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Abstract

Poisson approximations for the counts of a given subgraph in large
random graphs were accomplished using Stein’s method by Barbour
and others. Compound Poisson approximation results, on the other
hand, have not appeared, at least partly because of the lack of a suit-
able coupling. We address that problem by introducing the concept of
cluster determining pairs, leading to a useful coupling for a large class
of subgraphs we call local. We find bounds on the compound Poisson
approximation of counts of local subgraphs in large random graphs.

1 Introduction

Given a graph G, let V(G) denote the vertex set of G and let £ (G) denote
the edge set of G. We use the notation v(G) = |V(G)| and e(G) = |E(G)|
to denote the number of vertices and edges in G. We use G to denote the
complement of G. We write F' C H to mean F is a proper subgraph of H.
Similarly, E(F) C E(H) means E(F) is a proper subset of E(H). When two
proper subgraphs Fy, F; of a graph G are isomorphic we write F} ~ F.

Let K,, be the complete graph on n vertices. The random graph G(n, D)

on n vertices is constructed by choosing each of the (’2’) potential edges of
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K, to be present in G(n,p) independently and with probability p. Fix a
subgraph H of K. Let I" be the set of @ C K, such that a is isomorphic to
H and let I, = 1(a C G(n,p)). The number of isomorphic copies of H in
G(n,p)isW =Y, I,.

The distribution of the random variable W is of interest. The expectation

of Wis , () ()
n nv(H)pe

E — e(H) ~—_—
v (v(H))” o(H)!

so that if p is chosen to be p = cn~v(H)/e(H) then EW ~ c*H)/e(H)!. It is
natural to study the distribution of W for these threshold values of p.

Let d(H) = e(H)/v(H). Note that at threshold np®) = O(1). Given
graph H, let m(H) = max{F C H : d(F)}. A graph H is balanced if
d(H) = m(H). It is strictly balanced if d(H) > m(H). It is unbalanced if
d(H) < m(H). It is well known (see [6] or [11]) that at threshold W converges
weakly to a Poisson distribution if and only if H is strictly balanced. For
unbalance graphs W = §;. We require H to be balanced, but not strictly
balanced, because we are interested in compound Poisson approximations of
W. Moreover, in light of [7], we require that there exists a unique minimal
subgraph F' C H such that d(F) = d(H). We call F the core of H, written
core(H).

The compound Poisson distribution CP () has parameter A = (A, A, .. .)
restricted to A := >_2, A; < oo and is distributed as Zizzl X;, where Z is Pois-
son with mean EZ = ), and the X are i.i.d. variables independent of Z with
density P(X = i) = X;/A. Alternatively, CP() is distributed as Y2, iZ;,
where the Z; are independent Poisson variables with means EZ; = );. '

Stein’s method is a powerful technique for finding distributional approx-
imations. The Stein operator A, corresponding to CP(A) is a functional on
integer valued functions g defined by

(o0}

(Ax(9) () = dg(i) — D_irig(G +9).

=1

One shows that .
IEAx(9)| < e0Mo(g) + e1Mi(g) (1)

for €9, €1 small, where My and M, are given by My(g) = sup;», |9(j)| and
M;(g) = supj»1 |9(s +1) — g(j)| for all bounded functions g : N — R. If one



is using total variation distance then one takes g = g4 to be the solution of
the Stein equation
Ax(g) = 14(5) — CP(N){4},

in which case
drv(L(W),CP(A)) < €0Qo + €1Q1,

where @, = supcz, Mi(9a), 1 =0,1.

A general bound of the form (1) was given in [8]. For each c, define a
set of indices I, C T'\ {a} for which I, depends strongly on (I5 : 8 € I';).
For each a € T, let &, be a random element and let x be a variable taking
on possible values of &,. Suppose {Ij;, (a),8 € T} and {I;,(c), 8 € I'} are
constructed for every i and x on the same probability space in a way that

L(Ij(@),B€T) =L(Is B €Tal[Za =i =1, =X)
_ and
LIy (@), B €T) = LI, B €T).
Let Uy = Y gers Ip, let Zo = Ua+ 1o, and let 05,0,i(b) = E|I5;, — Ip;, |- Define
“the )\; by

=t S E{Lal[Za =]}
L a€el

Theorem 5 of [8] implies that (1) holds with

Eo = 0
and +
{5 |+1
€] = Z ((Ma)2 +EI EU, + }: Z E{I.I[Zy = i]Oﬂ,a,i(&,)}) . (2)
a€l i=1 Bery

A difficulty in the compound Poisson approximation of subgraph counts
lies in finding appropriate couplings of Ij, with Ig, . We will construct
such couplings and use them to find compound Poisson approximations for
counts of a subclass of graphs called ‘local’, which are defined in terms of the
connectivity properties of G(n,p) at the threshold for the existence of H.

We define cluster determining pairs in Section 2 and quantify compound
Poisson approximations in terms of them. In Section 3, we define local
graphs. We derive bounds on the compound Poisson approximation of sub-

graph counts in G(n,p) for local graphs in Section4.

3



2 Cluster determining pairs and local graphs

Fix a ~ H, let G'(n, p) be an independent copy of G(n, p) and set Gj, (n,p) =
G'(n,p) Uaq, where U denotes the usual union of graphs. It is easy to check

that G4, (n,p) = (G’(n p)|Io = 1). This simple coupling suffices for bounding
the Poisson approximation of subgraph counts of strictly balanced subgraphs
in G(n,p); see [3].

In our application to subgraph counts we will take I'; ={peTl:
core(f) = core(e)}. Given a realization G of G(n, p), we define the H-cluster
at o to be the edge set defined by

«=Ca(G) = U E(B)-
s
Note that Zo(G(n,p)) = Za(G'(n, p)) whenever Co(G(n,p)) = (G (n,p)),

so that in using (2) it is useful to find some random element 5 that deter-
mines C,. A natural first approach might be to let £, = Ca(G5(n, p)) and
construct (If;,, I5,) by adding the edges of &, to G(n,p) if they are not al-
ready there; we write G(n, p) U&, for the result. The problem with that idea
is that it is possible, and indeed likely, that Co(G(n,p) U&4) # Ca(Gy (n,p)),
hence &, does not determine C,.

To define &, in a such a way that £, does determine Co; We v will choose
£, = (B}, E7), where EX C E(G,(n,p)) and E; C E(G,(n, G".(n,p)) are edge
sets. Thus, E; is a set of edges that are not present in G, (n, p). Let G (n,p)*
&, be the graph obtained from G(n,p) by adding all edges of EJ that are
not present in G(n,p), and by deleting all edges of E that are present in
G(n,p). If &, satisfies

Ca(G(n,p) * Ea(Go(n,p))) = Ca(Ga(n; p)), (3)

then we will call £, a cluster determining pair.
Since cluster determining pairs determine Z,, when we use them for com-
pound Poisson approximation (2) may be simplified:

a€l’ pery

51<Z( )+ ELEU, + Y E{l.bp4(¢ )}), (4)



where now {I}, (@), 8 € T'} and {I,(c), 8 € '} are constructed on the same
probability space in a way that

L(I(0),B €T) = L(Is, B €Ta=x,Ta=1),

L(Ip(a),BeT)=L(IsBEeT),
and 0p,(b) = E|Ij, — Ip, |- Moreover,

er < Y ((BL,)? + ELEU, + ELEWS +W,)), (5)

a€l

where

Wi =|{BeTY:p€G(np) *El(Gy(n,p)) and B¢ G(n,p)}|
and

Wr={B Tt :BCGnp) and B¢ Gln,p)*EalGaln, P}

are the numbers of copies of H added and deleted by performing the x oper-
ation.

How shall we define £,? One possibility would be to choose E* =
E(G'(n,p)) and E~ = E(G'(n,p)). With this choice, G(n,p) xEq = G'(n,p)
and (3) is certainly satisfied. This choice is unsatisfactory, however, because
G'(n, p) is coupled independently with G (n,p). We want to define £, in such
a way that (3) is satisfied and such that the x operation does not change
much of G(n, p).

We call the graphs for which we have been able to use cluster determining
pairs to get good compound Poisson approximations local graphs. To define
local graphs, we need to introduce the concept of a grading; we use the
definition of grading given in [5]. Suppose F” is a proper subgraph of F’ with
F having k more vertices and  more edges than F'. We define the additional
degree of F over F' as l/k. The mazimal additional degree of F over F' is

m(F|F') = max{d(K|F') : ' C K C F,V(F') # V(F)}.

We proceed as follows. Let Hp be the unique minimal subgraph of H
with d(H,) = m(H). Now, suppose we have inductively found subgraphs
Ho, Hs,...,H;. If H; = H, then we terminate the sequence. Otherwise, let
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graph (a) graph (b) graph (c)
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graph (d)

Figure 1: Graphs (a), (b), and (c) are local, but graph (d) is not.

H;, be a minimal subgraph of H with V(H;) C V(Hj11), V(H;) # V(Hj),
such that d(H;y1|H;) = m(H|H;). This sequence must end after finitely
many terms, say at Hy = H. We call the sequence (Hp, Ha, ..., Hy) a grad-
ing of H and call k the degree of the grading.

In Figure 1, graph (a) is strictly balanced and the unique grading has
degree 0. The other graphs in Figure 1 are all balanced but not strictly
balanced. Graph (b) has degree 2, graph (c) has degree 3, and, though it
is not as obvious, graph (d) has degree 1. In all of the graphs, the core Ho
is a K, at the left of the graph. Graph (d) of Figure 1 has an unfortunate
property, from our point of view. All of the graphs in Figure 1 have edge
to vertex ratio 3 : 2. A path of length ! connecting two vertices v and w
is a series of edges (v,v1), (v1,v2),-- -, (Vi-1,w). The extension of graph (d)
contains paths of length of length 8 attached to the core. Let p = n~%/3 the
threshold for all of the graphs, and for graph (d) in particular. The threshold
for having a path of length 8 connecting every vertex to the core of a occurs
roughly when n’p® = 2logn (see [5]), Lemma 9, Section X.2) which is much
less than p = n~%3. Paths of length 8 starting from the core of o penetrate
the entire random graph, visiting every vertex. The number of isomorphic
copies of H having the same core as a will be bounded a.s., so only O(1)
of these paths are contained in to any such extension. We must choose Eg
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from the roughly n? edges of G(n, p). It seems like a difficult problem to find
a cluster determining pair (EJ, E7) for this graph in such a way that E|E |
is of order o(n?), say. :

The compound Poisson approximation of W for Graph (b) is much more
tractable than it is for graph (d). Let E} be all the edges of copies of
graph (b) in G%(n,p) which have the same core as a. Let V, be the set of
those vertices which are connected to a vertex of the core of a by an edge
in G'(n,p). Define E; to be the edges in G/ (n,p) with at least one vertex
in V,, together with the edges in G’ (n,p) with a vertex in the core of a.
Clearly, Co(G(n,p) *E4(G'(n,p))) is at least as large as Co (G, (n,p)), by the
way we have defined E}. Note that, because of the way we have defined
E any graph isomorphic to graph (b) and having the same core as a, but
which is not contained in G'(n,p), must have at least one of its edges in
E; . Therefore we have defined a cluster determining pair for graph (b). In
addition, the number of vertices in G'(n, p) connected by an edge of G'(n, p)
will be roughly np = n'/3, and the number of edges in G'(n, p) with a vertex
in the core of a is O(n), so | E | is roughly O(n?p)+0(n)) = O(n*/3) = o(n?).

Graphs (a), (b), and (c) are all in the subclass of local graphs, which we
will define in Section 3. Any graph with core K; made of repeated subex-
tensions of the extension of graph (b) will also be local graphs. Graph (d),
however, is not a local graph. We will be able to get compound Poisson ap-
proximations for local graphs at threshold and a little beyond. We will not
be able to get compound Poisson approximations for graphs like graph (d),
however. We know the number of copies of graph (d) in the random graph is
asymptotically compound Poisson because of 7], but it is not yet clear how
to use cluster determining pairs to show it. The class of local graphs is large
and contains, for example, cycles with tree-like extensions.

We now proceed with the formal definition of local graphs. The distance
d;(p, H;) between a vertex p € V(Hj;4;) and H; is defined to be the minimum
path length of any path with edges lying entirely in Hj,. (We know that such
a path exists because of the uniqueness of Hy). We define the quantities pj,
j=0,...,k—1to be p; = maxuen,,, d;j(1, H;) and set p = maxje[ok-1) P;-
Let J = {i€[0,k—1]:p; = p} and for each 7 € J, let & = {v € Hiyy :
d;(v,H;) = p;}. For each i € J, we let A; be the edges in H; with both
vertices in &. We call A = U;A; is the set of exterior edges. All of the
graphs in Figure 1 have exterior edges; for example in graph (b) there are
two vertices in A; and an edge between them. The whisker graph in Figure
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Figure 2: The whisker graph.

2 is a graph with no exterior edges. If A # @, set 7 = p; otherwise, set
7 = p—1. A graph is called local there is a grading such that at threshold
(np)” = o(n), or nU—vUN/ENT = o(n), or (1 — v(H)/e(H))T < 1. The
relation (np)” = o(n) means that at threshold for the existence of H, the
number of paths of length 7 connecting any fixed pair of vertices tends to 0
a.s.

Which of the graphs in Figure 1 is not local? They all have v(H)/e(H) =
2/3. Graph (a) is strictly balanced, so it has a Poisson number of copies in
G(n,p). All of them have exterior edges, so 7 = p. Each graph has only
one possible grading. Graph (b) has k =1, ;0 =1, 7T =p =1, graph(c)
hask=2,p =1, pp =1, 7= p =1, and graph(d) has k = 1, p1 = 5,
T =p=>5> 3 soitis not local. For the whisker graph k =1, py = 1,
7 =p—1=0 and it is local.

We now define the cluster determining pair that will be used. The set
E} = E} (G, (n,p)) is defined to be

Ef= U E®).
BETS,
BCGY, (n.p)

For each i € [1,k — 1], let T,; be the set of subgraphs 8 C K, such that
B ~ H;, and core(8) = core(a). For each i € [0,k — 1], let

Cai =Cai(G) = | E(B).
: BETq i
BCG

Note that o x = I, and Co s = C. For each i € [0,k —1], let V,,; be the set of
vertices connected to a vertex in C,; by a path of length at most 73 = p; AT



lying completely in G, (n,p) and let V, be
k-1
va = U Va,i-
i=0

We define E; to be all edges in G,(n,p) with at least one vertex in Va-
We now show that &, is a cluster determining pair.

Lemma 1 With this definition of &,,

Ca(G(n,p) % Ea(Go(n,p))) = Ca(Ga(n; p))-

Proof. We only consider subgraphs H with exterior edges; the argument for
. H without exterior edges is similar. It is obvious from the definition of E}
 that Co(G(n,p) *x Ea) 2 Ca(GYy(n,p)). Let us suppose that

Ca(G(n,p) % Ea(Go(n, p)) D Ca(Ga(n,p))- (6)

If (6) holds, then there is a least integer 0 < j* < k such that there ex-
ists a B € Ta - satisfying E(B) C Ca(G(n,p) * Ea(G'(n,p))) and EB) £
Co(G"(n,p)). We will show that the existence of B leads to a contradiction.

Let v be an isomorphic copy of Hj._; such that v C 8 and core(y) =
core(a). Define the set Eg, = E(8)\ E(7). Assume first that Eg,NE; = 0.
All of the edges of Eg, with a vertex in V(v) must then be in G (n,p), or
else they would be in E. By induction, all of the edges of Ejp, with a vertex
connected to a vertex in V (v) by a path in 3 of length r, r < pj-_;, must be
in G' (n,p). But then § is a subgraph of G' (n,p) and E(B) C Ca(Gh4(n,p)),
contradicting our choice of §.

If we assume that Eg, N E; # 0, then there is some p € E(f) such
that u € E;. But then u ¢ Co(G(n,p)*€a(G'(n,p))). Hence, we have
E(B) € Ca(G(n,p) x Ea(G'(n,p))), once again contradicting our choice of S.
]

3 Compound Poisson approximations

Define

s(H) = min (ZEI}{I))U(F) - e(F)) , (7)
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where the minimum is taken over all subgraphs F C H such that d(F) <
d(H). We know «(H) > 0 because H is balanced. Define ¥ = ¥(n, p) to be

U= max pV(H:)~v(Ho) el Hi)~e(Ho) — () ((EW)(v(Hk_l)—v(Ho))/v(H) vi),

and define ® = ®(n,p) by

@ = max nv(Hl)pe(Hl) o O ((]EW)‘"(H’C—I)/‘U(H) V 1) .

0<i<k—1
We let C > 0 represent some constant which may change from line to line.

Proposition 1 For some constant C > 0 depending only on H,

en < C {IEWpe‘”’ + (EW)2n"H) L EW (EW vV 1) n~<(H)/dH)

+(EW)2® n~=EVAD 1 (7 £ 0) + (EW)>T L’i”;’—l)

+ (EW)*® ((—"S—) Vp) 1(r # 0)}.
Proof. We will bound each of the terms on the right hand side of (5). First,

note that
Z (]EIa)z =0 (nv(H)pZe(H)) =0 (Ewpe(H)) (8)
ael

and

" EILEU, = O (n?@peFprD-+(peM) = 0 (EW)*n—E) . (9)
a€l .

The next task is to bound EW; . By definition, each edge in E, has a

vertex in V,. Therefore, W7 is bounded by the number of copies of H in

G(n,p) with vertices in V,. We have

EW; = E(EW;|Va))
< E (U(H)Van”(”)‘lpe(m) (10)

0 (]EW EVan™').
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The factor v(H)Van*™)-1 at (10) is a crude upper bound on the number
of ways of choosing v(H) vertices, at least one of which is contained in V.
Consider the graphs d; Uy, where §; € T'y; and v is a path of length at most
7; with at least one vertex in ;. We clearly have

h<S ¥ SH6UTC Gl

1=0 §;€la,;i 7

Therefore,
k-1 .
1=0
= O (mpVv1)).
Hence,
EW. =0 (IEW \1;(_@::_1)_) . (1)

Next we bound EW;. The edges in G(n,p) * £a(G,(n, p)) are a subset
of the edges in G(n,p) U E} (G, (n,p)), so that

Wr < S I8 C G(n,p) xE(Gh(n,p)) I[B £ G(n,p)]

Bery
< ﬂZ I[8 C G(n,p) U E} (Gl(n, p)) I[B & G(n,p)]
ery .
< Y I[BCG(np)UEHGL(n,p))] (12)
VNV {a)#
+ Y I[BCG(n,p)UEL(Gy(n,p)) 1B ¢ G(n,p)](13)

Bery
V(B)NV (a)=0

The calculation 1 — (1 — p)*> = p(2 — p) shows that

G(n,p) UGl (n,p) & Galn,p(2 — p)).

Therefore, the expectation of (12) is

> P(8CG(np)UEG,(n,D))
per¥

V(B)NV (a)#0
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IN

Y. P(BCGa(n,p(2-Dp)))- (14)
pery
V(ﬁ)f‘EV(a)#@
Since B € I'Y, by definition core(8) # core(a), which implies that fNa ~ F
for some subgraph F C H such that d(F) < d(H). Therefore,

Expression(14) < C Z nv(H)—v(F)(p(Q_p))e(H)—p(F)
F:d(F)<d(H) :
< C S (Ew) TR Do GE) ) ()
F:d(F)<d(H)
{ C (EW) n~=UD/dH) if EW > 1;

INA

Cn~r(H)/d(H) if EW < 1.
< C(EW v 1)p <H/dH) (15)

This part of the argument has followed part of the proof of Theorem 5.B of
(3]

We now break (13) into two terms. For each 8 € Ty such that V(8) N
V(a) = 0, there is either an ¢ such that there exists 0; € T'y; such that
8 C G(n,p) * Ea(Gly(n,p)) and V(&) N V(B) # 0, or else V(&) NV (B) =0
for all &; such that 6; C G(n,p) * Ea(G(n,p)). For all i € [0,k — 1] and
each §; € To; such that V(6;) N V(B) = 0, we consider all paths of length
at most 7; connecting a vertex of &; with a vertex in 3. We write I'(d;, B)
for the set of such paths. For each 8 € TS, 8 C G(n,p) x Ef(G4(n,p))
such that V(&) NV(B) = 0 for all ¢ and each &; € ['n;, there must be at
least one &; such that there exists a path v € I'(d;, ) such that 6; Uy U S C
G(n,p) x EX (G, (n,p)). Therefore, (13) is bounded by

)D )il >, I[5upBcGnp) UES(Gy(np))] (16)

gery =0 §;€Tq i
V(B)NV (a)=0 V(8:)NV(B)#0

k-1
+ ) Y. 16 UyUB C G(n,p) U EL(Gy(n,p))].
gery 1=0 6;€Tq i ~Y€T'(6:,6)
V(B)NV(a)=0 V(8:)nV(B8)=0
(17)
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The expectation of (16) is bounded by

T Y Y P@EUACG.mp2-p).  (8)

pery =0 §;€Cq i
V(ﬁ)ﬁV(a) 0 V(8:)NV(B)#£0

If 7 = 0, then (18) is an empty sum, because in that case o = core(a). As-
sume now that 7 > 0. In bounding (18) we first choose 3 in O ( v(H )) ways,
each of which has probability (p(2 — p))e(H) of appearing in G4(n,p(2 — p))-
Thus, for some constant C > 0, (18) is bounded by

C (" #®p)  sup sup  sup V(8 —0(B:(@UB)) () —e(8:n(aUB))

BETS, i 8;€Tq i
V(a)nV(ﬂ) 0 V(8:)nV (B)#0

Because we are assuming that d; intersects a and 3 that are vertex disjoint,
because J; is a subgraph of @ ~ H, and because H has a unique minimal
subgraphs Hp such that d(H,) = d(H), we conclude that d(é; N (aupB)) <
d(H). Thus, (18) is bounded by

C(EW) max max n*(H)—v(F)pe(Hi)=e(F)
0<i<k-1 F; ’

where the max is taken over subgraphs F; C H; such that d(F;) < d(H;). By
arguing as for (15), we get the bound

: v(H;) e(H;) —k*/d*
Expression(18) < C(EW) (0 Jnax n"TEp ) n
= C(EW)dn"/?,
where d* is given by
d* = maxd(H;) = maxd(H) = d(H)

and k* is given by

K = mmmln(( ) v(F;) — e(ﬂ))

(H))
= mmmln( E ;v(F) e(Fi))
> k(H),
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since the F; are also subgraphs of H. Thus, considering 7 = 0 and 7 > 0
together, we have

Expression(18) < C(EW)®n /41 (1 5£ 0). (19)

Next we consider (17). If 7 = 0, then (17) is an empty sum, because 7 is
a path of length at most 7 = 0 and so V(§) must intersect V'(3). Assuming
7 > 0, we bound the expectation of (17) by

> Z > Y P(&UYUBC Galn,p(2—p)). (20)

pery i=0 6;€Tq,;  7€T(4:,6)
V(ﬂ)ﬂV(a) 0 V(8:)NV (8)=0

The choice of 8 gives O(EW). The choice of §; contributes

max nv(6)—v(Fs; )pe(éf)-e(F«s;) = 0(¥),

where the Fj, are subgraphs of §; containing core(c). Note that one can map
each vertex v € V() \ V(a U é; U B) to the first edge of v that contains
v. Moreover, the first edge of v containing a vertex in V(8) must lie in
E(v) \ E(aUé; Up) and is not the first edge that contains its other vertex.
Therefore, the number of edges in E(y) \ E(a U d; U B) is greater than the
number of vertices in V(y) \ V(a U é; U §) and the sum over -y contributes

n
sup nzp1+1 ( P) V p.
0<i<7—-1

We have shown that (20) is bounded by
C(EW)¥ <( np)" p) 1( # 0). (21)

Adding (11), (15), (19), and (21) shows that
EWS +EW,
< 0{ (EW V 1) n~<E/EHE) L W @ n==H)/dH) 1 (7 £ 0)

vew e P2V e (Mv;;> 1(T¢0)}.
n n
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Multiplying that bound by EW and adding the result to the sum of (8) and
(9) gives the stated result. ]
Example: For the whisker graph in Figure 2, s(H) = (H) =1, ¥ = 0(1)
and we have £; < Cn'p? '
We now derive concrete compound Poisson approximations of W for local
graphs at threshold. Let

A= Z A,‘.
i=1
A general bound on @, was proved in [2]:
Q1 <ce* (AT A1), (22)

This bound is obviously not very useful as A — oo. At threshold, however
EW is bounded as a function of n and A < }_; i\ = EW < oo.

Theorem 1 At the threshold p = cn~"H)/eH) there is a constant C = C(c)
such that

drv(L(W),CP(A)) < C {pe(H) + v Ho) = (H)/ACH)
o /A (7 £ 0) +
+ (___(ng) Vp) 1(r # O)}

This work opens at least two areas for further investigation:

(npVv1)
n

e Are the Kolmolgorov-Smirnov distance bounds in [4] applicable to sub-
graph counts ? If so they would give compound Poisson approximations
for local graphs for p larger than threshold.

e Subgraph counts may be expressed as incomplete U-statistics. An ap-
propriate question for U-statistics would be “what conditions on se-
quences of incomplete U-statistics suffice to insure a compound Pois-
son limiting distribution”? Such conditions might be discovered using
the insights about the compound Poisson approximation of subgraph
counts contained in this paper.
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