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ABSTRACT: We consider a symmetric network composed of N links, each with capacity C. Calls
arrive according to a Poisson process and each call requires L distinct links (chosen at random).
If each of these links has free capacity, the call is held for an exponential time; otherwise it is lost.
The semi-explicit stationary distribution for this process is similar to a Gibbs measure: it involves a
normalizing factor, the partition function, which is very difficult to evaluate. We consider the limit
N — oo with the offered arrival rate to a link fixed. We use asymptotic combinatorics and recent
techniques involving the law of large numbers to obtain the logarithmic equivalent for the partition
function, and deduce the large deviation principle for the empirical measure of the occupancies of

the links. We give an explicit formula for the rate function and examine its properties.
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1 Introduction

We consider a large star-shaped network composed of links numbered 1 to IV, each with
capacity C. Calls arrive as a Poisson flow. Each call chooses a route, uniformly at random,
in

RN = {subsets of L distinct links among 1, 2, ..., N} (1.1)

and is lost if any link on the route is at capacity; otherwise it holds one channel on each

of these links for an exponential time with parameter X\. The call arrival gives rise to
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L-body mean-field interaction, while the simultaneous release of L channels introduces

strong interaction.

This may model many situations of simultaneous service, such as telecommunication
or computer networks, locking of items in data-bases, parallel computing or job processing

in factories; see Whitt [13], Ziedins and Kelly [14], Kelly [9], and Hunt [8].

A (huge) Markovian description of the network is given by YV = (Y;"),cxn~, where

Y¥ € D(R4,{0,1,...,C}) counts the number of ongoing calls on route r. The process

xN= Y Y (1.2)
reRN tier

counts the number of occupied channels on link 7, and the simultaneous releases prevent

XN)1<i<n from being Markovian. A relevant tractable quantity is the empirical measure
i J1<i< p

pl =% SN, 6xn € P(ID(Ry, {O,'l, ...,C1})) and its flow of time-marginals

_ _ _ 1 N
XV = (X0 € DR, P), X' =53 bxng (1.3)
=1

where P = P({0,1,...,C}) can be naturally identified with the C-dimensional simplex.

This records the occupancies of the links, averaged over the network.

In this paper we obtain a large deviation principle for the stationary distribution of
XN as N goes to infinity. We keep the arrival rate seen by each link equal to v, thus the

arrival rate on any route r in RY is

vy = V/(ZZ:11> . (1.4)

The starting point is a description of the stationary distribution given in the paper of
Ziedins and Kelly [14]. A key ingredient is to make use of the law of large numbers,
which was obtained in this context by Whitt [13]. This gives us a convenient asymptotic
representation for the partition function, which otherwise would have been difficult to
evaluate. It also leads to an explicit formula for the rate function. We show that the rate

function is strictly positive everywhere except at its minimum, and uniformly convex at



this point. The rate function is not convex in general; we give a complete description of

its curvature.

The idea of using laws of large numbers to obtain large deviation principles seems to
be quite useful, and has been exploited to an even greater extent than here, for a variety

of applications, in [10, 11, 12].

We remark that large deviations results have been obtained for a class of networks,
which includes this model, under a different asymptotic regime, by Chang and Wang [1]
In this regime, the topology of the network remains fixed while the capacity and arrival

rate go to infinity.

The ogtline of the paper is as follows. In Section 2, we present some preliminary
material. In Section 3, we simplify the asymptotic evaluation of the partition function
using Whitt’s law of large numbers. In Section 4, we compute the necessary combinatorial
asymptotics. We present the large deviation principle in Section 5, and a detailed analysis

of the rate function in Section 6. In Section 7 we present some pictures.

2 Preliminaries

Some pathwise results

Whitt [13] gives a functional law of large numbers (LLN) on XN given that X' satisfies
a LLN; he deduces a LLN for the stationary distribution. Graham and Méléard [3] prove
propagation of chaos in total variation norm on path space for an initially empty network:
there is a law Q on ID([0,T),{0,1,...,C}), defined by a tree construction and unique solu-
tion to a non-linear martingale problem, such that |C(X, ..., X}) — Q®*| < k¥*C(T)/N.
This implies the convergence in probability of uV to @ and of XV = (X])e0 to (Qt)e0
and can be extended to more general initial conditions satisfying a LLN. Graham and
Méléard give a Gaussian fluctuation result for XV in [4], and large deviation results (com-

plete only for C = 1) in [5] and [6], for initial conditions satisfying proper asymptotics.

The limit flow (Q¢):>0 satisfies the nonlinear ordinary differential equation (ODE)



(obtained by taking the expectation of the nonlinear martingale problem)
00} = —v(1 - Q{CHF1Qu{0} +2Qi{1}
Ok} = v(1 = QO (@utk — 1 — QufkY) + M(k + D@Qu(k +1) ~ kQu{k}) (2:1)
0UC) = v(1 - QUCHEIQU(C - 1) - ACQHC)

on P. We set p=v/X and p, = vy /. Any fixed point g, of this ODE satisfies
bap{k} = p(1 = o {CH Mgk~ 1}, k=1,2,...,C (2:2)

which is solved in terms of g,{0} as

1 - g{chr1)*
qp{k}=qp{0}(p( q,,i! h) , k=0,1,...,C (2.3)

and such a g, is in P if and only if we have gp{k} >0 and

(2.4)

c c, (p(1 - a{cH )\
Z Qp{k} =1« qﬂ{o} = (Z k' ) -
k=0 ’

k=0

Thus g, is a fixed point in P if and only if the blocking probability ¢,{C} satisfies

c (,,(1 ~ q,,{C})L—‘)k)'1 (p(l - qp{C})L"‘)C (25)

%{C} = <;§) ! C!
in [0,1]. This corresponds to the Erlang fixed poiﬁt approximation, see Kelly [9] and
Ziedins and Kelly [14]. The r.h.s. of (2.5) is a continuous decreasing function of q,{C}
which is strictly positive for g,{C} = 0 and tends to 0 as g,{C} tends to 1, hence there is
a unique solution g,{C} which is in ]0,1{. Thus there is a unique fixed point g, to (2.1),

determined by (2.3) and (2.5), and g, belongs to P°. We obtain using (2.2)
C
(ap) = Y kap{k} = p(1 — g, {CH" (26)
k=0

where we denote the first moment or mean occupancy of  in P by (a) = 25:0 ko{k}.



The stationary distribution

The unique stationary distribution of (Y;"),cr~ on

AN:{mz(mT)TERN:mTGIN’ Z mrSC,VZE{l,.,N}}
reRN wier

is given, using the notation |m| = 3, cx~ mr, by

AN (m) = Pu(YN =m) = — [ o1 [[ —, mea’ @7
= La(Yy = = TN T = 7N N 1 )
I e M=

where the normalizing factor or partition function Z,’,V is given by

|m| 1

N _ P

zy= 3 o 1l o 28)
meAN (L—l) reRN

Computing this factor is a NP-complete problem, and good approximations are needed;

for further discussions and references, see Ziedins and Kelly [14].

This gives the distribution 7V on P of (X{¥)¢>o in equilibrium. There is a well-defined

function fV : AV s P such that XY = (YY), see (1.2) and (1.3). We set
AN(a)z{mEAN : fN(m)=a}, a€?P

and obtain

1 L 1
WN(a)ZPst(XtN:a)zfﬁ e N(a) Z H a€P (2.9)

o (N=HTET meaN (@) rerV

where we use that (considering the total number of occupied links in the network)

Vm e AV(a), N(a)=Ljm|< NC. (2.10)
3 The law of large numbers and the partition function

Pathwise results do not extend directly to the stationary distributions: it is difficult to
exchange the N — oo and ¢ — oo limits. Whitt [13] achieves this by a compactness-

uniqueness method, see Theorem 3 and Section III in [13] or Section 4 in Kelly [9] (with
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notation closer to ours). This gives the following law of large numbers, which can also be
proved from direct computations on the partition function (see the extensions in Section 4
of Theorem 2.4 and Corollary 2.6 in Ziedins and Kelly [14].) For completeness we present

a short proof.

>

Theorem 3.1 We have equivalently, with g, the fized point (2.3),

A}im alV = g, weakly, IJim )_(tN =g, in probability at equilibrium.
—00 —00

This convergence is uniform in t on bounded intervals.

Proof. Let a sequence of networks start at their stationary distributions. Classical cri-
teria show that the sequence u” is tight in P(ID(IR4,{0,1,...,C})). Any limit point is
in equilibrium (by consideration of the finite-dimensional marginals) and satisfies a limit-
ing non-linear martingale problem with unique solution (by a simple limiting procedure).
Taking the expectation yields that the limit points of (XN )t>0 satisfy the ODE (2.1), with
unique fixed point (2.3). Hence the martingale problem starts at g,, and by uniqueness
we have convergence. Classical Ascoli estimates give relative compactness for the flow of
marginals, hence the uniform convergence on compact sets (which is in fact implied by

the convergence of p). )

We now investigate the asymptotics of log Z N for large N. We set
g Zp g

Way= S I = (3.1)

Yy
meAN (a) reRN T

and for B in B(P) we have following (2.9)

N{a)
L
log 7™ (B) = log Z —'(-)——T—— ;a)a(N, a) — log Z,I,V. (3.2)
L

a€B (IZ:II)

The sum has a support of cardinality less than (N + 1), since it is included in the set of

a € P such that Na(0), Na(1), ..., Na(C) are integers. We bound this sum between its



maximal term and its maximal term multiplied by (N + 1)€ and set

L-1
K(N,a) = {(a) T log N — —(—Z—)log(p(L -1 - ]—b—log o(N,a) (3.3)
and obtain
logn¥(B) = —N irellfBK(N’ a) — log Z},V + O(log N) (3.4)
[0

in which a € B not in the support satisfy o(N,a) = 0 and hence K(N,a) = +oo.

Theorem 3.2 For any neighborhood B of g, given by (2.3)
N _ .
log Z, = —Nollreng(N, a) +O(log N) +o4(1).

Hence an asymptotic evaluation of K(N,a) continuous and non-zero at g, yields an equiv-

alent for log Z N by considering open balls B shrinking to q,.
& <p p

Proof. Theorem 3.1 implies that for any neighborhood B of g,, the left-hand side of (3.4)

goes to 0 when N goes to infinity. Hence the result. O

4 Some asymptotic combinatorics

We restrict our attention at first to a in PV, where
PN ={a € P: Na(0), Na(l),...,Na(C),N(a)/L € IN}.
Lemma 4.1 Let d(N,a) be the number of ways of setting up N{c)/L distinguishable calls

so that the resulting network occupancy m is in AN (a) (with |m| = N{a)/L). Then

|m!
d(N,a) = ———— =|m|!o(N,0).
mEAZN(a) HTERN mT!

Proof. For each m € A" (a), the multinomial coefficient |m|! ([T,er~ m.!)™" counts the

number of ways of partitioning |m| distinguishable balls in successive subsets of size m,
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for r in RN (which we order for this purpose). Each possible set-up of |m| calls giving

occupancy m is clearly in one-to-one correspondence with such a partitioning. O

Proposition 4.2 Let w(N,a) be the number of ways of dropping |lm| = N(a)/L distin-
guishable groups of L distinguishable balls in N distinguishable bozes, so that the balls in
each group fall in distinct bozes and that there are N a{k} bozes with k balls, k = 0, 1,
..., C. Then w(N,a) = L!'mld(N, a) and hence

o(N, @) = w(N, a)<]—v-éi)!L!N_(L°l)—l.

Proof. Each box corresponds to a link, and each group of L balls to a call. There are L!
different ways to settle these L balls in a given subset of L boxes (corresponding to a given
route), hence w(N, o) = L!'mld(N, a). We express d(N, o) using Lemma 4.1 to obtain the

formula for o(N, a). m]

The computation of w(N, @) recalls the occupancy problem, see Feller [7] 11-5.

Proposition 4.3 Let wy (N, a) be the number of ways of dropping N{a)/L distinguishable
groups of L distinguishable balls in N distinguishable bozes, so that there are Na{k} bozes
with k balls, k=0, 1, ..., C. This is simply the number of ways of dropping N{a) balls
in N bozes with the given occupancy of the bozes. For any such configuration, let a(N, @)
be the number of permutations of the balls for which balls in a group do not fall in the

same boz. Then

N (N{a))!

a(N,a)
[T, (Na (k) T (kNat = ¥

(N {e))!

’lU+(N,O£) =

(N,a) = wi(N,a).

Proof. This formula expresses w, (N, ) as the product of two multinomial coefficients,
the first counting all possible partitions of the N boxes in subsets of Na{k} boxes which
are to contain k balls, the second all possible possible partitions of the N (a) balls in

Na{k} subsets of k balls, k =0, 1, ..., C, see Feller [7] II-5. More precisely, the second
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multinomial coefficient is the quotient of the number (N{a))! of permutations of the balls
in a given configuration counted in wy (N, @) by the number of such permutations which
keep any ball in its original box, and hence give rise to the same global configuration. We
can express w(NN, a) similarly as w, (N, @), only replacing (N{a))! by the number a(NV, o)

of permutations for which balls in a group do not fall in the same box. ]

We wish to show that w(N,a) and w4 (N,a) are asymptotically close, with some
uniformity on o. We first give a loose lower bound for w(N, ), then an appropriately

tight and uniform lower bound on w(N, @) /w (N, ).

Remark. For arbitrarily large N we may find & such that w(N,a) = 0 and wy (N, ) > 1:
for L =2 and C = 2 we take a(2) = 1/N and o(0) =1 - 1/N.

Lemma 4.4 Let o in PN be such that N{a) > CL. Then

N! N(a)
N,@) > —g———=LI'E >1.
Tk=o(Nafk})!

w(
N(a)

Proof. The multinomial number counts the possible choices on the boxes, and L! ©
counts the permutations of balls within each group (balls in a group are in distinct boxes,
hence these permutations give distinct configurations). Thus, it is sufficient to prove that
for N{a) > CL there is at least one way to place the balls as in the definition of w(N, a),

once we have fixed the Na{k} boxes which should hold k balls, for k=0, 1, ..., C.

We fix these boxes, and call any box which should hold & balls “a box of type k”. We
now prove by induction on C that for N{(a) > CL there is at least one way to place k
balls in every box of type k, so that balls in a group do not fall in the same box. This is

obvious for C = 1. Let us assume it true for C —1 > 1.

For Na(C) > L, we place the balls by layers. We place balls successively in each box
of type 1, then in each box of type 2, and so on until we place balls successively in each box
of type C, thus completing the first layer. The boxes of type 1 now hold 1 ball each. We

go back and place balls successively in each box of type 2, then in each box of type 3, and

9



so on until we place balls successively in each box of type C, thus completing the second
layer. The type 2 boxes now hold 2 ball each. We continue in a similar manner until there
are no balls left. Since there are at least L boxes of type C, we never place balls from the

same group in the same box, and we eventually fill up all the boxes appropriately.

For Na(C) _<_ L — 1, we take a group of L balls and place one ball in each box of
type C. There remains L — Na(C) balls in the group to place properly. There is a total
of N(a) — Na(C) > CL — L + 1 balls left to place; since the boxes are either of type
k with ¥ < C — 1 or of type C and contain already one ball, there must be at least
(CL—L+1)/(C —1) > L boxes which can each accept in the future at least one ball. So
we can place the remaining L — Na(C) balls of the group in separate boxes distinct from
the Na(C) ones already used. Then we are left with N(a) — L > (C — 1)L balls to place
according to a configuration in which the maximal number of balls in a box is C — 1, and

by induction we know there is at least a way of doing so. O

Proposition 4.5 We have for any a in PN

w(N, a)
> _— >
0> log wi(N.a) = O(log N)

with a O(log N) term uniform for N > 2 and a in PN such that N(a) > CL.

Proof. The upper bound is obvious, see Proposition 4.3. We have w(NNV, dp) = w4 (N, do) =
1. For a # 6y we consider N large enough so that N(a) > CL, and bound below a(N, ).
The boxes are fixed, and the order of placement of the balls in the boxes is taken into
account: we call “spot” the conjunction of a box and an order of placement in the box.
After the (j — 1)-th group of L balls has been placed, (j — 1)L spots have been occupied.
The first ball in the j-th group can thus be placed in at least (N(a) — (j — 1)L) spots,
the second in (N(a) — (j — 1)L — C) spots since the placement of the first ball in a box
prevents the placement of the second ball in the at most C spots in the box, and so on,

until the last ball in the group can be placed in at least (N(a) —jL — (L —1)C) > 1 spots

10



since only the spots in L — 1 boxes are forbidden. After thus placing groups of L balls for
i=12 ..., M]}’)— — C, there are C groups left, and Lemma 4.4 applied to this restricted
placement problem with fixed boxes states that there is at least (L"C ways to do so. Thus

N{o)
_LE__C

a(N,@) > (LN I (N{@)-(G-1)L)(N(a)=(i-1)L-C)--- (N(a)=(j-1)L~(L~1)C)

i=1

and considering Proposition 4.3, we express (N(a))! as we did a(N, @) and use a simple

bound to obtain

Ne)
w(N,a) a(N,a) _ DI° EC L—1)(C —1)\%!
R N (e Es
wi(N,a) - (N{e)! — (LO) 55 N{a)—jL+1
We take the logarithm. Classically
Meal ¢ o
LZ log(l _L-nEe- 1)) S /%4+%—1 log(l _L-1(C- 1)) &
st N{a) —jL+1/) 7 Je+ia zL
which we integrate to obtain
w(N, ) L-1 (L-1)(C-1)
> — N St A S
lng+(N,a) 2 =7 ((N(a)+1 L)log(l N(a)+1—L)

+(CL+1-L)log(CL+1—-1L)
—(L=1)(C — 1) log(N({a) + C — CL) — Clog C)

+ Clog L! —log (LC)! = O(log N)

with the uniformity we have stated. O

For a and B in P we define the entropy and relative entropy (or Kullback information)

C C
H(@) = = Y alk}logalk), H(alf)= 3 a{kHos 50 (1)
k=0 k=0

(with the conventions 0log0 = 0, etc.) and the continuous function

¢ L-1 (@)
K(a) = —H(a) + Z afk}log k! — () 7 (log{a) — 1) — I logp. (4.2)
k=0

11



Theorem 4.6 We have for any a in PN

K(N,a) = K(a) + o(l"fVN)

see (3.3) and (4.2), with a 0(1—953\,—]!) remainder term uniformly bounded below, and bounded

above uniformly for N > 2 and a in PN such that N{a) > CL.

Proof. The statement for a = &, is obvious. Else Propositions 4.2 and 4.3 give

C C
logo(N,a) = log N! — Z log (Na{k})! + log (N{(a))! = N Z afk} log k!
k=0 k=0
— log _]Y_%C.Y_)! - N——leogL!+logE%(fVT’,%.

We recall the Stirling formula logn! = n(logn — 1) + O(log n), see Feller [7]. We have
log 0! = 0(log 0 — 0) and log 1! = 1(log 1 — 1) + 1. Since the function log is increasing and
log2 > 0, we have log NC > log N{(a) > 0 for N(a) > 2 and log N > log Na{k} > 0 for

Na{k} > 2. We obtain using these results and Proposition 4.5 that

C
logo(N,a) = N(logN — 1) = N Y _ a{k}(log Na{k} — 1)
k=0

C
+ N{(a)(log N(a) — 1) = N Z afk}log k!
k=0

- N (10 M) 1) 20D pog 11+ 0105 )

with an O(log N) remainder term uniformly bounded above, and bounded below uniformly

for N > 2 and « in PV such that N(a) > CL. Since Y§_a{k} =1 we have

: c
logo(N,a) = NH(a) — N Y_ afk}log k! + N(a)L 1 (log N{a) — 1)
k=0
- Néa) log (L — 1)! + O(log N)
and we conclude considering (3.3) and (4.2). m
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5 The large deviation principle

Theorem 5.1 We have (see (2.3), (2.6) and (4.2))

.1 N L-1
Jim —log Z)¥ = —K(g,) = —log 9p{0} = —7—{4p)-

Proof. We use Theorem 3.2 for a sequence of open balls B shrinking to g, and not con-
taining do. We may then use Theorem 4.6 with a uniform remainder. We obtain the result

using the continuity of K at g, and expliciting K (gp)- a

Using the notations (4.1) and (4.2) we define the rate function

(@)

Lo Lig) = Hala) - 25 (o) — () + () og (55 ) 6.1

L

J(a) = K(a)—1log g,{0} —
which is continuous in P and C® in its interior P°. Note that J(g,) = 0.

Theorem 5.2 A large deviation principle with continuous rate function J holds for (mV)N>1:

for any Borel set B included in P
_ inf J(e) < liminf + log 7 (B) < limsup — log 7 (B) < — inf J(a)
ac B0 SHS N SAnSP N o8 =T aepl\ Y

N—oo

We have J(a) = H(a|q,) if and only if (a) = (g,), else J(a) < H(c|gp)-

Proof. Let a Borel set B be given. We divide (3.4) by /N and obtain

1 . 1
__log7rN(B) = —;IGIEK(N,Q)._ ﬁlogZ’I,V—i-O(

logN)
N

N

and use Theorems 4.6 and 5.1; we recall that K (N,a) = +oo for o ¢ P.

The LDP lower bound follows easily from the classical

liminf — inf K(N,a) = —limsup inf K(N,a) > — inf limsup K(N, )
N—-oo a€B €B B

N—oo @ a€B N-oo

13



and hence using the continuity of K

liminf — inf K(N,a) > — inf limsupK(N,a) = — inf K(a).
N—oo a€B a€B° N_00 a€Be

For the upper bound, we use uniform convergence. Theorem 4.6 yields

. . log N
— < —
olzleng(N’a)- (:IGIEK(Q)_’-O( N )

with an uniform remainder, hence

lirnsup—gleng(N, a) < —grelg K(a)

N—o00

form which we deduce the LDP upper bound.

The last statement follows from the study of the function y — 1 —y — ylogy. O

6 The shape of the rate function

So that the LDP may be of any practical use, we give an appropriate description of the
rate function J. We already know that it is non-negative continuous on P and C*° in P,

that J(g,) = 0, and that J(a) = H(a|g,) if and only if (a) = (gp), else J(a) < H(a|qp)-

We differentiate twice in P° considered as a subset of IRET!. Only the action of these
differentials on the tangent space 7 = {h : ho + h1 +---+ hc = 0} is intrinsic. We use

the last formulation in (5.1) and obtain for 7, =0, 1, ..., C

ofi} L=1, (@ 5 =i =14
o T %y WOy @ Y

As one expects DJ(g,).h = (1,1,...,1)*h = 0 for h in 7. More surprisingly, D?J does

0iJ(a) =1+ log

not depend on p.

Theorem 6.1 The law g, is the only o in P° such that DJ(a).h =0 for all h in T and
hence the only locus in P° of a local extremum of J. Moreover J(a) > 0 for any o in
P — {q,}, while J(gp) = 0. Hence there is ezponential decay of 7wV (A) for any closed set

A not containing g, and (7rN)N21 converges a.s. to q,.
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Proof. If DJ(c) is tangent to P then 8;J(c) does not depend on i, hence

09{_1'}:0 afi — 1} L—lo (a)
lgqp{i} ng{i_1}+ L lg<9p)

from which follows using (2.2) and (2.6)

ofi} _ gl ((a))‘—ilz._l(a>£—_x L

ali—11  gdi— 1} \{g,) :

hence

ia{i} = (@) T pTafi—1}. (6.2)
By summation over ¢ we obtain

L1 1
(@) = (@) T pL (1 - a{C}) = (@) = p(1 ~ o{C}"
and going back to (6.2), we see that o solves the recurrence relation (2.2) of which we

know that the unique solution in P is g,.

We have J > 0. If there is a zero of J in P° then there is a local minimum at that
point, which must then be g,. For any boundary point o of P except 00, 0;J(a) = —o0

whenever af{i} = 0, and J(a) > 0. Moreover 9;J(dp) = —occ and again J(do) > 0.

Exponential decay follows by the compactness of P, the continuity of J, and the LDP.

The a.s. convergence follows a standard Borel-Cantelli argument. ]

For v the column vector (0,1,...,C)* and diag(a) and diag(a)™! = diag(a™') the
diagonal matrices diag(a{0},a{1},...,a{C}) and diag(a{0}1,a{1}7},...,a{C}™"),

L-11

D?J(a) = diag(a)™! — —L——-<—05vv* (6.3)

is a rank 1 perturbation of a positive definite matrix of which we know the inverse. This

particular structure enables us to study its invertibility and signature.

Let Q(a) be the restriction of D2J(a) to T = {h : ho + h1 +---hc = 0}, and
N =vtnT ={h e T: (h) = 0}. We are actually interested only in 7o = {3— o : B € P}
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and Ny = vt N7 ={B-a:B € P, (6) = (a)} which has a natural interpretation in

terms of mean occupancy.

Denote by (a), and Var(a) the second moment and variance of a, respectively. For

a € P° we denote by & the probability measure

afi} = ofi} o1, . (6.4)

Note that a{0} =0 and &{i} >0 for i = 1,...,C, and that (@) = (@)~ {a),,

Var(o)
(@)

Var(a)

>0, (&~ o) diag(e) (6 —a) =~

(@—a) = > 0. (6.5)

For L > 2 we define on P and IR®*! the second degree polynomial

Fla) = Lf (o) ~ Var(a) = (o) + <1+ %) () — (), (6.6)

The equation F(a) = 0 defines a cylinder with parabolic base, delimiting a convex open

set {F(a) < 0}. Clearly F(é) =0 and F(;) =iL/(L—1) >0fori=1,...,C.
Theorem 6.2 For any a € P° the decomposition
T =N + span(a — a)

is orthogonal for Q(a). The restriction of Q(a) to N coincides with the restriction of

diag(a)~! and hence is is positive definite (of rank C —1), and

L-1 1 Var(a)
L (o) (a)?

L-1 Va.r(a)) Var(a)

(@~ e Q)@ —a) = (1~ =77 0 ) T

= F(a)

Proof. We represent 7 in a (non-orthogonal) basis by associating to h € T the vector
(h1,--.,hc), and naturally hg = —(hy + --- + h¢c). Since diag(a)! is positive definite,
the restriction of the corresponding quadratic form on 7 is positive definite. We denote

by B~! its matrix. Both B~! and B can be readily explicited: for h € T,
<1

h*diag(a)~th = = (hi+-4+he)?+ > ——=h?

5 2t = air 2
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and setting u = (1,...,1)* and A = diag(a{1},...,a{C}), we have

1

B—l :A_l
+ o 0}uu

* B=A- Au(Auv)* = A — Auwu’A, (6.7)

where BB~! = I is easily checked using u*Au = a{1} +--- + a{C} = 1 — a{0}.
We set w = (1,...,C)* in this basis of 7. Then (6.3) implies

Qa)=B"1- g—%l%ww (6.8)

and the restrictions of Q and B~! to w' are equal. Since w*Bw > 0 then Bw ¢ w' for
the canonical scalar product in this basis. Since z € w* implies z*Qz = z*B~ !z and

z*QBw = 0, the decomposition of 7" into w' + span(Bw) is orthogonal for Q. Then
Bw = Aw — (u* Aw)Au = Aw — () Au = (a)(a — a),

(Bw)*QBw = (1 - —Ii—l_j—l—((%w*Bw) w*Bw,

w*Bw = w* Aw — (u* Aw)? = (@), — (@)% = Var(a),

and we conclude by writing everything intrinsically, in particular wt = N. O

This allows us to study the shape of J. In the independent case L = 1 the Hessian Q

is everywhere positive definite, and J is uniformly convex at each « in P? as it should be.

Theorem 6.3 Let L > 2. IfC =1 or if C =2 and L = 2, then Q is positive definite
and J is uniformly convez at each o in P°. Else, Q has signature (C — 1,1) in the non-
empty convez open set {F(a) < 0} NP?, has signature (C —1,0) on the parabolic cylinder
{F(a) = 0} NP°, and has signature (C,0) in the non-empty open set {F (o) > 0} NP°,

on which J is uniformly convez at each point.

Proof. If C =1 then (), = (a) and F(a) > 0 in P°. For C' = 2 we have

F(a) = af1}? + 40{1}a{2} + 4a{2}® + L—_l_—la{l} - (2 - L_2—I)a{2} :
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Thus if L = 2 then F(a) > 0 in P°, and if L > 3 then
F(a) < a{1}(a{1} + 4a{2} +1/2) — a{2}(1 — 4a{2})
and F(a) < 0 for 0 < @{2} < 1/4 and a{1} sufficiently small. For C =3 and L > 2,

F(a) < (a)® +2(a) — (@), = (af1} + 20{2} + 3a{3})* + a{1} — 3a{3}

< ({1} +20{2})? + 6(a{1} + 20{2})a{3} + a{1} — 3a{3}(1 — 3a{3})

and F(a) < 0 for 0 < a{3} < 1/3 and a{1} and a2} sufficiently small. We conclude for

all C > 3 and L > 2 by a continuity argument. 0

We now obtain a good understanding of the behavior of J near g,.

Theorem 6.4 The Hessian matriz Q(g,) s definite positive (of rank C), and the rate

function J is uniformly convez at q,.
Proof. We obtain using (2.2)

C C
(qP)2 = Z k2q,,{k} =p(l- Qp{c})L_l Z kgp{k — 1}
k=1 k=1

= p(1 - g,{CH " ((g,) — Cap{C} +1 - g,{C})

and using (2.6) and (6.6)

F(g) = 1 = {CH (1 - 4{CHgp) + 771 - 4,{C)) — () + Ca{C})

1

= (1= go{CH*}((C - (@)a,(C} + T— (1~ 4,{C})) > 0 (6.9)

where we conclude using the capacity constraint (g,) < C. ]

This enables us to give a local estimate at g,,.
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Theorem 6.5 Let T be furnished with a norm ||-|| and P with the corresponding distance.
Let B(gp, €) denote the ball of radius € > 0 centered at g,. Then

1
lim N log WN(B(q,,,E)C) = —0e? + 0.0+ (%), @

= inf A* h .
N—oo heler|l|h||=1 Qlgp)h >0

If the norm 1s Euclidean, then 0 is the least eigenvalue of Q(g,) in an orthonormal basis.

Proof. Since J is non-negative continuous on P, vanishes only at gy, and is convex in
a neighborhood of g,, then for € > 0 small enough the infimum of J(a) for a ¢ B(g,,¢)
will be attained at the boundary. A Taylor expansion gives for any vector A of norm 1

J(gp +€h) = e2h*Q(g,)h + Oc 0+ (€%). o

7 Some pictures

We present plots of the rate function J for C = 2 and p = 10, as a function of a{ 1} and

a{2}. In Figure 1, L = 5 and in Figure 2, L = 50. The non-convexity is quite apparent.

In Figure 1 the origin is at the lower left, the a{1} axis points right, and the a{2}
axis points to the rear. In Figure 2 we have rotated the perspective, and the origin is the
bottommost point (at the middle), the a{1} points to the right, and the a{2} axis points

to the left.
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Figure 1. C =2, p=10, L = 5.

Figure 2. C =2, p =10, L = 50.
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