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The quantum states of a dynamical system whose
phase space is the two-torus are periodic up to phase
factors under translations by the fundamental periods
of the torus in the position and momentum
representations. These phases, 01 and 0, are
conserved quantities of the quantum evolution. We
show that for a large and important class of quantum
maps, 01 and 0, are restricted to being the
co-ordinates of the fixed points of the automorphism
induced on the fundamental group of the torus by the
underlying classical dynamics. As a consequence, if the
classical map commutes with lattice translations in R 2
it can be quantized for any choice of the phases, but
otherwise it can be quantized for only a finite set. This
result is a special case of a more general condition on
the phases, which is also derived. The cat maps,
perturbed cat maps, and the kicked Harper map are
discussed as specific examples.



1 Introduction

The quantum kinematics of maps whose phase space is the two-torus was
developed by Hannay and Berry [13], who also investigated the quantum dy-
namics of a particular class of examples: the Arnold cat maps. Since then
the quantization [12, 7, 10, 11, 18] and semiclassical properties [16, 17, 21]
of the cat maps have been studied in a wide variety of contexts, principally
to investigate the influence of classical chaos on quantum eigenstates. Other
torus maps that have been quantized and studied in the same way include
nonlinear perturbations of the cat maps (3, 6, 5, 9], the baker’s transforma-
tion [2, 23, 14], and the kicked Harper map [19].

Our purpose here is to describe an unusual connection between the quan-

tum boundary conditions satisfied by the wavefunctions of torus maps and a
izP

topological property of the underlying classical dynamics. Let To(z) = e™ %

and Tp(y) = ™% be the translation operators in position and momentum-
respectively. A quantum state must be physically invariant under transla-
tions in both position and momentum by a fundamental period of the torus.
Therefore, in units where both periods are equal to one,

To(1) [¥) = 7™ |¢), (1.1a)

and

Tp(1) ) = €% [y). (11b)

The phases 6; and 0, can be thought of as representing boundary conditions
on the edge of the fundamental square whose sides are identified to form the
torus. We shall be concerned here with the values these phases can take.

. It is straightforward to show that, on the one hand, the quantum prop-
agator for the cat maps is consistently defined only for a finite number of
phase vectors @ = (6y,6,) [18, 10], while on the other, some systems, such
as the kicked Harper map, can be quantized for all values of & mod 1. Our
main result, which we now outline, is a general condition on 8, for the quanti-
zation of any canonical map on the torus (modulo nonintegral translations),
that explains the difference between these two examples and determines the
allowed values of the phases when not all are possible.

First, associated with every canonical map ¢ of the two-torus there is
an integer unimodular matrix A, which generates the transformation of the
winding numbers of any closed curve under the action of ¢. This connection
is reviewed in Section 2. Our result is that the quantum propagator related



to ¢ is defined only for phase vectors @ satisfying

A-O—]—;—v=0 mod 1, (1.2)

where N is the dimension of the Hilbert space in which the propagator acts,
and v is an integer vector determined by A. The quantum kinematics needed
. to prove this is described in Section 3.1, and the proof itself is given in
. Section 3.2. In many cases (in particular, when N is even, or when AAT =1
mod 2), the term N/2v mod 1 vanishes, and so (1.2) simplifies to

A-6=6 mod1. (1.3)

The quantum propagator is then defined only if ; and 6, are the coordinates
of a fixed point of the cat map 0 — A -0 associated with the topology of the
torus map ¢. Naturally the result just stated is rendered meaningful only
when the term quantization is defined, and so we give an explicit construction
of the quantum propagator associated with a very general class of maps ¢
in Section 3.3. Finally, some specific examples, including the cat maps,
perturbed cat maps, and the kicked Harper map are discussed in Section 4.
The phases 8; and 6, play the role of Aharonov-Bohm-flux-like parameters
and so are connected with fundamental geometrical and topological features
of the quantum mechanics of torus maps, such as geometric (Berry) phases
and Chern numbers. There is thus a close mathematical analogy between our
analysis of quantum maps, the physics of the integer and fractional quantum
Hall effects [25], and the influence of guage fields in mesoscopic devices [24,
4], to give but two examples. Some of the implications of our result, and
questions it gives rise to, will be discussed in this context in Section 3.2.

2 Lifts of torus maps

We regard the -torus as a classical phase space, with canonical coordinates
z = (q,p) defined modulo one, and consider a canonical map ¢(z) on the
torus. Here canonical means that ¢ is smooth, area-preserving and orientation-
preserving, so that its Jacobian matrix, D¢ = [0¢;/0z;], has determinant
one. By a lift of the torus map, we mean a smooth canonical map ®(Z)
of the plane, with canonical coordinates Z = (Q, P), whose action modulo
integer translations is given by ¢. That is,

®(Z) mod1=¢(Z mod1l). (2.1)

It is straightforward to show that a lift exists, as follows. (2.1) determines
®(Z) up to an integer vector. This indeterminacy can be removed by fixing
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the value of ® at one point, say the origin, and determining its value for all
other points Z by requiring @ to be continuous along paths from the origin
to Z. (This determination is unambiguous, because any two such paths can
be continuously deformed into each other.) The property of being canonical,
which is local, is then inherited from ¢. It is clear that two lifts of the same
torus map must differ by an integer vector.

If the argument of ® is shifted by an integer vector, (2.1) implies that its
value must also be shifted by an integer vector; thus ®(Z+m) = ®(Z)+m’,
where m’ depends on m but not (by continuity) on Z. Since (m + n)’ =
m’ + n’ (this is easily seen by writing ®(Z + (m + n)) = ®((Z + m) + n)),
m’ must be linearly related to m. Therefore

®(Z+m)=S(Z)+ A -m, (2.2)
where
A= (‘c’ Z) (2.3)
is an integer matrix. |
We now show that
det A=1. (2.4)

First, we note that ® is invertible; its inverse &' can be taken to be a
lift of the torus map ¢~ *. As a lift, &' satisfies a relation ® '(Z + m) =
&~ '(Z) + B - m analogous to (2.2), where B is an integer matrix. It is easily
checked that AB = BA = I, so that A is invertible. As A is also integral, it
follows that det A is equal to %1.

To establish that det A is equal to +1, we consider the map F(Z) =
A~' . ®(Z) — Z, which, from (2.2), is periodic in Z with period one. Its
Jacobian matrix is, of course, also periodic, and satisfies the relation DF+1 =
A~!. D®. Taking determinants (and noting that det D® = 1), we get that

tr DF + det DF = det A™! — 1. ‘ (2.5)

On integration over the unit square, the right-hand side of (2.5) is unchanged
(det A! is constant), while the left-hand side, :

1 1
/ / (tr DF + det F) d°Z = (2.6)
0 0
1 1
/ / (8QF1 + 0pF; + 8QF18pF2 — 8QF28pF1) dQdP, (2.7)
0 0

3



vanishes by periodicity (for the determinant terms this follows after integrat-
ing by parts). (2.4) then follows.

As a simple example, let us consider the cat map ¢(z) =T -z mod 1,
where T is an integer matrix with unit determinant. A lift is just the linear
map ®(Z) =T - Z, and the matrix A of (2.2) is just T itself.

More generally, associated to every canonical map ¢ of the two-torus is
an integer unimodular matrix A. For those maps which can be continuously
¢ connected to the identity by a one-parameter family of torus maps, A = I, by
continuity. This is the case for time-one flows of (possibly time-dependent)
torus Hamiltonians, as well as for translations on the torus, z — z + 2z
mod 1. More generally, for those maps which can be continuously connected
to a cat map ¢(z) = T -z mod 1, including, for example, Anosov perturba-
tions of hyperbolic cat maps, the associated matrix A is equal to T

The associated matrix A has the following topological interpretation. Let
z,, 0 < o < 1, denote a closed curve on the torus with winding numbers r and
s about the g and p directions. Its image under the torus map, z’, = ¢(2,),
is also a closed curve, whose winding numbers we denote by 7’ and s'. Then
A describes the linear transformation of the winding numbers, ie

(£)-1()

(2.8) may be obtained by considering a lifted curve Z,, a continuous curve in
the plane equal to z, modulo 1, whose endpoints Zo and Z; therefore differ
precisely by the vector of winding numbers (r, s). From (2.2),

@@Q:&@Q+A-C). (2.9)

The curve Z', = ®(Z,) is a lift of z',, and (2.9) implies that the difference
between its endpoints, ®(Z;) —®(Z), which is just the vector of transformed
winding numbers (7', s'), is given by (2.8).

The preceding discussion shows that canonical torus maps are equivalent
to canonical maps of the plane satisfying (2.2). As discussed in the next
section, this equivalence is the basis of our quantization prescription. In
anticipation of this discussion, it will be useful to introduce classical lattice
translation operators TS, defined by

T (Z)=Z+m (2.10)
and to re-express (2.2) in terms of them, as follows:

PoTd =T9 0% (2.11)



Finally, we note that the lifted map ® is an example of a more general
construction, familiar in the theory of covering spaces (see, eg, [15]). Let
M be a simply connected manifold, G a discrete group which acts properly
discontinuously on M, and p the canonical projection from M to M/G. Then
M is a universal covering space of M/G, whose fundamental group m(M/G)
is isomorphic to G. If ¢ is a continuous map on M/G, then there exists a
continuous map ® on M such that

pod=¢op. (2.12)
# induces a homomorphism ¢* on m;(M/G), and the lifted map ® satisfies
®(g-m) = ¢"(g) - 2(m) (2.13)

When M is the plane R? and G = Z? acts on M by lattice translations,
we recover the example above — M/G is the two-torus, the induced homo-
morphism ¢* is described by the relation (2.8) between winding numbers
and (2.12) and (2.13) coincide with (2.1) and (2.2).

3 Quantization of torus maps

A torus map describes the classical dynamics of a system whose physical
properties are invariant under unit translations in position and momen-
tum. Quantum mechanically, such a system is represented by a state vector
quasiperiodic under unit translations in position and momentum, ie invari-
ant up to phase factors exp(—2ni6;) and exp(27i6,). (For later convenience,
the phases @ = (6, ;) are defined modulo one rather than modulo 27.) In’
order for superpositions of states to be quasiperiodic, the phases 8 = (61, 6)
must be the same for all states representing the system. Let #(0) denote the
Hilbert space of vectors quasiperiodic under unit translations with phases 6.

In Section 3.1 we construct the Hilbert spaces H(@). The quantized torus
map is then obtained in Section 3.2 as a unitary operator on #(@). There
we also derive our main result, namely that the allowed values of the phases
0 are constrained to be fixed points of either the cat map 8 — A-0 mod 1
induced by the associated matrix A, or else, in certain cases, a map related
to the induced cat map in a simple way. The quantization procedure itself is
discussed in greater detail in Section 3.3.

3.1 Hilbert space of quasiperiodic states

The quantized cat map of Hannay and Berry [13] is defined on states whose
position and momentum wavefunctions are both periodic. The generalization
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to the space H(0) of quasiperiodic states is straightforward. Our discussion
is similar to that of Knabe [18] and Lebeouf et al [19]. When appropriate,
we use a carat " to distinguish quantum objects from classical; for example,
7 = (Q, 15) denotes the position and momentum operators.

Corresponding to the Z-phase-plane is the Hilbert space L?(R) of square-
integrable complex-valued wavefunctions ¥(Q). Unitary operators repre-
senting unit translations in position and momentum are given by Ty =

exp(—iP/h) and Tp = exp(iQ/h), respectively. These generate the quan-
tum lattice translation operators 7'(m), which we define to be

T(m) =Ty Tp". (3.1)
The quantum lattice translations satisfy
T(m) ZT(m) = Z 4+ m, (3.2)

in analogy with (2.10), but unlike the classical lattice translations, they do
not, in general, commute; instead,

T(m)T'(n) = exp(—im A n/hk)T(n)T(m), (3.3)

where m A n = myny — myn;. To make the quantum lattice translations
commute, we impose hereafter the quantization condition

h=1/N, (3.4)

where N is an integer, on Planck’s constant.
With the condition (3.4), an arbitrary state |¢) € L*>(R) can be expressed
as a continuous superposition of quasiperiodic states |1)(8)) satisfying

T(m) [1(0)) = exp(—2mim A 0) [/(6)) . (3.5)

These quasiperiodic states may be characterised as follows. The quasiperi-
odicity of the momentum wavefunction ¥(P; @) = (P |(0)), namely that

Y(P —1;0) = exp(2mif, )9 (P; 9), (3.6)

implies that the position wavefunction ¥(Q;0) = (Q |4 (8)) is supported on
the lattice

Jj+ 60
Q= N (3.7)
The quasiperiodicity of the position wavefunction, namely that
¥(Q; — 1;0) = ¥(Q;-n; 6) = exp(~27if)y(Q;; 6), (3.8)



implies that 1(Q; @) is completely determined by its values at the N lat-
tice points Q1,Qa, ... ,Qy. Thus, the space H(0) of quasiperiodic states is
N-dimensional. A basis is given by the states |j(8)) whose position wave-
functions are nonzero at just one of the points Q;,1 < j < N; explicitly,

00

(Qi:0)= ) exp(2mim,)6(Q — Qjsmn), (3.9)

m=—00

The states |j(8)) are, of course, unnormalizable with respect to the L?-norm,
and satisfy the generalized orthonormality conditions

(7(6) |k(0)) = N6jidr2(6 — 6') (3.10)

(672 denotes the delta-function on the two-torus). We introduce a renormal-
ized inner product on (@) by taking the basis states |j(8)) to be orthonor-
mal, and thereby make #(0) a Hilbert space.

In some of the discussion to follow, it will be necessary to know how the
spaces H(@) transform under nonintegral translation operators T'(Z), defined
in analogy with (3.1) by

T(Z) = exp(—21iNQP) exp(2iN PQ). (3.11) .
The commutation relations
T(Z)T(Z') = exp(—2miNZ A ZT(Z"\T(Z) (3.12)

imply that T(m)T(Z) |4(0)) = exp(—2mim A (0 + NZ))T(Z) |4(0)), so that
the state T'(Z) |1(0)) belongs to (0 + NZ). Therefore

T(Z)YH(6) = H(0 + NZ). (3.13)

Thus, typical translations map the spaces H (@) into each other, while rational
translations of the form T'(m/N) leave #(0) invariant. We remark that, for
1 < my, my < N, the rational translations T'(m/N) constitute a basis for the
N2-dimensional space of operators on H(6) (with respect to a basis, this is
just the space of N x N matrices).

3.2 Allowed phases for the quantized torus map

By a quantization of the torus map ¢, we mean a unitary operator U(6)
defined on the Hilbert space H(0) whose action in the classical limit is given
by ¢. Of course, this requirement does not determine U(@) uniquely; the
quantization procedure must be prescribed.
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We shall consider the following explicit scheme, which can be applied
to all torus maps, modulo translations. Given a torus map ¢(z), we first
construct its lift ®(Z). ® is then quantized to give a unitary operator U on
L2(R). Finally U(6) is defined, where possible, by restricting U to H(6).

The first step in the procedure, the construction of the lifted map, was
described in Section 2. The next step, the quantization of the lift, is described
in the following Section 3.3. There it is shown that the quantized lift U
satisfies the quantum analogue of the kinematic property (2.2), an analogue
most transparently expressed in terms of the Heisenberg translation operators
Ty(Z), defined by

Ty(Z) = exp(—2miNZ A Z). (3.14)

(These differ from the translations T'(Z) of (3.11) by a phase factor.) The
quantum analogue of (2.2) is just

Tyg(m)U = UTy(A™' - m). (3.15)

The Heisenberg operator Ty (m) differs from the quantum lattice translation
T(m) by the sign factor (—1)¥™™2, so (3.15) can also be written as

T(m)U = (=1)™UT(A™" - m), (3.16)

where the integer vector v is given by

v = (ZZ) : | (3.17)

(One needs to check, making use of det A = ad—bc = 1, that miMg—mymy =
mAv mod 2, where m’ = A~! - m.)

Here we examine the last step in the quantization procedure, the con-
struction of U(@). As will be apparent, our considerations depend only on
U satisfying the kinematic condition (3.15), and not on any other features of
its construction.

Provided #(8) is invariant under U, U(@) is taken to be simply the
restriction of U to H(@). Therefore, with respect to the basis |5(8)), U(6) is
represented by a matrix Ujx(0), defined by

Ulk()) = > _ Uix(6)1i(6)), (3.18)

=1

whose components may be determined explicitly using (3.10). The fact that
U is unitary implies that U;x(@) is a unitary matrix. For @ = 0, this gives,
for cat maps, just the Hannay-Berry quantization.
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To determine whether #(0) is invariant under U, we consider how the
once-mapped state |)') = U |4(0)) transforms under integer translations.
From (3.16) and (3.5),

T(m)|y') = T(m)U [(8))
— (~D)MUT(A - m) [4(6)
— (_1)Nm’“’ exp(-—-27ri(A_l -m) A O)U |’l[)(0)>
_ (_I)Nm/\v exp(——27rim AA- 9) |»¢;’> , (3.19)

where in the second equality we have used the identity (A~!-a)Ab = aA(A-b).
Thus |¢’) belongs to H(A - @ — N/2v), and

U-H(8) = H(A- 6 — N/2v). (3.20)

From (3.20), it follows that 7(8) is invariant under U, and therefore, that
U(0) is defined, only for

A-0—-—]2\—’v=0 mod 1 (3.21)

- If N is even, or if A has one of the checkerboard forms
even odd odd even
( odd even) or <even odd ) ) (3.22)

described by Hannay and Berry [13] (a condition equivalent‘to AAT =1
mod 2), then N/2v =0 mod 1, and (3.21) simplifies to

A-06=0 modl. i (3.23)

In this case, U(@) is defined only for phases 8 which are fixed points of the
cat map @ +— A - 0 associated with the topology of the torus map ¢. The
condition (3.21) and the special case (3.23) constitute our main results.

If A is the identity, as is the case for time-one flows of time-dependent
torus Hamiltonians, then all values of @ are allowed. In this case, the eigen-
states [;(8)) of U(8) are defined for all 8, and in the absence of degeneracies
depend continuously on 8, up to an overall phase factor. The family of eigen-
states |1;(0)) is characterized by its Chern number, an integer given by 1/2m
times the @-integral of the Berry curvature

1 (TH(O/N) - 5(0) |[THO"/N) - 05(07)] . (3:24)

V;(0) = :
1(0) = Ggra0m oo




_In this expression, the states T'1(8'/N) |1;(6')) and T1(8"/N) [4;(8")) both

belong to #(0), and (- |-) denotes the (renormalized) inner product on #(0).
As shown by Leboeuf et al. [19], nonzero Chern numbers are characteristic of
eigenstates delocalized in both position and momentum, and are signatures
of underlying classical chaos.

For A not equal to the identity, the quantum mabp is in general defined only
for a finite set of values of @ (including, if A has the checkerboard form (3.22),
0 = 0). This is the case, for example, for hyperbolic cat maps (Section 4.1)
and their perturbations (Section 4.2). It would be interesting to know if,
even in this case, the dependence of the eigenstates on the discrete phases 6
carries any information concerning the localization of the wavefunction and
the chaoticity of the underlying classical map.

One might ask whether by relaxing the kinematic condition (3.15), so that
UTy(m) = Ty (A - m)U holds semiclassically rather than exactly, one could
construct a quantized torus map for every 6, regardless of A. Let us describe
two possible constructions, both of which have unsatisfactory features. For
simplicity let us assume that A is of the form (3.22).

First, we consider

U9(@) = TH((A- 0~ 0)/N)U/, ) - (3.25)

For A = I this is just U(@), but for A # I, (3.13) and (3.20) imply that
U®)(0) leaves H(0) invariant — the translation T'((A-0—80)/N) compensates
for the change in @ induced by U. Since the translation is semiclassically
small (ie, of order 1/N), it does not alter the dynamics in the classical limit.
However, the scheme (3.25) prescribes physically distinct maps for @ + m
and 6; indeed, from (3.12), U (8 + m) = phase factor x T(m/N)U® (),
so that U® (@ + m) is not, in general, unitarily related to U®(8).
As a second example, consider

Ut (@) = T(0/N)UT'(6/N (3.26)

)IH(O) :
This too leaves H(@) invariant for all @ and has the correct dynamics in
the classical limit. Moreover, U®) (8 + m) and U*)(8) are unitarily related.
However, in this case, the 8-dependence is trivial; the eigenphases of U (6)
are independent of @ while the Berry curvatures (3.24) vanish.

These two examples suggest the possibility that, regardless of the quan-
tization prescription, continuous families of quantum maps U(@) with non-
trivially periodic #-dependence might exist only for A = 1.
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3.3 Quantization of the lifted map

By a quantization of the lifted map, we mean a unitary operator U defined
on the Hilbert space L*(R) of square-integrable wavefunctions (@) whose
action in the classical limit is given by ®(Z). We now give an explicit pre-
scription, in which U satisfies the condition (3.15), and discuss the class of
maps to which the prescription can be applied.

Let '

$,(Z)=A-Z (3.27)

be the linear canonical map generated by the matrix A associated to ®. Then
(2.2) implies that the map ®;, defined by

®, =3, 0, (3.28)
satisfies
®,(Z+m)=®,(Z) +m. (3.29)
As & =.®4 o ®,, we quantize P by taking
U = UuUs, (3.30)

where U4 and U, are quantizations of the factors ®4 and @, respectively.
Thus, the quantization problem is reduced to the separate consideration of
linear canonical maps and nonlinear canonical maps which commute with
lattice translations.

It is well known how to quantize the linear canonical map ¢,. In the
coordinate representation, Uy is given by

N2 itN
(@Uslp) = (=)  exp | ——(aq} — 2q1¢2 + dg3) (3.31)
b b

(the limit b — 0 gives the correct delta-function kernal). Given this expres-
sion, one can verify explicitly that

The quantization (3.31) is exact, in the sense that Uap is equal to UaUs,
up to a sign factor. Indeed, (3.31) defines the metaplectic operators, the
group of unitary operators generated by Hamiltonians quadratic in 7. These
constitute a projective representation of the group SL(2,R) of linear canon-
ical maps. This point of view is discussed further in [20], in which the kine-
matic condition (3.32) is seen to follow from the multiplication law for the
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inhomogeneous metaplectic operators (these are generated by Hamiltonians
containing linear as well as quadratic terms).

Next, we consider ®;. Its quantization is straightforward if ®; is the
time-one flow of a Hamiltonian H(Z,t) periodic under lattice translations.
Explicitly, we mean that ®,(Z) = ¥(Z, 1), where ¥(Z, t) satisfies Hamilton’s
equations,

0,¥(Z,t) = J - VzH(¥(Z,1),1), (3.33)

with initial condition ¥(Z,0) = Z. In (3.33), J = (_01 (1)) , and
H(Z +m,t) = H(Z,t). (3.34)

The unitary operator U; is then taken to be the time-one evolution gen-
erated by the Weyl quantization H(t) of the classical Hamiltonian H(Z,1).
That is, U; = W (1), where W (¢) satisfies the Schrodinger equation

2riNW (t) = H{t)W (t) (3.35)

with initial condition W (0) = I. The Weyl-quantized Hamiltonian is given
explicitly by

H(t) = / / H(Z,t)6(Z — Z) d°Z, (3.36)
where the delta-function 6(Z — Z) is defined by
8(Z — Z) = N*? //exp (2niNZ' AZ)Ty(Z') d°Z'. (3.37)

From (3.2) we get that Ty (m)d(Z — Z)T};(m) = §(Z — m — Z). Thus, if
H(Z,t) is periodic under lattice translations, its Weyl quantization is simi-
larly periodic, ie Ty (m)H (t)T};(m) = H(t). This implies in turn that W(t)
is periodic under lattice translations, so that U, satisfies

Together with the corresponding result (3.32) for the quantized linear map,
this implies that the quantized lift U = U,U, satisfies the kinematic condition
(3.15), as claimed.

It remains to consider when ®; can be expressed as the time-one flow
of a periodic Hamiltonian. First, we note that this is not always possible; a
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necessary condition is that ®; be translation-free, by which we mean that ®,
must leave the centre-of-mass of the unit square invariant. Explicitly, letting

1,1
A= / / (®1(Zo) — Zo) d*Zo, (3.39)
o Jo
we require that
A =0. (3.40)

(3.40) follows from differentiating the quantity

1 1
At) = / / (% (Zo, t) — Zo) PZo (3.41)
to obtain

At) =J- [} [} VzH(¥(Zo,t),t)d?Zy
=J- [ [;, V2H(Z,t)dZ, (3.42)

where Y, is the image under ¥(Z, t) of the unit square (we are using the fact
that the flow ¥(Z,t) is area-preserving). Because H(Z,t) is periodic under
lattice translations, the integral of its gradient over the unit square vanishes.
The integral of VzH also vanishes over any domain, such as %, which is
mapped diffeomorphically onto the two-torus by the projection Z — (Z
mod 1). Thus A(t) = 0, implying that A(t) = 0 for all ¢ (A(0) vanishes
trivially), and in particular for ¢t = 1.

The nonintegral translations Z — Z + Z, (ie, the lifts of nontrivial trans-
lations on the torus) clearly do not satisfy (3.40). This is consistent with
the fact that the Hamiltonians H(Z) = QoP — FPyQ, whose time-one flows
generate them, are clearly not periodic under lattice translations.

It turns out that the condition (3.40) is sufficient as well; Conley and
Zehnder [8] have shown that any translation-free canonical map of the plane
which commutes with lattice translations can be realized as the time-one flow
of a periodic Hamiltonian. Apparently, it is not known whether an analogous
result holds in higher dimensions.

Of course, if ®; is not translation-free, then the map ®; o T%(—A) is.
Thus, every lifted torus map has a unique decomposition of the form

®==&,0¥(1) 0 TA), ' (3.43)

where ¥(1) is the time-one flow of a periodic Hamiltonian, and A is given by
(3.39). The quantization prescription embodied in (3.30), which preserves the
kinematic condition (3.15), may be applied provided A = 0, and therefore
applies to all canonical torus maps, modulo translations.
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4 Examples

We now discuss three representative examples which illustrate different as-
pects of the general analysis of Section 3, and the results derived there. These
are the cat maps, their (nonlinear) perturbations, and the kicked Harper map.

4.1 Cat maps

We have already noted that for the cat map ¢(z) =T -z mod 1, where T is
an integer matrix with unit determinant, the matrix A of (2.2) is just T itself
(Section 2), and that the kinematic condition (3.15) is a direct consequence
of the fact that the corresponding quantum propagator is a metaplectic op-
erator (Section 3.3). Our main results, (3.21) and (3.23), then follow imme-
diately, and coincide with those found previously in this case [18, 10]. There
is, however, a more elementary derivation of (3.21) and (3.23) for the cat
maps which illustrates clearly the kinematic and dynamical origins of these
conditions. This we now describe. :

~ The Wigner function for a pure quantum state is a real function on phase
space, defined by

wQP) = [ ve+@w@-Qre ¥t @y

It has two important properties that we shall use. The first, which is kine-
matic, is that integrating the Wigner function with respect to P gives the
probability density in the position representation |7./J(Q)|2, and vice-versa
when the integration is with respect to Q. The second, which is dynamical,
is that when a quantum wavefunction is propagated by a unitary transfor-
mation corresponding to the quantization of a linear canonical map, the
associated Wigner function itself maps classically [13].

The Wigner function for an arbitrary state |¢(0)) € H(@) can be obtained
by expanding its wavefunction ¥(Q;0) in (4.1) as a linear combination of
basis vectors (3.9):

WQP)= 3 ol (Q -2 gjﬁ) 5 (P R 5%) (42)
where
Cj+2N .k = Cjk+2N = Cjk-
This represents a 2N x 2N periodic ‘6-brush’ in the classical phase space,

and is exactly periodic. It has delta-functions on each of the (2N)? points
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whose coordinates have the form

(integer 61 integer N g%) . (4.3)

oN TN TN TN
However, the weightings of these delta-functions are not all independent: the

four situated at the corners of any square of side IV spacings have weightings
which differ at most by a sign [13]:

w(QP) = (-1 Hw (Q + % P) = (12N (e-w (Q, P+ %)

= (__1)[2(Q—%,1)+2(P—%,1)+1]NW (Q " %’ P4 %) .

Any two on a given side that extends to intersect either the Q- or P-axis at
a ’halfway’ coordinate
odd
2N
must differ in sign. This guarantees that the projection integrals of the
Wigner function are zero unless either @ or P are of the form

+6;, i=1,2 (4.4)

- integer
N

as must be the case for the first (kinematic) of the two general properties
listed above to hold.

The second (dynamical) general property of the Wigner function implies
that the Wigner lattice (4.3) be invariant under the action of the cat map T'.
Let m and n denote two integer vectors, and let T'- m = m’. This condition
then becomes

+0i i=1',2,

T-%m%—T-%G:E%V—m’—i-%?B%—%n.
If the integers in m are both odd, then those of m’ + n must also be odd -
this is necessary and sufficient to ensure that the projection of the Wigner
function onto the Q- and P-axes at ‘halfway’ coordinates (4.4) remains zero
after the mapping - and so (4.1) reduces to the form (3.21) with A =T, as
claimed.

Another direct proof of (3.21) for the cat maps follows from the Hannay-
Berry construction of the quantum propagator [13]. Their method involves
averaging (3.31) over all positions equivalent to (3.7) under lattice transla-
tions. A lengthy but straightforward calculation confirms that this average
is zero unless (3.21) holds.
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4.2 Perturbed cat maps

Perturbed cat maps are maps whose lifts are of the form
C(Z)=T-Z+F(2), (4.5)

where F(Z) is a periodic function on the torus. Their quantization has been

the subject of a number of studies [3, 6, 5, 9], because they appear to be free

of the number-theoretical peculiarities of the quantum cat maps themselves.
It follows from the periodicity of F(Z) that

C(Z+m)=C(Z)+ T -m.

Comparing with (2.2) then implies immediately that A =T in (3.21). Thus
the condition on the quantum phase vectors is unaffected by the perturbation
(i-e. is independent of F(Z)).

It is interesting to compare this with Anosov’s theorem [1], which implies
that if

|IF|| = max (@E/?ZIZ_ZJ) <1-=2A,

where )\ is the smaller eigenvalue of T, then C is topologically equivalent to
T and can be written

C=H'!oToH=ToT 'oH 'oToH=ToP=To(l+¢),

where H is a homeomorphism. Thus, as regards the conditions on the phase-
vector @, the structural stability of the cat maps may be viewed as persisting
under quantization, even to the extent that it is independent of the size of
the perturbation.

4.3 The kicked Harper map

To conclude, we discuss, briefly, a much-studied example, the kicked Harper
map, that commutes with lattice translations (i.e. A = Iin (2.2)), and which
therefore can be quantized for all . This map is associated with the kicked
Harper Hamiltonian '

H(Q, P,t) = —Vacos(2nP) — V; cos(2mQ) K (t), (4.6)
K(@t)=1) _6(t—n7),
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(for a review see Lebouf et al. [19]). Defining v; = 27V;7, the classical map,
obtained by integrating the equations of motion between successive kicks, is
given by

Qn+1 = Qn + Y2 sin(27rPn+1) (47&)
Pn+1 = Pn - T sin(27rQ,,). (47b)

It follows from the general arguments of Section 3.3 that A in (2.2) must
be the 2 x 2 identity matrix, because the map is derived from the time-one
flow of a Hamiltonian that is periodic under lattice translations in Q) and P.
This may also be verified directly using the explicit expressions (4.7). The
quantum propagator thus exists for all boundary conditions @, and takes the
general form

U = exp[iNmy; cos(2rQ)] exp[im Ny, cos(27 P)]. (4.8)
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