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We analyse the way in which large queues build up in
the single-server fractional Brownian motion queueing
model. The large deviations problem for the queue-
length process can be rephrased as a moderate
deviations problem for the underlying white noise.
This framework allows us to obtain not only an
asymptotic expression for the probability of overflow,
but also the most likely path followed by the queue-
length process to reach the overflow level and
prediction of post-overflow behaviour. The model we
consider has stationary increments: there is also a
non-stationary version of fractional Brownian motion,
introduced by Lévy, which formed the basis for a
similar study by Chang, Yao and Zajic [9]. We compare
our results with theirs, and illustrate the essential
differences between the two models.
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Abstract

We analyse the way in which large queues build up in the single-
server fractional Brownian motion queueing model. The large devi-
ations problem for the queue-length process can be rephrased as a
moderate deviations problem for the underlying white noise. This
framework allows us to obtain not only an asymptotic expression for
the probability of overflow, but also the most likely path followed by
the queue-length process to reach the overflow level and prediction of
post-overflow behaviour. The model we consider has stationary incre-
ments: there is a also non-stationary version of fractional Brownian
motion, introduced by Lévy, which formed the basis for a similar study
by Chang, Yao and Zajic [9]. We compare our results with theirs, and
illustrate the essential differences between the two models.
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1 Introduction

Recent studies [1] on broadband networks suggest that real traffic exhibits
Long Range Dependence (LRD). This would imply a hyperbolic decay of
autocorrelations that cannot be parsimoniously captured using traditional
Markovian models. Various LRD traffic models have been proposed. The
canonical model [8] is based on fractional Brownian motion (FBM). This
model has been widely adopted for its parsimonious structure, as it depends
on just three parameters: mean, variance and Hurst parameter. The Hurst
parameter reflects the degree of LRD.

In this paper we focus our attention on this FBM process and, in par-
ticular, the variational problem associated with how the process reaches a
given (high) level, conditional on the event that it does. We apply this to
the associated queueing model to determine analytically the most likely path
to overflow and most likely bevahiour thereafter. We also deduce known re-
sults on the asymptotics of overflow probabilities, previously obtained by less
informative methods [6].

The FBM model we consider has stationary increments. Chang, Yao
and Zajic [9] present a similar study to ours, which is based on a version of
FBM which does not have stationary increments. The two models exhibit
quite different behaviour and it is interesting to compare: this is the topic of
Section VII.

2 Representation for scaled FBM

We begin with the following representation for FBM, due to Mandelbrot
and Van Ness [2], which expresses the FBM process as a functional of an
underlying Brownian motion (BM) B(t) (see also [3]):

B0 = 5T [ 160dBG) 120 &)
where 0 < H <1, 0 >0 and
f(tay) = (t - y)a - (_y)al(-—oo,O)(y)a (2)
1
a = H - 5, (3)
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Note that the underlying Brownian motion is indexed by the entire real
line; this is constructed by setting B(0) = 0 and running two independent
Brownian motions, one forwards, and one backwards in time. We consider
the following scaled versions of BM and FBM:

B(s) = B—t(j@ with 1/2 < B < 1, (5)
and BH (st
Bi(s) = 20 ©)

The starting point is to find the correct scaling 3 such that the Mandelbrot
Van Ness representation holds for the scaled processes, that is:

BI(s) = gy [, /(o 9)aBLw) (™)

3
by simple calculations we obtain =1—-a = 5~ H.

3 The basic variational problem

In this section we determine the most likely path of the scaled FBM condi-
tioned to reach a given value z at time 7.

By (7) and a moderate deviations version of Schilder’s theorem [4] we
have!

lim lp(BtH (r)~z) = lim 1p (Bf(s) € A)

t—o0 Y t—o0 ¢7 (8)
with, as shown in [6], ¥ =1 — 2a = 2 — 2H, and where
1 m
19) =5 [ _#(s)ds ©)

1'We have chosen to argue at a formal level to avoid cumbersome technical details; we
have no doubt that our conclusions are correct and can be made rigorous by starting with
an appropriate topology for the Brownian motion moderate deviations principle, such as
the topology used in the version of Shilder’s theorem presented in [5].
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Now, setting: .
g9(s) = f(7,5)¢(s) (11)
the problem is to minimize the integral:
1 r7 . _ 1 r7 g(S) 2
2 /—-oo ?(s)ds = 2 /—oo [f(T, s)] ds (12)
subject the conditions:
g(—00) =0, (13)
o(r) = 2 (14)

This is a classical problem (see, for example, [7]); we solve the corresponding
Euler equation to obtain:

T

$(s) = o7 Cy (H)

f(T7 S)' (15)
It follows that the most likely path of the scaled FBM has the expression:

W) = cprmm [ feWfnydy 0<s<T. (16)

~ CH(H)
Furthermore, by (8), we can evaluate the cost for the most likely path of the
underlying Brownian motion to obtain:

—inf () = ——> . (17)

4 Predicting Future Behaviour

Once the process B} (s) has reached the level z at time 7, we may wonder
what is the most likely trajectory it will follow thereafter. One can again
argue formally that, at this scaling, the future behaviour can be determined
by setting ¢(s) = 0 for s > 7 (this is mean behaviour for the underlying
Brownian motion and the law of large numbers is in effect).




Thus we can write the following expression for the most likely path of
scaled FBM, conditional on the event that it reaches the level x at time 7:

e | S ydy s<r

¢ (s) =4 ! <
| W;)Tﬁ/_mf(s’y)f(ﬂy)dy §>7T

(18)

5 Consequences for the Queuing Model

In this section we exploit the previous result in the analysis of the FIFO
general single-server queue with infinite buffer size. In particular we obtain an
asymptotic expression for the complementary probability P(Q > b), typically
used as an estimator for the overflow probability when the buffer has finite
capacity b, as well as the most likely way and the most likely time at which
the queue-length reachs a given critical level. As in [8], we suppose that the
workload process (the difference between the total amount of work brought
to the queue in the last ¢ time units and the total amount of work that can
be processed by the queue in the same time interval), is given by

W(t) = Bo(t) —ut fort >0, (19)

where B (t) is FBM and u is a positive drift parameter. As is well known
(see for example [6]) the current queue-length (which necessarily realises the
equilibrium queue-length distribution) is given by:

Q= sup W (t); (20)

applying the Principle of the Largest Term (see for example [6]) with the
substitution ¢ = 7b we obtain:

1 1 Y
bll)rglo = log P(Q >b) = bll)rg) ? log P (sgp{B (t) — put} > b)
—  Tim — H _
= bliglo = lolgP (sep{B (1b) — prb} > b)
- H
~ sup bll)r?o ™ log P (Bb (r)y>1+ ur)

T

= sup—inf 1
sup — inf (#),

(21)

where, as before,

16)=5 [ ds)ds, (22)
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and
A= {¢ : C—l‘(’}T) /_; £(r,8)d(s)ds = 1 +m}. (23)

Now, calling ¢* the most likely path of underlying scaled BM as in the
previous section (and which depends on 7), we can write:

blim b%logP(Q >b) = —irTlfI(gb*)
= (from (17) where z =1+ u7) (24)

_ .1 (iﬁ)w v
202 \H (1 — H)2—2H°
agreeing with [8] and [6]. Furthermore, we find that:
™ = arginf{I(¢*)}
H

_ (25)
u(l— H)

is the most likely time at which the queue-length reachs the level b. The

normalized most likely queue-length trajectory can be written as:

@b(s) = max {0, oF (s) — us} , (26)

where ¢/ (s) has been defined in (18) witht =b,z =1+ usand 7 = 7"
Figures 1, 2 and 3, show with solid lines the behaviour of (26) for different
values of H and p.

6 How Does the Most Likely Path Depend
on the Parameters?

The queuing model analysed depends on three parameters: the Hurst param-
eter H, i and o. We want to investigate how the shape of the most likely
path depends on these three parameters. First of all note that o (s) does
not depend on ¢ (note however that I(¢), the cost, does). On the other
hand ¢/ (s) (and thus Q(s)) strictly depends on H and that dependency is
evident in the pictures. Roughly speaking we observe that the closer H is to
0.5 (the BM case), the closer the aspect of the path is to a straight line; the
most likely path becomes more and more ‘non-linear’ as H increases. Finally
it is also interesting to point out that the shape of the path does not depend
on p and this can be readily verified by simple calculations using (18) and
(25).
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Figure 1: Normalized most likely trajectory followed by the queue length for
H = 0.55 and g = 100 with FBM (solid line) and Levy’s version of FBM (dashed

line) input processes.
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Figure 2: Normalized most likely trajectory followed by the queue length for
H = 0.85 and p = 100 with FBM (solid line) and Levy’s version of FBM (dashed

line) input processes.
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Figure 3: Derivative of underlying Brownian Motion for FBM (solid line) and
Levy’s version of FBM (dashed line) when H = 0.55 and p = 100.

7 Camparison with the Levy version of FBM

An interesting comparison can be made when, instead of the version of FBM
with stationary increments, we consider the ‘Lévy version’, which formed the
basis for a similar study by Chang, Yao and Zajic [9]. Using the same notation
as in Section I, the Lévy version of FBM (see also [2]) can be represented as:

o

B0 = &

t
| t=y)dBly) t>0, 27)
0
where now, for fair comparison, we set
Ci(H)*-2H =1 (28)

so that VarBL(t) = o2t?H.

Following the same approach and solving an analogous variational prob-
lem as in Sections III and IV, we can write the expression for the most likely
path of Levy version of FBM, conditional on the event that it reaches the



-0.06 -0.04 -0.02 0.08

Figure 4: Derivative of underlying Brownian Motion for FBM (solid line) and
Levy’s version of FBM (dashed line) when H = 0.85 and p = 100.

level z at time 7, as:

2Hz 3
o o | =y (r—yrdy s<7
t\$) = 2Hz 7 o

i [ (=) —y)dy s> 7

(29)

Simple calculations show that the asymptotics for the Levy version of FBM
have the same expression as in (8) and (17) and therefore the buffer asymp-
totics are still given by (24). Figure 1, 2 and 3 show with dashed lines the
behaviour of:

Qu(s) = max {0, 6} () — us} (30)
for different values of H and p. The essential difference between the two
models is that the model with stationary increments has a ‘history’ of infinite
past which it can rig in order to maximise its chances of reaching a high level;
in some sense, it has a ‘headstart’ over the Levy version, which starts at time
‘zero with no past. The overflow event is thus ‘smoother’ for the model with
stationary increments.
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8 Conclusions

We have analysed a scaled version of fractional Brownian Motion and de-
termined the most likely way in which it reaches a given level and the most
likely path it will follow thereafter given that it has. This was made possi-
ble by a representation of the scaled FBM as an additive functional of an
underlying moderately scaled BM; the large deviations results for the FBM
could then be deduced by contraction from a moderate deviations analogue
of Schilder’s theorem. We then applied this to the corresponding queueing
model to determine the most likely path to overflow (in a large buffer) and
the most likely path followed after overflow has occurred. We drew the fol-
lowing conclusions about the shape of this path. It depends only on the Hurst
parameter: if H is close to 1/2 the paths followed are almost linear (as one
would expect, since the case H = 1/2 is BM, where the most likely trajec-
tories are indeed linear); as H increases, the path to overflow becomes more
and more ‘S-shaped’, and the system is slower to recover after an overflow
event.
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