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parametrisation of the orbits and by finding a finite set 
of polynomial invariants which separate the orbits. 
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In this paper we take some further steps towards understanding multi-particle entangle-

ment by analysing the non-local properties of density matrices of n particles. This continues

the programme, begun in [1], in which we gave a framework for studying the space of pure

states of n spin-1/2 particles. As discussed in [1], the space of pure states of n spin-1/2

particles is jC2n = jC2

 :::
 jC2; however not all the 2n complex parameters have non-local

signi�cance: the group of local transformations, U(2)n acts on the space of states and two

states which may be reached from each other by local actions are equivalent as far as their

non-local properties are concerned. Each equivalence class of locally equivalent density ma-

trices is an orbit of this group. For many purposes, only parameters describing non-local

properties are signi�cant; an example is that any good measure of entanglement must be

invariant under local transformations, and thus it should be a function of non-local param-

eters only (here and henceforth we will refer to parameters which are invariant under local

transformations as invariants). A key question is to identify the invariants.

In this paper we will focus on density matrices and show that for n � 2, of the 22n � 1

real parameters describing density matrices of n spin-1/2 particles 22n�3n�1 are invariant

under local transformations, U(2)n. This generalises to an arbitrary set of n particles asQ
r
d
2
r
�
P

r
d
2
r
+n� 1 where dr is the dimension of the state space of the rth particle. For n

spin-1
2
particles we also show how to characterise generic orbits, both by giving an explicit

parametrisation of the orbits and by �nding a �nite set of polynomial invariants which

separate the orbits. Thus given two density matrices we can compute explicitly whether

they are on the same orbit or not. Other authors have also discussed the use of invariants

in discussing entanglement [2] [3] and applied invariant theory to quantum codes [4].

In order to calculate the number of functionally independent invariants it will be con-

venient to �nd the dimension of the orbit of a generic density matrix under the group of

local transformations. The dimension of the orbit is the number of parameters describing

the location of a density matrix on the orbit. The total number of parameters (22n � 1

real parameters) describing the space of density matrices minus the number of parame-

ters describing a generic orbit (the dimension of the orbit) gives the number of parameters
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describing the location of the orbit in the space of orbits, i.e. the number of parameters

describing the non-local properties of the density matrices.

To �x notation, it will be convenient to consider the case of a one-particle density matrix

�rst. The space of pure states of a single spin-1/2 particle is jC2 and thus a density matrix is

a 2� 2 complex matrix which is hermitian, positive and with trace one, and may therefore

be described by three real parameters. A particularly convenient representation of such a

matrix is

� =
1

2
12 + �i�i; (1)

where �i, i = 1; 2; 3 are real and

�1 =

0
B@ 0 1

1 0

1
CA �2 =

0
B@ 0 �i

i 0

1
CA �3 =

0
B@ 1 0

0 �1

1
CA 12 =

0
B@ 1 0

0 1

1
CA : (2)

We note that

�i�j = i�ijk�k + �ij: (3)

Under a local transformation by a unitary matrix U , � is transformed as

� 7! U�U
y
: (4)

The group U(2) is isomorphic to U(1) � SU(2) where, physically, the U(1) is the phase

transformation of a state, represented by a unitary matrix ei�12. This element clearly leaves

any density matrix invariant under the transformation (4) so that when considering the

action (4) we may restrict attention to elements of SU(2). In order to �nd the number of

invariants it will be more convenient to �nd the dimension of a generic orbit under the action

of SU(2). To do so one may work in�nitesimally. Thus, associated to the action of the Lie

algebra of the group of local transformations acting on the space of density matrices there is

a vector �eld: if we take an element T of a basis for the Lie algebra, the action of the group

element k = exp i�T 2 K on an element � induces an action on functions from � to jC; and

the vector �eld, XT , associated to the Lie algebra element T is found by di�erentiating:
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XTf(v)
def
=

@

@�
f(ei�T�)j�=0 =

@

@�
f(�+ ��)j�=0: (5)

The linear span of vector �elds at the point � associated with the whole Lie algebra forms

the tangent space to the orbit at the point � and so the number of linearly independent

vector �elds at this point gives the dimension of the orbit.

A general element of the Lie algebra in the spin-1/2 representation is given by

T = �i�i (6)

and its action on the density matrix is to give an in�nitesimal transformation

�� = i[T; �] (7)

where [; ] is the matrix commutator.

We may therefore calculate the three vector �elds X1;X2 and X3 associated to the Lie

algebra elements �1; �2 and �3 as

X1 = �2

@

@�3

� �3

@

@�2

; X2 = �3

@

@�1

� �1

@

@�3

; X3 = �1

@

@�2

� �2

@

@�1

: (8)

We note that at generic values of �1; �2; �3 only two of these vector �elds are linearly

independent since

�1X1 + �2X2 + �3X3 = 0: (9)

Thus the dimension of the generic orbit is two and therefore of the three parameters describ-

ing a generic density matrix, two are non-invariant leaving only one invariant parameter,

as one expects since only the single independent eigenvalue of � is invariant under local

transformations.

We note that the e�ect of the transformations (4) is to act on the vector � by rotation

by an orthogonal matrix, i.e. an element of SO(3) - this follows from the fact that �i�i

is the representative of a Lie algebra element and the conjugation action (4) is the adjoint

action of the group on its Lie algebra. We may thus �nd a way of exhibiting the invariant

under local transformations:
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I = �i�j�ij = j�j
2 (10)

where we have used the fact that SO(3) has an invariant tensor �ij. We note that this

invariant may also be expressed as

I = Tr(�2)�
1

2
: (11)

We now turn to the case of two-particle density matrices. Such a density matrix has 15 real

parameters, and the maximumdimension that a generic orbit could have is 6 (corresponding

to two copies of SU(2)) if all the vector �elds corresponding to a basis of the Lie algebra

were independent. We will show that the vector �elds do indeed span 6 dimensions, and

thus that there are 9 non-local parameters.

We may write a density matrix as

� =
1

4
12 
 12 + �i�i 
 12 + �i12 
 �i +Rij�i 
 �j: (12)

The action of a Lie algebra element of the subgroup SU(2) acting on the �rst component of

the tensor product is

�
(1)
� = i[�k�k 
 12; �]

= �k�m�mki�i 
 12 +Rkj�m�mki�i 
 �j; (13)

and that corresponding to a Lie algebra element of the subgroup SU(2) acting on the second

component of the tensor product,

�
(2)
� = i[�k12 
 �k; �]

= �k�m�mki12 
 �i +Rik�m�mkj�i 
 �j: (14)

The vector �elds corresponding to the six basis elements �i 
 12, 12 
 �i are

Xk = �kim

�
�i

@

@�m

+Rij

@

@Rmj

�
;

Yk = �kim

�
�i

@

@�m
+Rji

@

@Rjm

�
(15)
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Consider the set Xi �rst: one can see that these three are linearly independent at generic

points by considering the coe�cients of @=@�i, since a linear relation would have to be of the

form �kXk = 0, but one can see that this relation will not hold for non-zero �'s by looking

at the coe�cients of the partial derivatives with respect to Rij. Similarly by considering the

coe�cients of the partial derivatives with respect to �1; �2; �3, one sees that Y1; Y2; Y3 are

linearly independent. Finally, we note that the coe�cients of the partial derivatives with

respect to �1; �2; �3 are zero for X1;X2;X3 and the coe�cients of the partial derivatives

with respect to �1; �2; �3 are zero for Y1; Y2; Y3 so that there can be no linear relation at

all between the six vector �elds X1;X2;X3; Y1; Y2; Y3. Thus the dimension of the orbit of a

generic density matrix is 6 and thus the number of non-local parameters, 15 � 6 = 9.

In general, we can consider a system of n particles with individual state spaces of di-

mensions d1; : : : ; dn. The density matrix is a hermitian D �D matrix with trace 1, where

D = d1d2 : : : dn, and therefore requires D2� 1 real parameters which can be taken to be the

coe�cients �(1)
; : : : ; �

(n)
; : : : ; R in an expansion

� =
1

D
1d1 
 � � � 1dn +

nX
r=1

�
(r)

ir
1
 � � � 
 T

(r)

ir

 � � � 
 1 + � � �+Ri1:::in

T
(1)

i1

 � � � 
 T

(n)

in
(16)

where T
(r)

ir
(ir = 1; : : : ; d2

r
�1) are a basis set of traceless hermitian dr�dr matrices (generators

of SU(dr)). The action of an in�nitesimal generator of SU(dr) acting on the rth factor of

the tensor product is

�
(r)
� = c

(r)

ijk
�i(�

(r)

j
1
 � � � 
 T

(r)

k

 � � � 
 1 + � � �) (i; j; k = 1; : : : ; d2

r
� 1) (17)

where c
(r)

ijk
are the structure constants of SU(dr). Thus the in�nitesimal action of local

transformations is given by a set of vector �elds

X
(r)

i
= c

(r)

ijk

 
�
(r)

j

@

@�
(r)

k

+ � � �+Ri1:::j:::in

@

@Ri1:::k:::in

!
: (18)

Similar considerations to those used above for the case of two spin-1
2
particles show that

these vector �elds are generically all independent. Thus the generic orbit has dimension

d
2
1+ � � � d

2
n
�n. Since the space of density matrices has dimension d21 : : : d

2
n
, there are a total

of
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Y
r

d
2
r
�
X
r

d
2
r
+ n� 1 (19)

non-local invariants.

Let us now return to the case of n � 2 spin-1/2 particles and explicitly identify a set of

invariant parameters which characterise generic orbits. To be explicit, consider the case of

three spin-1/2 particles with density matrix which may be written as

� =
1

8
12 
 12 
 12 + �i�i 
 12 
 12 + �i12 
 �i 
 12 + 
i12 
 12 
 �i

+Rij�i 
 �j 
 12 + Sij�i 
 12 
 �j + Tij12 
 �i 
 �j

+Qijk�i 
 �j 
 �k: (20)

The action by a local unitary transformation on the �rst component in the tensor product

induces the following transformations on the components of �

�i 7! Lij�j; Rij 7! LikRkj ; Sij 7! LikSkj; Qijk 7! LimQmjk (21)

where Lij is an orthogonal matrix, and the other components of � do not change. Similarly

actions by a local transformations on the second and third components of the tensor product

induce

�i 7!Mij�j; Rij 7!MjkRik; Tij 7!MikTkj; Qijk 7!MjmQimk (22)

and


i 7! Nij
j ; Sij 7! NjkSik; Tij 7! NjkTik; Qijk 7! NkmQijm (23)

respectively, where Mij and Nij are orthogonal matrices independent of L.

We max �x a canonical point on a generic orbit as follows: �rstly let us de�ne

Xii0 = QijkQi0jk; Yjj0 = QijkQij0k; Zkk0 = QijkQijk0; (24)

and perform unitary transformations on particles 1, 2 and 3 so as to move to a point on the

orbit in which X; Y and Z are diagonal; generically the diagonal entries are distinct and we

7



can arrange them in decreasing order (X; Y and Z are hermitian, positive matrices). The

only remaining transformations which leave X; Y and Z in these forms are local unitary

transformations which induce orthogonal transformations in which Lij, Mij and Nij are one

of the matrices 0
BBBB@

1 0 0

0 �1 0

0 0 �1

1
CCCCA

0
BBBB@
�1 0 0

0 1 0

0 0 �1

1
CCCCA

0
BBBB@
�1 0 0

0 �1 0

0 0 1

1
CCCCA (25)

We may specify a canonical point on the generic orbit uniquely by specifying that all the

components of � have the same sign, and similarly for � and 
. This method works as long

as X; Y and Z have distinct eigenvalues and the components of �, � and 
 are not zero

at the canonical point on the orbit. The parameters which describe the generic orbits are

the components of �; �; 
;R; S; T and Q at the canonical point on the orbit. We note that

the number of parameters describing the canonical point are the 26 � 1 = 63 components

of �; �; 
;R; S; T and Q minus the 3� 3 = 9 constraints that the non-diagonal elements of

X; Y and Z are zero; thus the number of non-local parameters is 54 as given by the general

formula.

We note that the fact that the canonical point, as constructed, is unique means that

all points on the same orbit will have the same canonical representative: conversely, if two

density matrices �1 and �2 have the same canonical form, then

U1�1U
y

1 = �canonical = U2�2U
y

2 (26)

for some U1 and U2, so that

�2 = (U
y

2U1)�1(U
y

2U1)
y (27)

and thus �1 and �2 are on the same orbit.

We now describe a �nite set of polynomial invariants which separate generic orbits by

�nding a set which allows one to calculate the components of �; �; 
;R; S; T and Q at this

canonical point. The complete in�nite set of polynomial invariants is found by contracting
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the indices of �; �; 
;R; S; T and Q with the invariant tensors �ij and �ijk. However we

may �nd a �nite set of invariants which separates generic orbits. Firstly we note that

tr(X); tr(X2) and tr(X3) determine the diagonal elements �21; �
2
2 and �

2
3 of X, and similarly

for Y and Z. Now consider the three invariants A2n = �
T
X

n�1
�, n = 1; 2; 3. We may write

these three invariants in the following way:0
BBBB@

1 1 1

�
2
1 �

2
2 �

2
3

�
4
1 �

4
2 �

4
3

1
CCCCA

0
BBBB@
a
2
1

a
2
2

a
2
3

1
CCCCA =

0
BBBB@
A2

A4

A6

1
CCCCA ; (28)

where a1; a2 and a3 are the components of � at the canonical point on the orbit. The

Vandermonde matrix

� =

0
BBBB@

1 1 1

�
2
1 �

2
2 �

2
3

�
4
1 �

4
2 �

4
3

1
CCCCA (29)

has determinant (�21 � �
2
2)(�

2
2 � �

2
3)(�

2
3 � �

2
1), and we may solve for a21; a

2
2 and a

2
3 as long as

det� is non-zero. Also if the invariant

A9 = �ijk�i(X�)j(X
2
�)k = �:(X�) ^ (X2

�) = a1a2a3 det� (30)

is non-zero, then we may determine the sign of the components of �; recall that, by de�nition,

all the components of � have the same sign at the canonical point. The analogous expressions

B9; C9 determine the values of � and 
 at the canonical point. The values of the components

of R at the canonical point may be calculated from the following nine invariants:

Ir;s = (Xr�1
�)i(Y

s�1
�)jRij : (31)

These nine equations may be put together into a matrix form

I = ((�F )
 (MG))R; (32)

where I and R are column vectors with nine components and the matrices �; F; M and G

are
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� =

0
BBBB@

1 1 1

�
2
1 �

2
2 �

2
3

�
4
1 �

4
2 �

4
3

1
CCCCA ; F =

0
BBBB@
a1 0 0

0 a2 0

0 0 a3

1
CCCCA ; M =

0
BBBB@

1 1 1

�
2
1 �

2
2 �

2
3

�
4
1 �

4
2 �

4
3

1
CCCCA ; G =

0
BBBB@
b1 0 0

0 b2 0

0 0 b3

1
CCCCA ;

(33)

where �
2
1; �

2
2 and �

2
3 are the diagonal elements of Y . We note that det(�F ) = A9 and

det(MG) = B9, so since we are assuming that these are non-zero we may invert the matrix

equation to �nd the components Rij. The components of S and T may be found in a similar

way. Finally we may use the 27 invariants

Ir;s;t = (Xr�1
�)i(Y

s�1
�)j(Z

t�1

)kQijk: (34)

to �nd the components of Q at the canonical point on the orbit in terms of the Ir;s;t (there

will, of course, be some relations between these components due the constraints that X; Y

and Z are diagonal).

Thus, by showing that the following set of polynomial invariants is su�cient to calculate

the components of a generic density matrix at the canonical point we have demonstrated

that they characterise generic orbits:

trXr
; trY r

; trZr

�
T
X

r�1
�; �

T
Y

r�1
�; 


T
Z

r�1

;

�:(X�) ^ (X2
�); �:(Y �) ^ (Y 2

�); 
:(Z
) ^ (Z2

)

(Xr�1
�)i(Y

s�1
�)jRij; (Y r�1

�)i(Z
s�1


)jTij; (Xs�1
�)i(Z

r�1

)jSij;

(Xr�1
�)i(Y

s�1
�)j(Z

t�1

)kQijk; (35)

the indices r; s; t range over the values 1; 2; 3.

If two density matrices have di�erent values of any of these invariants they are not on

the same orbit; if they have same value of all of these invariants, and if A9, B9 and C9 are

non-zero, then the density matrices are locally equivalent.

We note that the number of independent components of a generic density matrix at the

canonical point is equal to the nubmer of functionally independent parameters calculated
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at the beginning of this letter. However, the number of polynomial invariants needed to

characterise the generic orbit is greater than this; this is related to the fact that the ring of

invariants is non-polynomial, i.e. that the geometry of the space of orbits is non-trivial.

The procedure given above can be used for all n � 2: use the tensors of highest rank

and rank one in the expression for � to �x a canonical point on the orbit; the polynomials

which separate the generic orbits are the analogues of those used in the case n = 3.

In the case of n = 2 this method can be used but there is some redundancy in the

description we have given: the matrices Xii0 = RijRi0j and Yjj0 = RijRij0 (using the notation

of (12)) have the same eigenvalues and the matrix Rij is diagonal at the canonical point.

In this case there are nine functionally independent invariants which specify the squares of

the non-zero components of � , � and R at the canonical point on a generic orbit: trXn,

�
T
X

m�1
� and �

T
Y

p�1
�, where n;m; p take the values 1; 2; 3. Additional invariants are

needed to specify the signs of the non-zero components. The �ve invariants �:(X�)^(X2
�),

�:(Y �)^(Y 2
�) and �Xr�1

R�; r = 1; 2; 3, are su�cient to determine these signs for generic

orbits and hence separate these orbits. In fact, using slightly di�erent arguments, one can

show that, in this case, one can reduce the number of polynomial invariants to ten, namely

trX, trX2, detR, �T
X

r�1
�, �T

X
r�1

R�, r = 1; 2; 3 and A9, which are subject to a single

relation expressing A2
9 as a function of the other invariants.

The general idea of investigating canonical points on orbits in the way we have described

is also appropriate for higher spins, but the situation is somewhat more complicated. Con-

sider the example of two particles of spin one in which case the unitary group under which

� transforms is SU(3). � may be written as

� =
1

64
18 
 18 + �iTi 
 18 + �i18 
 Ti +RijTi 
 Tj (36)

where Ti; i = 1:::8 are representatives of a basis for the Lie algebra of SU(3) in the adjoint

representation and 18 is the 8 � 8 identity matrix. However, the adjoint representation of

SU(3) is equivalent not to SO(8) but to an eight dimensional subgroup of it; this means

that we cannot transform � so that RRT and R
T
R are diagonal so the canonical form is
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rather more complicated than in the case of spin-1/2 particles.

In summary we have shown how to calculate the number of functionally independent

parameters needed to determine whether or not two density matrices are locally equivalent.

We have also shown how to characterise the generic classes of locally equivalent density

matrices of n spin-1/2 particles by two methods: (a) by �nding an explicit set of non-

polynomial invariants (the components of the density matrices at the canonical points on

the orbits) and (b) by �nding an explicit �nite set of polynomial invariants. These methods

work for generic density matrices; in a future publication we intend to give a systematic

method for characterising classes of locally equivalent non-generic density matrices. In

particular this will give a basis for the ring of invariants. We note that the canonical point

on certain types of non-generic orbit has non-trivial stability group; this is a signature that

density matrices on this orbit have special types of entanglement [1].
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