(ﬁ/” HEWLETT®

PACKARD

Dynamics of Piecewise Linear
Interval Maps with Hysteresis

G. Berkolaiko

Basic Research Institute in the Mathematical Sciences
HP Laboratories Bristol

HPL-BRIMS-98-24

November, 1998

multistate map, We study a special case of multistate maps, piecewise
discrete dynamics, linear interval maps with hysteresis. The main object
global attractor, of study is the global attractor. We find the conditions
hysteresis for it to be lower semicontinuous. We also prove that it

coincides with the nonwandering set and prove several
facts about omega-limit sets of the discontinuity points
of the map.

Internal Accession Date Only



Dynamics of Piecewise Linear Interval Maps
with Hysteresis

G. Berkolaiko

School of Mathematics, University of Bristol,
Bristol BS8 1TW

November 4, 1998

Abstract
We study a special case of multistate maps, piecewise linear in-
terval maps with hysteresis. The main object of study is the global
attractor. We find the conditions for it to be lower semicontinuous.
We also prove that it coincides with the nonwandering set and prove
several facts about omega-limit sets of the discontinuity points of the
map.

1 General introduction

The present paper deals with a discrete-time version of hysteretic behaviour.
Hysteresis phenomena are present in various areas of science, from physics
to biology. Generally speaking, a system with hysteresis has an input-output
relation composed of a number of branches and a memory mechanism which
uniquely determines the branch to be followed at each time. For more details
on varieties of hysteresis, see [1].

We model an input-output relation composed of two branches only, the
branch being chosen depending on the output and the history of the system.
More precisely, we consider two functions, fo and f;, of a real variable z,
such that

fo(z) >z and filz) < z.



The variable z is mapped iteratively by one of the functions until it leaves
a predefined interval. “Control” is then passed to the other function and so
on.

We consider the simplest type of maps possible (the functions fo and fi
are linear) and this allows us to reveal many surprising properties. The main
object of study is the global attractor (or limit image of the whole space under
the map), see Fig. 1. Under some additional assumptions this set turns out
to be the biggest (by the definition) and the smallest attractor of the system.
Furthermore, it coincides with the w-limit set of any point (i.e. with the set
of accumulation points of the trajectory of the point) in the space, and, as a
consequence, the nonwandering set of the system (see Definition 3). Thus it
provides us with a nontrivial, but understandable example of what behaviour
a hysteretic dynamical system may exhibit.

We have collected all relevant definitions in Section 3 for ready reference.
All the results of this section (Lemmas 1 and 2 and Theorem 1) are straight-
forward and we omit the proofs. Some definitions use standard notation from
logic which, in our opinion, is very natural for the subject under discussion.

The paper is based on author’s MPhil research project [2] which was
supervised by Dr. M. Grinfeld and supported by an ORS Scholarship and
University of Strathclyde Research Scholarship.

2 Definition of maps with hysteresis

The phenomenon of hysteresis, that is (in the definition of [3]) of rate-
independent memory effects, is widespread in the natural sciences. It is
frequently encountered in mechanics (slip-stick friction) and in electric cir-
cuits (involving nonlinear inductances with a saturable core); [3] contains a
good bibliography on these subjects. Perhaps less well known are the appli-
cations of hysteretic models to economics (for example, [4, 5]); hysteresis is
inherent in the well-known Dixit-Pindyck theory of investment [6]. One could
also easily construct hysteretic models of conformation change in multivalent
macromolecules.

In the present paper we treat simple mappings with hysteresis from the
point of view of (non-smooth) dynamical systems theory. Such maps fit in
the general theory of multistate maps briefly described later in this Section.
A theory of such maps requires a significant modification of the techniques



introduced for Lorenz maps (7, 8]. Note that in all known cases of models in
hysteresis the resulting dynamical system has continuous time (see, however,
[5]). The main motivation for the present work is the belief that discrete
dynamical systems of the type treated here will arise as Poincaré maps of
ODEs with hysteresis, as in LCR circuits with saturable cores.

First we define multistate maps. Given a metric space Y and an index
set S, which may be discrete or continuous, define for each s € S a subset of
Y, U,. By a multistate map [9] we mean a discrete time dynamical system
defined on

X=JU x{s}Cc¥Y x5 (1)

sES
We call the elements of Y observables, while elements of S are states. Given
an observable z, and state s,, we generate a new observable z,,1 by the
transformation

T4 = f(@n, Sn)-
In turn, having determined the new observable z,,1 we generate a new state
Sp41 by

Sn+1 = g(xn-i-ly sn)-

The simplest case of multistate maps are interval maps with hysteresis.
Here the index set S = {0,1} and the metric space ¥ = R!. The functions
f(-,0) = fo and f(-,1) = f1 are continuous nondecreasing functions defined
on intervals [a, ] and [, b] respectively, where 0<a<a<pB<b,

folz) 2z,  filz) <=z

‘and

fo(B)=b and fi(a)=a.
Thus, the space of Eq. (1) reduces to

X = ([a 8] x {0}) U (febx (1) (2)
Throughout the work, a point x € X, will designate the pair (z,s). Some-

times we use functions Obs(x) and St(x) to refer to observable x and state
s, respectively. '



The topology on the space X, is induced by the standard R topology, .e.
U C X, is open if and only if

0 = (e, 8) x (03) U (0 o) x {13),

where U, and U; are open subsets of real line. In a similar way, we define
the measure on X, induced by Lebesgue measure on R,

N(U) =p (UO n [CL, ﬁ]) + (Ul N [O[,b]) ’

the partial ordering of Xp (we compare only points of the same state) and the
distance p between two points of the same state. We extend the definition of
the metric p on X, to points of any state by setting p(x,y) = P if St(x) #
St(y), where the constant P is sufficiently large to guarantee the triangle
inequality. With this metric X, becomes a compact metric space. Having
defined the metric we can define limit and continuity in the standard way.
The mapping itself is defined on X as follows: f(ziy81) = (Tig1 Sit1)s

where
0if z;41 € [a, )

ziy1 = fo(zi) and  Sip1 = {1 if 241 € (5,0]
s; otherwise
with an initial point (zg, so) € Xp

As one can see, the periods of action of the two functions alternate and
each function, fo and fi, is applied as long as possible. The state switches
when the observable leaves the domain of definition of the corresponding
function.

When 8 = « the map f reduces to a single-valued function with one
discontinuity, a Lorenz-type map. This type of map has been thoroughly
discussed in the literature (7, 8].

In our work we examine a special case of maps with hysteresis, the piece-
wise linear map with hysteresis (PLMH). The PLMH is given by

fo(z) = vz, filz) =z,

where 70 > 1 > 7, 8 > a > 0 and a = 1@, b = 1. An example of the
PLMH is shown in Fig. 2.

It turns out that dynamics of PLMH is fully determined by the dynam-
ics of its discontinuity points defined as preimage points of o and (3 (see
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below). For instance, under certain conditions, the omega-limit set of any
point coincides with the omega-limit set of one of the discontinuity points;
the nonwandering set coincides with the global attractor which, in turn, is
equal to the union of the omega-limit sets of the discontinuity points and
their trajectories.

The paper is constructed as follows: first we give the relevant definitions
and study some basic properties of PLMH. After proving two lemmas about
omega-limit sets of discontinuity points (which illustrate major technique
used in the paper) we formulate and prove our main theorems.

3 General definitions

In order to compensate for the discontinuity of a map with hysteresis we will
be considering its set-valued extension (see, for example, [10, 11, 12]). Let
f be a (single or set-valued) map. The image of a set A under f is f(A) =
Uyea f(z). Tterations of the map f are defined by induction f**!(4) =
Uszesr(a) f(@). Given a set A we define its forward trajectory by Fwd(A4) =

UiZo /1(4).
Definition 1 A point = is a periodic point for f if x € f*(x) for some
n > 0. A point is called eventually periodic if f*(x) contains a periodic point

for some k.
Definition 2 The w-limit set of a set U is the set
w(U) = {z € X:3{n}E,, HulZ, C U, a2, U
(@ermw) = @-a]}
where the arrow — denotes convergence.

Definition 3 A point x € X is called non-wandering if for any open U C X,
z € U, there is an integer k such that f*(U)NU # 0. The set Q of all non-
wandering points is called the non-wandering set.

Definition 4 A point x7% is said to be a k-preimage of x under a map f if

z € f* (z7F).



Note that the preimage is not necessarily unique.

Definition 5 A set-valued function f : X — C(Y), where C(Y) = {F C
Y : F is closed}, is upper semicontinuous at o if
V{z}Z € X V{w}Z, CY
(e € 7 @), (@ 20), (=) = w0 € flzo)].

Definition 6 A set-valued function f : X — C(Y') is lower semicontinuous
at xg Zf

VYo € f(z0) V{zi}i2, C X
[(ilfz' —x0) = Wyt CYlyi€ flx:i),y: — ?/0]]-

In our study of families of maps we will need a notion of convergence of
set-valued functions.

Definition 7 Let f, be a sequence of set-valued maps. We say that it is
weakly upper convergent to a map f if for any subsequence {m;}.-,

Vi{zi}Z, C X V{s}Z, C Y
(i € fmi @), (@i > 2), =) = e f@)].

Loosely speaking, if there is a sequence {(z,/,y,)} in the graphs of the
functions f, which converges to a point (z,y) then y € f(z). Note, that this
notion differs from upper graphical convergence [12]: in our case the graph
of f may be bigger then the upper limit of graphs of f,.

Definition 8 Let {fa} ca be a family of set-valued maps. We say, that it
is weakly upper continuous at a point Ay if for any sequence A\, — Ao the
sequence of functions fy, is weakly upper convergent to the function fy,.

We will also make use of the lower variant of convergence of maps. Again,
our definition of weak lower convergence differs from lower graphical conver-
gence [12]. We introduce this difference in order to ensure that properties of
weak upper and lower convergence are inherited by iterated functions f¥, see
Lemma 1.



Definition 9 Let f, be a sequence of set-valued maps. We say that it is
weakly lower convergent to a function f if

Vyo € f(z0) V{zi}iZ; C X
[ > 20) = 3{uk2, Vv € filmi),w = woll.
A family {fa} en of set-valued maps is said to be weakly lower continuous

at a point Ay if for any sequence A\, — )y, the sequence of functions f, is
weakly lower convergent to the function fy,.

Definition 10 A family {fx},c, of set-valued maps is weakly continuous if
it is weakly upper and lower continuous.

Lemma 1 Let a family {fa} e, of set-valued maps be weakly lower contin-
uous at a point Ng. Then for every k the family { f,{“} xea U8 weakly lower
continuous at .

For the proof of this lemma we refer to [2].

3.1 Global attractor

Let f be an upper semicontinuous set-valued map, f: X — C(X), on a
compact metric space X.
We define the global attractor [13] of the space X under the map f by

— h n —_ n
L= lim f*(X) = ) /H(X).
n=0
The set L is non-empty, closed and invariant in the sense that f(L) = L. For
the proofs of the subsequent results in this section we refer to [2].

Lemma 2 Let f: X — C(X) be an upper semicontinuous map. Then the
nonwandering set § is contained in the global attractor L.

Now let {fa},ca be a family of set-valued maps weakly upper continuous
at a point Ag. One can consider the global attractor L as a set-valued function
L()) depending on the parameter A\. Then we have the following theorem
(for more general results, see [14]).



Theorem 1 The function L()) is upper semicontinuous at Ag.

However, the same is not true about lower semicontinuity. A very simple
example is given in Fig. 3, where the isolated point (c, 1) belongs to the set
L for b = by and does not belong to it for the values of b slightly less than by.

4 Basic properties of the the PLMH

The piecewise linear map with hysteresis is a map with
fo(z) =vz and fi(z) =z

and b
o= 2 and (8= —.
N Y
A map with hysteresis, as defined above, is not continuous.
Notation. If the points (f;'(c),1) and (f;'(8),0) belong to the space
X, we call them discontinuity points and denote them by o~! and 37! re-
spectively.

At the point !, the map f is discontinuous:

v J (f1(0bs(x)),1) if x > a7t
f(ObS(X) ) 1) - { (fl(ObS(X)),O) ifx < a1’

where St(x) = 1 and therefore comparison of x with a~! is legitimate. The
situation is the same with the point 3~!. In order to make use of facts derived
in the previous section we have to redefine f in such a way that it becomes
continuous.

One of the ways of redefinition (for the other, see [15, 2]) is to consider
the map f as a set-valued map, i.e. to set

f(a) ={(e,1), (,0)} and f (87") = {(B,1), (B,0)}

With this definition the map f becomes an upper semicontinuous set-valued
map, it is also lower semicontinuous everywhere except at the points a~! and
B~!. From now on by f we will understand the extended set-valued map.



Definition 11 A map with hysteresis f is said to be topologically expansive
if for any points x and 'y, which are not preimages of the discontinuity points,
there is an iteration n such that

St(f™(x)) # St(/"(y)) -

The following lemma [2] gives the relation of this definition to the alter-
native ones [7].

Lemma 3 The following statements are equivalent:

1. f is topologically expansive.

1

2. Preimages of the points ™! and 37! are everywhere dense in Xj,.

8. There erists € > 0 such that for any points x and y, which are not
preimages of the discontinuity points

p (S1(x), [1(y)) > e
for some 1.

The proof is straightforward and we omit it.
It will be shown later that a PLMH is either topologically expansive or
has very simple dynamics: all forward trajectries are finite.

Lemma 4 A piecewise linear map with hysteresis has periodic points if and
only if 7644 = 1 for some integers k and l. If there are any periodic points
then each point is eventually periodic. Moreover, for any x the set Fwd(x)
1s finite.

Proof. It easy to see that existence of periodic points implies that yfy! =
1. To prove the converse we consider all irreducible numbers of the form
xyivy], where x = (z, s) is a point from X,. We call a number irreducible if
and only if there are no 7 and j' such that

-/

i <i, j'<j and v+ =

In other words, either i must be less than k or j less than I (otherwise take
i’ =14i—k and j' = j — ). This condition and condition 0 < a < z{v] < b
clearly imply that there is only a finite number of possibilities for 7 and j.
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For any n we have Obs(f*(x)) = z74y] and, since there is only a finite
number of possibilities, Fwd(x) is finite. From this we deduce that all points
are eventually periodic. Note that the period k£ and the cardinality of the set
Fwd(x) are uniformly bounded.

Another way to formulate this lemma is to say, that a PLMH has periodic
points if and only if In-y;/In~y, is rational. Observe that in this case x € L
if and only if z is periodic (and not just eventually periodic).

A useful property of PLMH is the existence of a non-increasing measure.

Definition 12 The measure p is said to be non-increasing under a map f if
for any open set U

w(f(U)) < w(U).

Remark 1 The measure du = dInz is non-increasing under a PLMH. More-
over, if St(x) = St(y) for any x,y € U then u(f(U)) = u(U). This measure
is equivalent to Lebesgue measure uj, on the interval [a, b] in the sense that

mu(A) < pr(A) < Mpug(A)
for any A C [a,b].

Now we consider a family of piecewise linear maps with hysteresis which
are obtained by varying one of the parameters «, 3, v or ;. This family
is weakly continuous at every point and, therefore, L()) as a function of the
parameter is upper semicontinuous at every point. We cannot say the same
about lower semicontinuity. However we observe that in the example of a
non-continuous L(\) (see Fig. 3) a crucial role is played by a trajectory which
connects two discontinuity points.

Conjecture 1 The function L(\) is lower semicontinuous if
at¢ Fwd(ﬁ_l) g7l ¢ Fwd(a"l) .

We will prove the conjecture in the case when In~;/In~y, is irrational
after learning some properties of the discontinuity points ¢~* and 3~
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5 Principle of Equivalent Distance

Our subsequent analysis will be based mostly on the following Principle:

Theorem 2 (Principle of Equivalent Distance). Let an interval
(x,y) C X, contain no k-preimages of the discontinuity points, where k =

1,...,K. Then the set f* ((x, y)) is a connected open interval for k =
1,...,K and
Cir < p(ff (x4, fF(¥)-) < Cor,

wherer = p(x,y), k=1,..., K,
F*(20)x = zgg)li F*(2)
and Cy, Cy are constants depending on f only.
Since there are no preimages of the discontinuity points, f* is continuous

on (x,y) and the first part of the theorem is settled. Now the second part
follows immediately from the existence of a measure u, equivalent to Lebesgue

measure pr, such that
u((x,y)) =p (f’“((x,Y))) :

Indeed, if mu(U) < pr(U) < Mu(U) then

p (7@, ) = e (G y) < 1/mu (5 9)))
= 1/mu((cy)) < M/mps (%)) = M/mr.

6 Preimages of the discontinuity points

One straightforward application of the Principle of Equivalent Distance is
the following theorem:

Theorem 3 Let Invy;/In~y, be irrational. Then the set of preimages of the
discontinuity points o~ ' and 37! is everywhere dense in Xj,.
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Proof. Here we use an argument similar to the one in [7]. Let A be the
set of preimages of the discontinuity points ! and 3~!. We are going to
prove the closure A = X.

Assume the contrary, B = X \ A is nonempty. The set B is open by
definition, therefore it is a countable collection of intervals. Now we take
an arbitrary interval By C B from the collection. The set B is mapped
into itself, f(B) C B, therefore B, is mapped continuously by f to another
interval, which we denote by B;i: f (By) C Bj. Proceeding by induction we
get the sequence {B;}io,, f (Bi) C Biy1.

Interval B; is new for each 4, i.e. B; # B; when i # j. Otherwise, there
exist i and j such, that f/ (B;) C B;. B; does not contain preimages of points
o~ ! and 871, therefore f7 is continuous on B; and has a fixed point. However
f does not have periodic points and we get a contradiction.

Now by the Principle of Equivalent Distance we have

1 (B;) = 1 (f7 (Bo)) > Cru(Bo)

for any j, where p is (Lebesgue) measure. Therefore

0> u(X) > 31 (B) > €Y u(B) = o9

=0 1=0

and we get a contradiction. Q.E.D.

Corollary 1 A piecewise linear map is topologically expansive if and only if
In7y;/Iny, s irrational.

7 Omega-limit sets of the discontinuity points

The following lemmas are proven under the assumption that Invy;/Iny, is
irrational and the condition

B ' ¢ Fwd(a™?), o' ¢ Fwd(87") (3)
is satisfied.

Lemma 5 Let the set of preimages of the point o' be everywhere dense.
Then the global attractor L = w (a™1).

12



Proof. The conditions of the lemma imply that for any point x and
fixed k the set f¥(x) consists of two points at most. Indeed, the map f is
single-valued everywhere, except the points a~! and #~!. If a point x is a
preimage of o' then the set f*(x) will consist of two values for sufficiently
large values of k. But further division is impossible, because f* (a~!) cannot
contain a~! again (f has no periodic points) and cannot contain 37! due to
condition (3).

The structure of the map f implies that for any x¢ two possible values of
f¥(x0) are

lim f*(x) and lim f¥(x).
xX—x0+

X—X0—

Now every point y € L has a k-preimage y;, such that

. k _ : k —
Jim ffx)=y or  lim f (x)=y. (4)

It is easy to see that for any € > 0 there is NV such that n-preimages of
the point !, n = 1,..., N form a €/2-net of the space X,. Let y; be a
k-preimage of a point y, k > N and y is the limit of f¥(x) as x — y; from
the left, without loss of generality. The open interval (y; — €,yx) contains
at least one of the n-preimages of the point @™, n = 1,...,k. Let a™/ be
the nearest to y;. Then the interval (a=7,y;) satisfies the conditions of the
Principle of Equivalent Distance and applying f* we obtain

lim ff(x)=z¢ Fwd( ) ,  lim f*x)=y, and p(z,y) < Cqe.

x—a~i+ X—Yr—

Since ¢ was arbitrary and C, is fixed we can find an image of a~! in any
neighbourhood of y. Therefore, y € w (a™?).
The converse, w (o™ ') C L, is always true. Q.E.D.

Lemma 6 Let the sets X, and Xg of limit points of the prezmages of a1

and B! be non-empty. Then L =w (a™ ') = w (671).
Proof. First of all, Theorem 3 implies that
Xp = Xo U Xp.

It is easy to see that there are points p; and p; such that for any € there are
preimages of a~! in the intervals (p; — €, p1) and (p2, p2 + €) and preimages
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of 37! in the intervals (p1, p1 +€) and (p2 — €, p2). Next we find the intervals

(a7, B C (p—epL+e) 1<k

(a2, 8)Cc(pr—epr+e)  ja>ke

(/6—]'3,0[—]%) C (p2 —€Pp2+ 6) j3 S k3

(,B—j4,a_k4) C(p2—€&p2+e) Ja > k4
to satisfy the Principle of Equivalent Distance.

Applying the function f*!, n = max {j, k}, to each interval we get that
a~! is a limit point of images of 3~! with limiting sequences approaching
from both left and right. The same is true about 3. Thus we have

Fwd(e!) cw (67),
Fwd(f-1) Cw (o).
However, observe, that w(x) C Fwd(x) for any x and, therefore, w (87') =

w (o). Now we repeat the proof of Lemma 5 to conclude that any y € L is
contained either in w (87!) or in w (@~!), but since they coincide we obtain

L=w (5“1) =w (a_l) .

The lemma is proved.
Assume that condition (3) does not hold and consider the set

Lisq = L\ (w (a‘l) Uw (ﬂ—l)).

This set contains only points that are images of discontinuity points (see
the above proof). An examination of the proofs of Lemmas 5 and 6 leads
to the conclusion that if the point z is an image of only one discontinuity
point it belongs to one of the omega-limit sets. Indeed, for such a point
representation (4) holds and the subsequent proof is completely valid. Thus
we conclude that

Lisa C Fwd(e™ ) NFwd(87").

8 Main theorems

Now we can summarise the consequences of the results of the previous sec-
tions.
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Theorem 4 If Invy;/In~yy is irrational and condition (8) is satisfied then
L = w(x) for any x.

Proof. The union of the sets X, and Xjg, defined in the Lemma 6, is
the whole space X}, therefore, for any x (for x equal to a, b, o or 8 consider
f?(x) instead) we can find intervals

(y17x) and (X, y2) » p(yl,x) <E€ p(X, y2) <€

satisfying the Principle of Equivalent Distance, where y; and y, are some
preimages of the discontinuity points. Applying the Principle to the intervals
we obtain that (at least one of) the discontinuity points are (is) contained in
w(x). Lemmas 5 and 6 now imply that L C w(x). The converse, w(x) C L,
is always true and the theorem is proved.

Theorem 5 Let Iny1/In~y, be irrational. Then the set Fwd({a™", 57}) is
everywhere dense in L:

L c Fwd({a™1, B-1}).

Proof. Proofs of the enclosure y € w(a™!) Uw (87'), as given in Lem-
mas 5 and 6, are still valid for any y € L which is not an image of a dis-
continuity point even if condition (3) is violated. Therefore, in the general
case

L=w(a)Uuw (B Hu Fwd({a™",57'}) c Fwd({a"1, 3-1}).
Q.E.D.

Theorem 6 Let f be a piecewise linear map with hysteresis. Then the global
attractor L is equal to the non-wandering set €.

Proof. Lemma 2 implies that Q C L. To prove the inclusion L C Q
we consider two cases: the first when In+y;/Inyp is rational, and the second
when it is not. In the former case x € L if and only if x is periodic, therefore
L c .

If Iny;/ Iny is irrational and condition (3) is satisfied we employ Theo-
rem 4 to conclude that L = w(x) C Q.
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If condition (3) is not satisfied we represent L as
L=w (a‘l) Uw (5"1) U Lisor

To prove that L C 2 it is now sufficient to show that the set L, is a subset
of the nonwandering set. According to the remark at the end of the previous
section, the set Lz C Fwd(a™!) N Fwd(8~!). For a point z € Lisu take
a neighbourhood U > z. It contains preimages of the discontinuity points
which are, in turn, preimages of the point . Therefore, there exists a number
n such that f*(U) NU is nonempty and = € Q. Q.E.D.

Theorem 7 Let a family of PLMH depending upon a parameter A be weakly
continuous at a point Ao, Iny;/In~yy be irrational and condition (3) be satis-
fied. Then the function L()\) is lower semicontinuous at the point A.

Proof. First we prove an auxiliary statement: if o' ¢ L(\p) then
there is a neighbourhood of Ay such that for any A from the neighbourhood,
at ¢ L(A).

Let k be such that

ot e fi7H(X,) and a7t & £}, (Xa)-
Then there is a o such that
VA= ol <o) [at ¢ £E(XR)]
Indeed, assuming the contrary we obtain that

A\, = Ao Jzp, > Z [a‘l € f¥ (zn)]

and, by weak upper continuity, o~ € f¥ (z). This is a contradiction.

As a corollary we obtain that at least one of the points o' and 87! is
contained in the set L. Indeed, if In~y;/In~yy is irrational, Theorem 3 implies
that one of these points has an infinite number of preimages and, therefore,
belongs to L. In the rational case we assume the contrary: both points are
not in the set L. Then we choose 7y as a parameter and employ our auxiliary
statement to deduce that a~!, 37! € L()) in some neighbourhood of A. But
irrational maps are dense in this neighbourhood and we get a contradiction.
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Now to prove the theorem we consider two cases.
B~' € L(N) and o' & L(X). Then L () = w (47" (Lemma 5). For
any point x € L (\) there is an image of 3! which is close to x:

Ve>03x € fR (B71) [p (X,x) < 6/2].
Lemma 1 implies that there is o such that
VA= | <o) 3xx € f2(67) [p (x2, %) < e/z]

and, therefore, p (x),x) < €. Provided that x, € L(}) it is proof of the lower
semicontinuity.

To prove that x5 € L()) it is sufficient to prove that 5~! € L()A). But our
auxiliary statement implies that o' ¢ L()) for X in some neighbourhood of
\o and, using the corollary, we conclude that 3~ € L()).

If both o~ and B! are contained in L()\g) then L(Xo) = w(87!) =
w (a~1). Therefore, we can perform the same analysis for both o~! and 57!
to get

V(A= dol < 01) Ixx € f2 (07) [p (%2, %) < €]

VA= dol < 02) 3ya € 13 (67) [p (%) <]

Now, since either o ! or 87! belong to L(A) we deduce that either x, or y,
belong to L(A) too. Q.E.D.

Remark 2 The set L* = w (o™ !) Uw(B7!) is “almost” L for irrational
Invy;/In7. Then the function L*(A) is lower semicontinuous regardless of
condition (3).
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2.5

Figure 1: Graph of the global attractor of a piecewise linear map with hys-
teresis. The global attractor L is plotted as function of the parameter £3.
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Figure 2: An example of a piecewise linear map with hysteresis and a typical
trajectory
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Figure 3: An example of a PLMH with parameters such that the global
attractor, as a function of the parameter a, would be lower discontinuous.
Here point (o, 1) belongs to the global attractor and is isolated in it. For
values of the parameter a > ao this point does not belong to attractor any
more which causes lower discontinuity of the global attractor.
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