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spin-statistics relation for identical particles that
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1. Introduction

Following our earlier nonrelativistic derivation (Berry and

Robbins, 1997, hereinafter called I) of the connection between spin and

statistics for identical quantum particles, and comments from several

people, we find it necessary to elaborate and extend our arguments in

several directions.

In section 2, we repeat, for later convenience, the outline of the

way we obtained the spin-statistics connection for two particles with spin

S (integer or half-integer). In section 3 we correct a minor logical error

in the derivation of the exchange sign. Then, in section 4, we draw

attention to the existence of alternative ('perverse') constructions,

satisfying the conditions in I, that lead to the wrong spin-statistics

connection in certain cases, and speculate on how these can be excluded.

Next, in section 5, we comment on the fact that our argument made no

use of einsteinian relativity. Finally, in section 6, we extend our

derivation to identical particles with additional properties (e.g. isospin)

in addition to position and spin.

2. Reprise

In I, the state of the particles is represented by

2

IP(r)) = L lfIM(r)IM(r))
M

(1)

In this equation, r=rl-r2 is the relative position vector for the particles

(the dependence on the centre of mass is implicit); therefore exchange of

positions corresponds to r~ -r. M={ml,m2} labels the spin state of the

particles, with m denoting the z component of spin; exchange of spins

corresponds to M ~ M == { m2 ' ml }. The aim is to incorporate the



indistinguishability of the particles by identifing rand -r. In order to do

this, it is necessary to exchange the spins along with the positions. To

this end, we construct a transported spin basis IM(r)), with the exchange

property

3

IM(-r)) =exp{iy(r)}IM(r)) (2)

(this extension of I, to include a position-dependent phase, will be

discussed in section 3). The transported basis must be singlevalued and

smooth.

An additional requirement in I was that the basis be parallel­

transported, that is

AM,M' == i(M'(r)IVM(r)) = 0 (3)

for all M, M', r. This condition was automatically satisfied by the

IM( r)) constructed in section 4 of I. However, it was imposed a priori in

order to exclude a certain counter-construction (appendix D of I) whose

results wer~ physically incoherent. At the end of section 3 we will

discuss parallel transport further.

With the basis IM(r)), r~ -r corresponds to complete exchange

of the particles, motivating the central step, which is to impose

singlevaluedness on IP(r)), regarded as a function on the product of the

projective plane (sphere with identified antipodes) with the radial

coordinate r=lrl, taking values in the Hilbert space of the two spins.

Thus

IlJf{r)) =Ip{-r)) (4)



With (1) and (2), singlevaluedness implies that the exchange phase

acquired by the basis IM(r)) is inherited by the coefficients If!M(r), that

IS
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lfIM(-r) = exp{-iy(r)}lfIM(r) (5)

We emphasize that this is a natural extension to two identical particles of

the requirement of singlevaluedness of wavefunctions familiar in one­

body quantum mechanics. Because of the way we defined the

configuration space, rand -r are the same point. (Some other

nonrelativistic accounts of the spin-statistics relation (Broyles, 1976,

Bacry, 1995, see also Hilborn, 1995) also invoke notions of

singlevaluedness; these and other treatments are discussed in

comprehensive reviews of the spin-statistics relation by Duck and

Sudarshan (1997, 1998).)

A calculation of the transported basis (section 4 of I) gave

y(r) == 2trS

that is

so that (5) gives

(6)

(7)

(8)

This is precisely the familiar spin-statistics relation, since the

coefficients lfIM(r) were shown to be the same as those in the

conventional formulation, in which the state is represented in terms of

the fixed spin basis states 1M), that is



Ipfixed (r)) =r 1JIM(r)IM)
M

(9)
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Central to I was the calculation of the sign (7) acquired by the

transported basis under exchange. The basis was constructed using the

Schwinger representation (Schwinger, 1965, Sakurai, 1994, and section

4 of I), in which each of the spins 1 and 2 is regarded as made from two

harmonic oscillators, that is aI' bI, ~, bz, with annihilation and creation

operators a I' a1t, bl' b1t, a2, a2t, b2, b2t. The resulting transported basis

IM(r)) required an augmented space of spins, whose dimension is

d=:(4S+1)(4S+2)(4S+3)/6 (the number of ways that 45 quanta can be

distributed among four oscillators), which is larger than the dimension

(2S+ 1)2 of the fixed spin space. We argued (at the end of section 7 of I)

that this enlargement (also required by the parallel transport (3) of the

basis states) is physically natural, even though the expansion of IM(r))

involves fixed-basis states where the two particles would have different

spins (the formalism guarantees that these unphysical states are never

realized).

It will be convenient to exhibit this explicitly by writing the

transported basis for two spin-1/2 particles in terms of a basis for the

ten-dimensional augmented spin space. The first four states are the

original fixed-basis states of the two particles, which in an obvious

notation are

1+ +),1+ -),1- +),1--) (10)

In the remaining six, one particle has spin zero and the other has spin

one, that is, using the notation ISl ,S2 ;ml ' m2 ) ,

10,1;0,1), 10,1;0,0), 10,1;0, -1),

11,0;1,0),11,0;0,0),11,0;-1,0)
(11)



Then the transported states, as functions of the polar angles 8, ¢ of r,

are
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1+ +(r)) =~ sin8(exp{-i¢}IO,1;0,1) - exp{i¢}11, 0;1, 0))

+cos81+ +)

1+ - (r)) = t[sin8(-exp{-i¢}11, 0;0, 0) +exp{i¢}IO,1;0,0))]

+ t [(cos 8 + 1)1 + - ) + (cos f) - 1)1- +)]

1- + (r)) = t[sin8(-exp{-i¢}11, 0;0,0) + exp{i¢}IO, 1;0,0))]

+t [(cos 8 - 1)1+- )+ (cos8 +1)/- +)]

1- - (r)) =~ sin8(exp{-i¢}IO,l;O,-l) - exp{i¢}11,0;-1,0))

+cos81- -)

(12)

It is easy to confirm that these states are singlevalued and smooth

functions of r, and also orthonormal and parallel-transported according

to (3) (that is, the derivatives of each state with respect to eand ¢ are

orthogonal to all four states).

3. Derivation of the exchange sign

In section 2 of I we argued that singlevaluedness of the

transported basis, embodied in a double application of r~ -r, requires

the exchange phase factor to be a sign, that is exp{iJ{r) }=(-l)K. This

was wrong. In fact, singlevaluedness under double exchange requires

IM(r)) = IM(-(-r))) = exp{iy(-r)}IM(-r))

= exp{i[y(-r) + y(r)]}IM(r))

implying

(13)



y(r) =nK + J.1(r)

where K is an integer and f.1(-r)=-J1(r).

The exchange rule generated by (14) is

IM(-r)) =exp{i(nK +,u(r))}IM(r))

(14)

(15)
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However, per) is forced to vanish by the parallel transport requirement

(3). This is because

AM,M,(-r) = AM,M,(r) - V,u(r)8M,M' (16)

so that satisfying (3) for all r, M, M' requires that J1 be a constant,

which must vanish since the function J1(r) is odd. Thus the exchange

phase factor is a sign, and the resulting physics (spin-statistics relation)

is isotropic, that is independent of the direction of the line joining the

particles, as it must be.

This arg:ument reinforces the requirement of parallel transport in

the form used here, namely the vanishing of the connection one-form

AM,M,(r). We wish to elaborate on this. Equation (3) describes at once

two separate requirements of our construction. The first is that the

curvature vanishes: this is an intrinsic property of the geometry_ The

second is a property specific to the transported basis, namely that the

connection one-form expressed in terms of it should vanish. It is the

latter that forces the vanishing of the phase J1(r).

To clarify the distinction, the conditions in I can be reformulated

in the following more abstract way. The wavefunction I'P(r)) can be

regarded as a section of a vector bundle over the space of relative

coordinates R3 with the origin removed (this is the distinguished

configuration space, not the identified space as in a related discussion in



I). The vector bundle is supposed to be endowed with a connection

(perhaps, as in the case of the Schwinger construction, inherited from its

embedding in a trivial bundle {R3-0}XCd
). We impose the following

requirements: (i) The relative momentum operator, acting on

wavefunctions 1lJ'(r)), should be the covariant derivative, and (ii) the

connection should be flat. The first condition is motivated by simplicity.

The second condition, taken in conjunction with the first, has physical

content: it means there are no gauge fields (e.g. magnetic) intrinsic to

the kinematics - of course, gauge fields can be introduced later in the

hamiltonian as the dynamics dictates.

Vanishing curvature implies not (3) but the vanishing of the

nonabelian curl:

8

vx AM M' - i LAM M" X AM" M' =0
, M'" ,

(3a)

However, if the curvature vanishes, it is always possible to construct a

basis that is par~llel-transported (provided the base space is simply

connected, as the distinguished configuration space is). In terms of a

parallel-transported basis, the connection one-form AM,M,(r) itself

vanishes, and the relative momentum, by virtue of (ii) above, acts as

-ihV with respect to the coefficients lJIM(r). We took this route in I, by

introducing from the outset the transported basis IM(r)).

We repeat that parallel transport is a consequence of the

Schwinger construction of I; it does not have to be imposed separately.



4. Perverse constructions

Contrary to what we conjectured at the end of I, it is possible to

construct 'perverse' transported bases IM(r)) that are singlevalued,

smooth, orthonormal and parallel-transported, but which generate the

wrong exchange sign. One such perverse basis results from a

modification of the Schwinger representation, where in the argument of

section 4 all commutators involving the operators aI' a 1t, b1, b1t, a 2, a 2t,

b2, b2t are replaced by anticommutators. Because anticommutation

implies a1
2=0, etc, this particular modification works only for spin-l/2

particles. After some calculation, it leads to the following 'anti­

Schwinger' transported basis, which should be compared with the

Schwinger-generated basis (12):

1+ + (r)) = 1+ +), 1- - (r)) = 1--)

1+ - (r)) =~ sin 8(- exp{it/J}Il, 0; 0,0) + exp{-it/J}IO, 1;0,0))

+cos2 ~81+ -) + sin2 ~81- +) (17)

1- + (r)) =~sin8(exp{it/J}ll,O;O,O) - exp{-it/JJIO, 1;0,0))

+sin2
~el+ -) + cos2

~el- +)

These states are singlevalued, smooth, and parallel-transported,

and they satisfy the fundamental requirement that position exchange

(r-7-r) is equivalent to spin exchange (1M) -7IM). But the sign is

wrong: a plus, that is the bosonic exchange ruleIM(-r)) =+IM(r)),

instead of the fermionic minus.

Another perverse basis can be constructed for spin-O particles,

where the single transported state can be represented as the unit vector

9

IM(r)) =r/lrl (18)



This is singlevalued, smooth, and parallel-transported, but changes sign

fermionically under r~-r, rather than being bosonically invariant.

If our arguments leading to the spin-statistics connection are to be

regarded as a derivation, these perverse constructions must be excluded.

The following 'exclusion principles' are worth further consideration.

a. Constructions should be irreducible: if IM(r)) can be expressed as a

tensor product IM'(r))®ILM(r)), in which IM'(r)) satisfies the

properties required of the transported basis (exchange under r---t-r,

smoothness, parallel transport), then ILM(r)) must be a constant vector,

independent of M and r. This excludes -(18) and related more general

constructions.

b. Constructions should be general, that is, they should work for all S.

The construction (17) is restricted to S=1/2 and so fails this test.

c. Operators associated with different particles should commute. This is

the case with the Schwinger but not the anti-Schwinger construction,

because operators with labels 1 and 2 anticommute. (It is interesting to

note that a related requirement, that "all physical quantities commute for

spacelike separations" was imposed by Pauli (1940) in his field-theoretic

proof of the spin-statistics relation, although later authors have relaxed

this requirement (Duck and Sudarshan, 1997).)

d. Quantum mechanics is a fundamental theory, but its application (like

that of newtonian physics) is not restricted to fundamental particles. In

particular, it can be applied to identical composites (e.g. atoms and (X­

particles), whose statistics must be those calculated from their

constituents. In this opinion we differ from some authors (including

Schwinger) of proofs of spin-statistics using field theory, who argue

(Duck and Sudarshan, 1998) that the only fundamental fields are those

10



with S=O and S= 1/2 and so it is necessary to prove the connection only

for these fields. Anti-Schwinger fails this 'compositeness' test, because

the restriction to spin-1/2 makes it impossible to build up such

composites.

e. The physical hypothesis can be made that quantum spins are built

from Schwinger's oscillators. The spin-statistics connection follows

from this hypothesis, by a slight rephrasing of the arguments in I.

5. Spin and relativity

First we should point out that our derivation was nonrelativistic in

the sense that it made no use of relativity, and not in the sense of being a

low-velocity approximation. Since time never entered our

considerations, the exchanges we considered can be regarded as taking

place at fixed time. But fixed time is not relativistically invariant.

Regarded relativistically, our exchanges were spacelike. This makes our

arguments appear complementary to the some of the quantum field

theoretic ones (Balachandran et al., 1993, Feynman, 1987), which

involve the creation of pairs of antiparticles, and therefore are based on

timelike exchanges.

Second, although we considered only the relation between spin

and statistics, and not the origin of spin itself, the widespread belief that

spin is unavoidably relativistic has led to doubts about our arguments

involving exchange. Here we point out that the existence of spin is

equally a consequence of galilean relativity as of einsteinian relativity.

This point has been well made by Levy-Leblond (1967, 1974) and it is

not necessary to repeat the general arguments. However, we think it

worth outlining the galilean spin-1/2 case in the simplest and least

11



technical way, in an argument attributed to Feynman (Mackintosh,

1983).

For a free particle without spin, with hamiltonian H=p2/2m, the

Schrodinger equation

12

(19)

is Galilean-invariant in the following sense. Under the transformation to

t ~ t1 == t - T, r ~ r1 == Rr - vt - 8,

'II(r, t) ~ 'III (rl' td == 'II(r,t) exp{ -'i ; (v. rl +t v2tl )}
(20)

where T is a constant scalar, a and v are constant vectors, and R is a

constant rotation matrix, the equation preserves its form:

(21)

For a particle with spin 1/2, this invariance is obviously shared by

the two-spinor Schrodinger equation generated by the free 2x2 matrix

Hamiltonian

1 ( )2 1 2H=- S·p =-p 1
2m 2m

where S is the vector of Pauli matrices.

(22)

In both cases, external fields with potentials A(r,t), V(r,t) can

then be introduced by the minimal coupling to the particle's charge q

through

p ~ p - qA(r,t) (23)



and addition of qV(r,t) to H. In the spin 1/2 case, coupling to the first­

equation in (22) leads to
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H=_1(S.(p_qA))2 +qV(r,t)
2m

=_1 [p _qA(r,t)]2 1-.!!!S. B(r,t) + qV(r,t)
2m 2m

(24)

where B =V x A. This is the Pauli equation, with the spin operator

118/2 coupled to the magnetic field with a magnetic moment m, that is

qn
-S-B=m-B
2m '

where m= qn S
2m

(25)

This m, originating in a free equation that is invariant under the galilean

transformations, is the same - that is, it has the same gyromagnetic ratio

- as that in the corresponding Dirac equation, which is Lorentz­

invariant.

Anandan (1998) has presented a relativistic generalization of our

construction, in what may be a first step in establishing a bridge to the

field-theoretic arguments.

6. Extended spin-statistics relations for particles with
additional properties

Now we consider particles characterised not only by position and

spin but by one or more further quantum properties, that we denote by

P. Two examples of P are the isospin of nucleons and the colour of

quarks. We denote the values of P by p (assumed discrete), and the pair

of values for two particles, and the associated exchanged pair, by

(26)



If we regard P as describing different states of identical particles, the ­

argument we employed in I to derive the spin-statistics relation can be

extended by requiring the state to be singlevalued under full exchange,

including P~ P as well as r~ -r.

To implement this idea, we write the state of the two particles as

14

IPp(r)) =L lfIM,p(r)IM(r))
M

(27)

in which IM(r)) is the same transported spin basis as before, with the

exchange sign (2) and (6). Singlevaluedness, that is

(28)

leads to the extended spin-statistics relation

(29)

This is consiste~t with the requirement that the original spin-statistics

relation must hold when the P state of both particles is the same, that is

p = p . (We remark that the whole argument can be rephrased in terms

of singlevaluedness on a configuration space where r 1, r 2 are augmented

by internal 'angular' variables conjugate to the discrete indices P.)

In the above argument, P has been treated differently from spin,

notwithstanding the fact that the operators representing P (e.g. isospin)

can have the same mathematical structure as angular momenta. The

reason is that such mathematical resemblance conceals a physical

difference: it is spin, and not any other property P, that is uniquely

related to position, because of its connection (section 5) with galilean or

Lorentz invariance.



An argument similar to that leading to (29) has been given by

Anandan (1998) in the context of Kaluza-Klein theory.

The decision to regard the particles as identical, embodied in (28),

needs further discussion. An alternative possibility would be to regard

the different values PI, P2 as distinguishing the particles. It seems absurd

to consider macroscopic objects such as apples and pears as identical

particles in different states of quantum fruitiness (P). Nevertheless, it is

possible to choose to do this - but the choice is inconsequential, because

as is well known it leaves unconstrained the symmetry of the space-spin

part of the state - the symmetry of the P part of the state can always be

adjusted to satisfy (29). The extended spin-statistics relation has

consequences only when superpositions of states with different pare

meaningful, and the interactions are such that transitions can occur

between them (so that the P physics is coherently entangled with the

space-spin physics).
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