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Introduction
Given a nonnegative m x n matrix A and vectors 7 € R™ and ¢ € R* with positive entries,
M.V. Menon and Hans Schneider defined in (7] a nonlinear operator T = T(A,,c) on the
positive cone of R*. They determined the spectrum of T as well as the zero pattern of its
eigénvectors. The operator T was constructed so that an associated matrix scaling problem
has a solution if and only if T has a strictly positive eigenvector. The underlying scaling
problem is the matrix D-A-D problem for (A,r,c). This problem asks if there are diagonal
" matrices D; and Dy, with positive entries in the diagonal such that D;AD, has row sums
5,4 = 1,...,m and column sums ¢;j, j = 1,...,n. An alternative method for solving a
more general form of this scaling problem can be found in [10].
Our interest in the operator T (whose definition is given in the next section) was triggered
by the fact that it maps the interior of the positive cone into itself, and it is homogeneous
and order preserving (see [7] for more details). By applying on T the functional £, where
E(T) = log(T(exp)), we can transport it from the positive cone into the whole of R*. We
shall call this new map £(T), a D-A-D function.
In general a function F' : R* — R™ which is homogeneous and monotonic, is called topical
([4]). Topical maps belong to the class of nonexpansive functions (in the I norm) and
appear in different areas of mathematics. Among others in the theory of nonnegative ma-
trices, Bellman operators of games and of Markov decision process, mathematical biology
and discrete event systems. The reader is referred to [4], [6], [5], [1], 8], [9]-
The existence of fixed points is a question of general interest. In the case of topical functions
the approach to answering this question is dynamical rather than metric. One reason for
taking this approach is that the existence of a generalized fixed point of F' implies that the
cycle time vector x(F) = limg_,00 @ (for some z € R™) exists and has the same value in
each component. In particular for min-max functions, a class of topical maps, it turns out
that the inverse implication also holds ([1]).
In this paper using the characterization of the spectrum of T', we compute the cycle time
vector of the topical map &(T), (Theorem 8). We see that as in the case of £(A), where A
is a square nonnegative matrix ([5]), x can be thought of as a vector generalization of the
spectral radius, (Proposition 3).
It is hoped that this present work will bring us one step closer to answering the question of

characterizing the cycle time vector of topical functions and the conditions under which.it

exists.
Preliminaries

We denote the positive cone of R* by R? = {z € R* : z; > 0,1 <: < n} and its interior
by (R1)° = {z € R* : z; > 0,1 <4 < n}. If z,y are vectors in R" we say that z <y if



and only if z; < y; forall1 <:<n. For h € R and z € R", z + h is the vector whose ith
coordinate is z; + h. A vector z is said to be constant if all its coordinates are equal. In

this case we shall write z =c¢, c€ R

A function F : R* — R” is called topical ([4]) if it satisfies the following properties:
p gp

F(z+h)=F(z)+h, z€R', heR (homogeneity) (1)

and
z<y= F(z) < F(y), =z,y€R" (monotonicity) (2)

It follows by Proposition 2 in [2] that topical finctions are nonexpansive in the l norm. The

k
cycle time vector x(F) € R" of a topical function F, ([4]), is defined as the limg_;o0 F—k@,
if this limit exist for some z € R™, and is undefined otherwise.

k
Applying the nonexpansiveness of F, it is easy to see that if limg_,o0 i k(z) exists for some

z in R" then it exists everywhere and has the same value.

Recall that a topical function F has a generalized fixed point if there are £ € R* and h € R
such that F(z) = = + h. Since F — h is also a topical function we may talk about fixed
points instead of generalized ones. It is clear that if F () = £+ h then the cycle time vector
of F exists and it is constant, x(F) = h.

Define exp : R* — (R} )° and log : (R})° — R" componentwise, i.e. if = is a vector,
exp(z); = expz; and log(z); = logz;. Let ® be a map of (R} )° into itself. We define the
functional £(®) : R* — R" by £(®) = log(®(exp)). Since £(®¥) = £(P)E(¥), the dynamic
behaviours of ® and £(®) are equivalent.

We shall say that a vector = (z1,...,z,) is positive, written = > 0 (respectively strictly
positive, written > 0) if z; > 0 for all 2 = 1,...,n but £ # 0 (resp. z; > 0 for all
i =1,...,n). Also following the notation in [7], A will always be an m x n nonnegative
matrix, with no zero row or column and r € R™ and ¢ € R* will denote strictly positive
vectors. Moreover the triple (A, c) is said to be a matrix-rowsum-columnsum triple, or
for short an mrc.

For a strictly positive vector p in R¥, define Ly, : (RE) — (R )° to be the function

v PRy

wy W

Let (A,r,c) be an mrc. The operator T = T(A,r,c) : R} — R% is defined by

Ly(wy, ..., we) = (

T =T(A,r,c) = L.ATL. A

where AT is the transpose of A. Note here that we use the conventions 0! =o00,00" ! =0,
00+ 00=00,0-00=0and a-oo=o00, fora>0.

Observe that T has the following properties ([7])

3



1. T is homogeneous on R}
T(z) =Tz, X>0

2. T is monotonic on R}
r<y=Tz<Ty

3. T maps (R )° into itself and is continuous on R}.

Definition 1. Let (A,r,c) be an mrc and T = T(A,r,c). The function £(T) : R* — R"
is said to be a D-A-D function. It is clear that £(T') is a topical function.

Following Menon and Schneider ([7]), an mrc (4,r,c) is said to be consistent if for all
. nonempty proper subsets I, J of M, N respectively, with A[I'|J] = 0 the following are

satisfied

w(I,J) <w(M,N) if A[I|J]#0 3)
and

w(l,J) =w(M,N) if A[lJ]=0. (4)
Where M = {1,...,m}, N = {1,...,n}, I', J' are the complements of I, J in M, N
respectively and w(I,J) = %’:‘:—:f Also A[I|J] denotes the submatrix of A consisting of all
elements a;; where i € I and j € J.
By Lemma 2.3 in [7], given an mrc, (A,r,c), the operator T = T(A4,r, c) has a largest
positive eigenvalue

o(T) = sup{\: 3z > 0,Tz > Az}. (5)

Furthermore if (A,7,c) is consistent then p(T) = w(M, N). Before we state the next the-
orem recall that a matrix A is said to be indecomposable if A[I'|J] = 0 implies that
A[I|J'] # 0. Also A[I|J] is a maximal zero submatrix of A if A[I|J] =0 and AlL|L] #0
when I; x J; D I x J. For z € R* and J C N we denote by z; the corresponding subvector

of z (C denotes proper containment).

Theorem 2. [7]. Let (4,7,c) be an mrc. The spectrum of T = T(A4,r,c) consists of all A
for which there are nonempty subsets I, J of M, N respectively such that
either i) IxJ=MXxN, or

i) 0cIcM, CJCN and A[l'lJ] isa maximal zero submatrix of 4,

(A[I|J]),r1,cy) is consistent

and

A=w(l,J).
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If both these conditions are satisfied then there is an associated eigenvector z with z; >0

and (for J C N) z; = 0.

The following notation will also be needed. Let {Io}%_, and {J4}J_, be partitions of M and .
N respectively. We denote Ay = A[lo|Ja), 1, = Ta) €1y = Coand Ty = T(A[la|Ja)s T1arCs)

fora=1,...,0.
Main Results

The computation of the cycle time vector of T = T(A,r,c) in the case where (A,r, c)
is a consistent mrc, is straightforward and it is given in Proposition 3. Moreover if A is
decomposable, that is A = A; ® A EB ...® Ay, where each A, is indecomposable, then it is
easy to check that x(E(T)) = x(E(T1)) ® x(E(T2)) @ - .. ® x(E(T,)). Therefore our interest
lies in the case where (A,r,c) is non-consistent and A is indecomposable. The main result

is that in the latter case, we can ”partition” A (by permuting rows and columns) as follows

A, Bia ... Bis
A ... By,
A= 2 2 b
0
Ay
‘where (Aq,Ta,Ca) is consistent and A, is indecomposable for each a = 1,...,0. In Lem-

mas 4 and 6 we show that this ”partition” is unique up to a permutation and is so that
w(Iy,J1) > ... > w(ly, J;). Finally in Theorem 8 we prove that x(E(T)) s, = logw(la, Ja),

fora=1,...,0.

Proposition 3. Let (A4, r,c) be an mrc. Then &(T'), where T = T'(A, r, ), has a fixed point

if and only if (A,7,c) is consistent. In this case the cycle time vector of £(T') is constant

and x(£(T)) = logw(M, N).

Proof: By Theorem 3.5 in [7], (4,7, c) is consistent if and only if T = T(4,r,c) has a
strictly positive eigenvector with corresponding eigenvalue w(M, N ). It follows immedi-
ately from the definitions that Tz = w(M, N)z, £ > 0, is equivalent to the existence of a
fixed point of £(T), namely £(T)(log z) = logw(M, N) + logz. Moreover by applying the
definition of the cycle time vector we get that x(&(T')) = logw(M, N). O

Since in the case where (A,r,c) is consistent, w(M, N) is the largest eigenvalue of T' =
T(A,,c) we see that x can be thought of as a vector generalization of the spectral radius.

Note here that if (A,7,c) is a consistent mrc and § C I C M and § C J C N are such that
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A[I'|J] = 0 then w(I, J) = w(M, N) implies that A[I|J'] = 0 and that (A[I]J]),7r,cg) is also
consistent.
It will be useful to observe that in order to check consistency it is enough to consider those

0cIc Mand®CJC N for which A[I’|J] is a maximal zero submatrix of A.

Lemma 4. Let (A,7,c) be a non-consistent mrc and A be indecomposable. Suppose
9c I, C Mand® C J, C N, are such that A[I{|J1] is a maximal zero submatrix of A,
(A[I1|1);71,,cay) is consistent and w(Iy,J1) is the maximum eigenvalue of T = T(A,r,¢).

If w(I, J2) is the maximum eigenvalue of T' = T(A[[{|J{],ry;, ¢ 1), then
w(I1, J1) 2 w(lz, J2) (6)

Proof: By the indecomposability of A it is true that A[[;|J]] # 0. Denote I3 = I'\I2,
J3 = J{\Jz and (A[I{|J{], 71y, ) = (A}, 71, ¢1)- ]

If (A},7},¢}) is consistent then w(l3,J2) = w(l},J). By the assumption we have that
w(Iy, J1) > w(M, N) which implies the inequality, w(I1, J1) > w(Iy, J7)-

Assume now that (4),r},c}) is non-consistent. Then by Theorem 2, I, Jo are nonempty
proper subsets of I}, J} respectively. Furthermore A[I3]J2], is a maximal zero submatrix of
A, (Az,72,02) is consistent and w(lz,J2) > w(I{,J}). Let L=LLUI and K = J1 U Ja.
Consider the following two cases:

Case 1. (A[L|K],rL,ck) is consistent. In this case w(L, K) is an eigenvalue of T(A,r,c) and
thus w(l,J1) > w(L,K). On the other hand the consistency of (A[L|K],rL,ck) implies
that w(l,J1) < w(L,K). Therefore we must have that w(ly,J1) = w(L,K) and conse-
quently w(I, J1) = w(ly, J2) and A[l1]J2] = 0.

Case 2. (A[L|K],7L,ck) is non-consistent. If A[I1]Jo] = 0 then A[l1 U I3|J] is a maxi-
mal zero submatrix of A and since (Asz,ry,cg) is consistent, w(ly,J2) is an eigenvalue of
T(A,r,c). Therefore w(l,J1) > w(ly, J2).

Now assume that A[I;]J5] # 0. Then since w(l1,J1) is also the maximum eigenvalue of
T(A[L|K),rL,ck), we must have that w(l,J1) > w(L, K). From this we deduce that (6)
holds. O

Remark 5. From the proof of Lemma 4, it is clear that in case where (A,r,c) is non-

consistent the following inequality is satisfied
w(Iy, J1) > w(lz, J2) > w(l3, J3).

Lemma 6. Let (A, r,c) be a non-consistent mrc and A be indecomposable. fopcI,LCcM
and § C J, K C N are such that

1. A[I'|J] and A[L'|K] are maximal zero submatrices of A,
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A[I|J] and A[L|K] are indecomposable,

(A[I|J),7r1,cs) and (A[L|K],TL,ck) are consistent,

w(I,J) = w(L, K) is the maximum eigenvalue of T = T(4,r, c), and
5. IxJ#LxK,

then INL=0 and JNK =90.

Proof: We can either have (I x J) N (L x K) =0 or (I x J)N (L x K) # 0. So one of the
following holds true:

(@) INL=0 and JNK#O, (b)INL#0 and JNK =0,

(c)INL#® and JNK#0, (d)INL=0 and JNK =0.
Leth=IﬂL',12=IﬂL,I3=LﬁI'andI4=I'ﬂL'. Also  =JNK', J,=JNK,
J; = KNJ and Jy = J'NK'. Then by (1) we can see that A has the following form

h=JNK' J,=JNnK J3=KnJ Jy=JNK'

L=INL A 0 0 B
L=INnL Cy A; C, B

=LNI 0 0 As Bs
Li=I'nL 0 0 0 B,

It is easy to see that (a) is not possible, for otherwise by (1) we would have that A[M|J2] =0,
the latter contradicting the fact that A has no zero column.

We make the following claim
w(l U, J; U J2) > w(ls, J3) (M

and
w(IQUlg,JzUJ:;) > w(h, J1). _ (8)

Proof of claim: Observe that by assumption 4 and by symmetry, inequalities (7) and (8)
are equivalent.

If (d) holds then (7) is obviously true. Thus assume that either (b) or (c) hold. Consider
the mrc (4',7',¢) = (AU} Ikl Ui, Ji), TG I GO )

If (A',r',c) is consistent, then w(l; UI;U I3, J1 UJ2 U J3) is an eigenvalue of T(A r,c) and
thus (7) follows by the maximality of w(Ij U I3, J; U Jo).

Suppose that (A’,7/,¢) is non-consistent. By considering carefully assumptions 1, 2 and
3, we see that in order to ensure the non-consistency of (A',’,c) we must either have )
(equivalently (8)), or w(l2, J2) > w(I1 U3, J1UJ3). Since A[I5)J1] and A[I2|J3] are non-zero
and (A[ U I|J1 U J2}, 71,01, €100,) and (A[I2 U I3]J3 U J3), Ty, CJ,uJs) are consistent,
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we have that w(Io, Jo) < w( Uly, ;U Jo) and u)(IQ, Jo) < w(lpUl3,Jo U Jg) From these
we conclude that w(Iz, J2) < w(l; Ul3,J; UJ3). Therefore (7) must be true. This completes

the proof of the claim.
Now assume that (b) holds. In this case we have J = and thus

W(I, ‘]) w(Ilu-I?’Jl)

w(ly U I3, J3) = w(L, K).

Il

I

Also by the claim w(I; U Iz, J1) > w(I3,J3). Therefore
w(Ip U I3, J3) > w(I3, J3). 9)

On the other hand
UJ(I;;, Jg) > w(Iz UI3,J3). (10)

This is a contradiction, so (b) cannot hold. Note that (9) and (10) can both be true if
ILL=INnL=0.

Finally suppose that (c) is true. By (7) and since w(I,J) = w(L, K) we have that w(l; U
I3, Jo U J3) > w([I3,J3) which implies

w(I27J2) > w(I31J3)' (11)

By consistency of (A[Iz U I3|J2 U J3], 71,015, €J,uJ5) and since of A[I3|J3] # 0 we have that
w(Ia U I3, J2 U J3) > w(lz, J2) and so

w(I3,J3) >UJ(IQ,J2). (12)

Inequalities (11) and (12) lead to a contradiction. Hence (c) does not hold either. We

conclude that we can only have (d).0

Corollary 7. Let (A,r,c) be an mrc and A be indecomposable. If {Io :a=1,... ,o} and

{Jo:a=1,...,0} are partitions of M and N respectively such that fora=1,...0
1. (A[Ia|Jal), 714, €1,) is consistent,
2. A[I4]Js] is indecomposable,
3. A[U7_,.11k|Ja] is a maximal zero submatrix of A[Ug_ k| Uf_, J] and,
4. w(Ia,Jo) is the maximum eigenvalue of T(A[Uf_, Ik| Ui_, Jrl,rug_, ]k,CUzzaJk).
Then
(a) w(I,J1) is the maximum eigenvalue of T'(4,r,c).
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(b) w(ly, 1) 2 .- 2 w(ls, Jo)-

(c) This partition, which we shall call the maximum eigenvalue partition of T =T(A,r,c)

and denote by P(4,7,¢) = {Io X Jo : @ =1,...,0}, is unique up to a permutation.

Proof: If (4,7,¢) is consistent then o = 1 and there is nothing to show. In the case when

(A,r,c) is non-consistent the proof follows immediately from Lemmas 4 and 6.0

Theorem 8. Let (4,7, c) be an mrc and A be indecomposable. If the maximum eigenvalue
partition of T = T(A,r,¢) is P(A,7,¢) = {la X Jo :a=1,... ,a} then the cycle time vector
x(E(T)) of the operator £(T), where T = T(A,r,c), is

X(E(T))sa =logw(la, Jo) =logp(Ta), a=1,...,0 (13)
where Ty = T(A[la]Jal, 71,5 €0 )-
Proof: If (A,r,c) is consistent then o = 1 and (13) was already proven in Proposition 3.

Suppose that (A4,r,c) is non-consistent. For z € (R} )°, define x(T') = limk_,oo(Tkx)%. It
is easy to see that x(&(T)) = log x(T'). Thus it is enough to show that

x(T)y, =w(la,Jo) =p(Ta), a=1,...,0. (14)
We shall prove (14) for 0 = 2. By assumption the matrix A has the form

A
a= |4 B
0 A,

)

where A; has no zero row or column. So for z; > 0 we have that T1z; > 0. For any strictly

positive vector z = (z1, z2)T we have

chATLrl (Alzl +B£E2) ] ) (15)

Le,[BTL,,(A1z) + Bxo) + AT Ly, Ayzo)

Observe that TaZa = Le, ALL,, AaTa, o =1,2. It is straightforward to see that for any
T = (IL‘],ZEQ)T >0

T1:II1 S (T.’L‘)l (16)
(TIL‘)Q S T2:L‘2. : (17)

Since (Aq,Ta,Ca) Is consistent there is zo > 0 such that Tpzo = p(Ta)Za, ¢ = 1,2.
Given ¢ > 0 we can find a real number A¢ > 0 such that BA‘z; < Ajex;. Thus for

z€ = (z1,25)T > 0, where 2§ = Xz, we have
(TzNn < (1 +€e)Tiz1 = (1 +€)p(Th)z1- (18)
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From (17) we get
(Tz)2 < Taxy < (1 + €)p(T2)z3- (19)

Therefore
Tz¢ < (1+ €)(p(T1)z1, p(T2)w5)" - (20)

Using the fact that p(Ty) < p(Ty) we can see that inequalities (18) and (19) hold also for
the vector (p(T1)z1, p(T2)z5)T. The latter together with the monotonicity of T and (20)
give

T?2¢ < (1+ €)2(p*(T1)z1, 0 (T2)5) "

So by induction we have that for £ > 1
T*z¢ < (1 + &% (o (T1)z1, P (T2)5)" (21)

Thus
lim (Tkx‘)% < (1 +¢€)(p(Th), p(T2))T

' k—o00
which implies that
X(T) < 1+ €)(p(T), p(T2)"

Since € > 0 was arbitrary
X(T) < (p(Th), p(T2))"- (22)

Now suppose that 0 < € < 1 is given and that z; > 0 and z3 > 0 are as above. We can find
a real number ¢ > 0 satisfying BTL,l(u‘Alzl + Bzy) < ii—(Ag‘erAng. Let z§{ = pfzy,

then for ¢ = (x5, z2)T > 0 we obtain,
(T.’EC)Q Z (1 - 6)T2.’L‘2 = (1 - E)p(Tg).’IIQ. (23)

By (16) we see that
(Tz), > Tiz§ > (1 — €)p(T1)z}- (24)

So (23) and (24) imply Tz > (1 - €)(p(T1)z$, p(T2)z2)T. In a similar way as above we can
show that
(1= )*(o* (11)a5, o (To)z2) < Tz (25)

By taking the kth root in (25) and letting k — co and then using the fact that 0 < e < 1

was arbitrary, we obtain a lower bound for x(T), i.e.
(p(T1), p(T2)) < X(T)- (26)
Finally inequalities (22) and (26) give that

X(T) = (p(T1), p(T2))".
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For ¢ > 2 we show (14) using induction. More specifically, we have that for any =z =

(mla"-’zo’)T >0

(Tz)a < [T3,..0(x2,--- ,:ra)T]a, fora=2,...,0-1

and (Tz)o < Trxo,

where Ty, = T(A[UZ—sla| Ug—> Ja],rug=21°,cug=210). Given zo4 > 0 with Toze =
p(To)zo and € > 0 we can find inductively positive real numbers AS, ..., As such that,

if 8, = \ozq for a = 2,...,0 then, for ¢ = (21,75, ... ,2¢)T > 0 we have
T*z¢ < (1+ )* (0¥ (1)1, - -, p*(To)2g)T-

Therefore
X(T) < (p(T1), -, p(Ts))T.

Similarly given 0 < € < 1 we can construct ¢ = (z{, ... ,.’L‘f,.__l,l‘g)T > 0 such that
(1 - e)k(pk(Tl)xia s ,pk(Tﬂ)zd)T < Tkxe-
The latter implies that
(p(T1), - -, p(T5))" < X(T).

Hence
X(T)Ju = p(TOt) = w(IOHJG)’ a = 1) ...,0.

This completes the proof of the theorem.(]
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