 500 for n € {10000, 19499}.

Figure 1: r2(n) plotted against logn. The dots are numerically computed
values, the straight line represents the asymptotic approximation (25).

The generating function for the third moment of r5(n) is, in the same
way, given by




The terms in the p-product sum to give

_ 1 1 1+]-]4;+5§7
‘:3(3):1_515_1_11__1_1—[

SRS (3)
=& (1-5) T (- )

= [L(s)C()])*Bs(s), (28)

where the last equality defines Bs(s).

The reason for choosing this particular factorization is that Bs(s) is
singularity-free in the half-plane Res > 1; the r-product itself converges
in this region, and the convergence of the p-product is guaranteed by the
vanishing of the term proportional to I%. The singularity that dominates the
large-N asymptotics of the third moment is therefore again the pole of ((s)
at s = 1.



Evaluating the resulting contribution to the integral in (6) then gives

My(V) ~ () 5 Bs(1) log® N

+(§)4[%B;(U + (27’ - %)Bs(l) + %Bs(l)L'(l)] log? N

+{ (%)4[%B§(1) + (1= 4y + 692 = 45(1)) Bs(1) + (47 — D Bi(1)]
+ (g)s [169L/(1) B3 (1) + 4L (1) By (1) + 2B5(1)L" (1) = 4By(1)L'(1)]
+ (5) B og v

+{ (5) [ 4B:0)7+4B5(1)7° = By(1) + 2Bs(1)1(2) + éBs (1)
+6B3(1)72 + 4B5(1)7(1) + 4B5(1)y — 6Bs(1)72 — 4B3(1)y(1)
- %Bg(l) — 12B3(1)yy(1) + 2B, (1)y + B;(l)]

+(g)3 [24B3(1)L’(1)72 _4B,1)L'(Q) + 533(1)5"(1) +4By(1) L' (1)
— 2B3(1)L" (1) — 16 B3(1)L'(1)y + 2B5 (1) L'(1)
— 16B5(1)L'(1)y(1) 4+ 2B, (1)L" (1) + 8Bs(1)yL" (1)

+ 163;(1)5(1)7]
+(§)2[633<1>L'<1)L”<1> + 24B5(1)9[L'(1)]? + 6B;(1)[L'(1)]?

~oB W] + ()BT WP} (29)

where primes again denote derivatives, B3(1) ~ 0.0527, B3(1) =~ 0.263,
B;(1) ~ 0.528, By (1) ~ —1.521, L'(1) ~ 0.193, L"(1) ~ —0.153 and
L" (1) ~ 0.0873. The corresponding asymptotics for r3(n) ~ L (nM;(n)),
obtained by substituting these values into (29), is plotted in Figure 2, to-
gether with data computed using (24) with W = 10% for 10* < n < 10° and
W = 10° for 10° < n < 10'°.

_It is worth remarking that the coefficient of the term that grows as log®n
in r3(n) is approximately 0.0033, the coefficient of the log® n term is approx-
imately 0.0830, and the coeflicient of the logn term is approximately 0.520.
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Figure 2: The asymptotic approximation for ;g(n), obtained from (29), and
numerically computed values, plotted against logn.
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Thus while the first term dominates as n — oo, in the range of our numerical
computations (logn < 23) all are needed.

As a final explicit example, we now compute the leading-order term in
the asymptotics of the fourth moment. The generating function in this case
is

. 1 1 2¢ 34 (m+1)*

pTTLS

no,no 1
N Iy AR (31)
T
As above, we factorize this as
Za(s) = LP(s)¢%(s) Ba(s) , (32)
where
147 1\7 11 11 1 1\11
B = (1-5) (1~ =) 1](”;2?575)(1‘;)
(33)

is, by virtue of the fact that there is no term proportional to ;1; in the p-

product, singularity-free in Re s > 1. Thus the right-most singularity is again
that of ((s) at s = 1. Evaluating its contribution to the integral (6) then
implies that to leading order in log N (that is, now neglecting terms that are
O(log® N))

My(N) ~ (%)8%‘)% log” N . (34)

73(n) shares this same leading-order asymptotics.
Explicit expressions for the lower-order contributions can be written down
in terms of the derivatives of ((s), L(s) and Ba(s), as before, but we do not

present them here. Instead, we focus on the generalization of this leading-
order result to all higher moments.
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4 General moment asymptotics

Generalizing the scheme described above to k-th moment of 73(n) is straight-

forward. The generating function for r¥(n) is

- 1 1 1
:k(S): pk<_)7

728

where

pe(z) =1+ 2Fz + 3522+ 4+ (m+ 12"+ ...

Thus from the examples considered in the previous section

and

pr satisfies

pe(a) = - [zpe1(2)

and so we write
1t a4 b’ +
(1 _ x)k-{—l

Pr(T)

(35)

(36)

(37)

(39)

(40)

Substituting (40) into (39) leads to a recurrence relation for ay whose solution

1S
ak:2k——k—1.

We now have that

_ 1 1 (1+ %+ 2% +
:k(s): 1_-2—1;1711_;%Ipl (z])_——p—lf-)k—i‘l
1 1 1
- Ak(s),
- 51? ];[ 1 - r%s ];1 (1 —_ Elj)k+l+ak ¢

(41)

(42)

(43)



where
A,c(s)=H(1+%+%+...)(1-—)“" (44)
P

is, by construction (because it contains no term proportional to ;1;) non-

singular in Res > 1. It then follows from (41), and the fact that

cor = =3 M=oy (45)

25y r2s p (1 - F

that

2s) = (L) x (1-2) T )" s o

= [L(s)¢(s)]* " Ba(s), (47)

which defines By(s).

When written in this way, the dominant contribution to the X — oo
asymptotics of the integral (6) comes from the pole of order 2k~ at s =1
associated with the zeta function. This then gives, to leading order in log N,

1 et
(Q—Ic:T__—l)!Bk(l)L(l)gk log” "' N, (48)

M (N) ~
the same formula also applying to 75(n).

The asymptotic approximation (48) represents our main result. The di-
vergence as N — oo is due to the fact that the energy levels (1) of the square
billiard are increasingly degenerate in the semiclassical limit. Our main pur-
pose here was to draw attention to the strong dependence of the form of this
divergence on the moment-power k. It is, of course, no surprise that higher
moments are more sensitive to these degeneracies. What is surprising is the
degree to which this is so. It suggests that the higher spectral moments may
be worth studying in other systems whose levels have a limiting distribution
that is non-Poissonian.
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