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1 Introduction

Let Xi and Yi be independent random variables, uniformly distributed on the unit square,

and consider the random quantity

This is the canonical two-sample matching problem. Ajtai, Komlos and Tusnady [1] prove

the following 'law of the (uniterated) logarithm' for the sequence T~: there exists K > 0

such that

1
K(nlog n)1/2 < T~ < K(nlogn)1/2, (1.1)

with probability 1 - 0(1). Refinements and extensions of this result have been obtained

by Shor [10] and Talagrand [11], among others. It is still an open problem to determine if

(n log n) -1/2T~ actually converges, even in expectation. A related problem is to determine

the asymptotics of

T~ = inf ~ax IXi - Yq(i) I·
uESn t~n •

Leighton and Shor [7] obtained the following analogue of (1.1): there exists K > 0 such

that

(1.2)
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with probability 1 - 0(1). Concentration inequalities for these problems have also been

obtained. One of the main tools is the connection with empirical processes. By 'duality',

or generalisations of the marriage lemma, the random variable T~ can be related to the

'empirical discrepancies'

and

where Ln == ~ E~=l dXi' M n = ~ E~=l dYi' ,X is Lebesgue measure on the unit square, and

IIJ-LIIF = sup{lp(!)1 : f E F}, (1.3)

for a signed measure p, where :F is taken to be the set of Lipschitz continuous functions

on the unit square with Lipschitz constant 1 (see, for example, [11]). The asymptotics

of such measures of empirical discrepancy have been studied extensively in the empirical

processes literature. One motivation is the fact that on the space of probability measures

the metric defined by f3(p, v) = IIJ-L - VHF generates the weak topology (see, for example,

Dudley [2]). In particular, Dudley [3] obtains mean rates of convergence for {3(Ln ,'x)

(actually, he considers a much more general setting); he obtains, in this case, the estimate

E{3(Ln , >..) S cn-1
/

2 (1 + logn).

While all of the above reflects a deep understanding of the two-sample matching problem

and its connection with the theory of empirical processes, it seems to ignore a huge body

of literature, which dates back to 1781. Moreover, while the connections which exist have

clearly been exploited, they can be made more explicit. This is the object of the present

note, and leads to a better analytic understanding of the problem. In particular, we can

easily infer large and moderate deviations behaviour.

2 The Monge-Kantorovich Problem

In 1781, Monge [8] formulated the following problem: Split two equally large volumes

into infinitely small particles and then associate them with each other so that the sum of

products of these paths of the particles to a volume is least. Along what paths must the

particles be transported and what is the smallest transportation cost? This problem was

first made precise and studied by Kantorovich [4, 5]. Suppose that J.L and 1/ are Borel

probability measures on a compact metric space (E, d) and '(J-L, v) is the space of all Borel

probability measures 1r on E x E with fixed marginals J-L(.) = 1r(. X E) and 1/ = 1r(E x·).

Kantorovich defined the metric

Pl(/-L, v) = inf{ ( d(x,y)7('(dx, dy): 7(' E '(/-L,v)}
JExE
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and proved that

(2.5)

where II·IIF is defined by (1.3). The proper~iesof PI and its relatives have since been studied

extensively: see Rachev [9] for a monumental survey of the literature. In particular, it was

shown by Kantorovich and Rubinshtein [6] that PI metrises the weak topology on M1(E),

the space of probability measures on E.

To see how this related to the matching problem, observe that, if we take E to be the unit

square, then

., If we define

Poo(J-L, v) = inf{ess-sup 1r 0 d-1
: 1f E '(Jl, v)},

then Poe also metrises the weak topology and

For Poo, we have the identity

Poo(Jl,v) = inf{€ > 0: Jl{A) ~ v(Af),A E B(E)},

(2.6)

(2.7)

(2.8)

where Af = {x: d(x, A) < €} and B(E) is the Borel u-algebra on E.

It is clear that identity (2.5) is the underlying force behind the work of Talagrand and

Shor, but it is never made entirely explicit. In the next section we will use (more general

versions of) the identities (2.5) and (2.6) to obtain large and moderate deviation results

for the matching problem.

3 Large and lTIoderate deviations results

Let (Xn)n~l be a sequence of random variables defined on a probability space (n, F, P),

with values in a Hausdorff topological vector space E equipped with the Borel a-algebra

E. Denote by M 1(E) (resp. Mb(E)) the space of probability measures (resp., finite signed

measures) on (E, E). Let J..Ln denote the law of X n. We say that the sequence X n (equiv­

alently, J-tn) satisfies the large deviation principle (LDP) with rate function I, if for all

BEE,

- inf I(x) :s: lim inf .! log J-Ln (B) :s: lim sup.! log J-Ln (B) :s: - inf I(x).
xEBo n n n n xEB

3



Here BO and B denote the interior and closure of B, respectively.

Let (An)n~1 be an increasing, positive sequence such that

An
An -+ 00 and ,;n -+ o.

We say the the sequence X n satisfies the moderate deviation principle (MDP) with rate

function I and speed A~2 , if for all B E £,

- infJ(x) :::; liminf ,~ logP (~Xn E B)
xEB n An An

:::; limsup ,12 logP (~Xn E B) ::; - in~ I(x).
n An An xEB

It doesn't complicate matters to consider an abstraction of the matching problem, So we

~hall do just that. Let Xi and Yi be independent random variables taking values in a

compact metric space (E, d) with common law J.t, and consider the random quantities

defined by

and

Then

and

T~ = Poo(Ln, Mn),

where PI and Poo are the metrics on M 1(E) defined by (2.4) and (2.7). Since E i~ compact,

both metrics induce the weak topology on M I (E). The following is thus an immediate con­

sequence of Sanoy's theorem and the contraction principle (taking products is continuous

in the weak topology).

Theorem 3.1 The sequences P(T~/n E .) and P(T~ E .) both satisfy the LDP in R with

respective rate functions

II (x) = inf{H (1I11J.t) + H (v21 J.t): PI (VI, V2) = x}

and
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Now suppose E is the unit square and that p. denotes Lebesgue measure on E. Consider

the variational problem,

where Poo is defined by (2.8). If 0 ~ x ~ 1/2, then it is not hard to see'from the convexity

of H(·IJ.L) that a solution (it is not unique) of the variational problem is as follows: VI == p.,

V2 is identically zero on the circle of radius x centred at the mid-point of the square, and is

proportional to Lebesgue measure outside this circle, with the constant of proportionality

chosen so that 1/2 is a probability measure. Thus, a simple calculation yields that

It is not as straightforward to obtain the moderate deviation principles for T~/n and T~

from Sanov's theorem because PI (.,.) and Poo(·,·) are not continuous functions on the

space of signed measures. We shall use results of Wu [12], who derives conditions for the

MDP to hold uniformly over a class of functions, to obtain an MDP for TJ/n. The MDP

for T~ remains an open problem.

Denote by :F the space of Lipschitz functions f on the unit square, with Lipschitz constant

1 and such that 0 :::; f ~ 2. Let d2 (!,g) = (f(1 - g)2dJ.-t) 1/2 denote the L2 metric on F,

where p. is Lebesgue measure on the unit square. It is not hard to see that (F, d2 ) is totally

bounded. Denote by £oo(F) the space of hounded real functions on F, and equip it with

the sup norm. Every signed measure v E Mb(E) corresponds to an element vF E /'oo(F)

given by v:F(f) = v(f) := J fdv for all f E F.

It is suggested by (1.1), (2.5) and (2.6), and has been shown by Talagrand [11, T.heorem

4.1] that, for any positive sequence An, we have

where ~ denotes convergence in probability and J.L denotes Lebesgue measure on the

unit square. Now the following theorem is an easy consequence of [12, Theorem 2].

Theorem 3.2 For any positive sequence An such that

An
and.~ --t 00,

ylogn

the sequence P( ]&" E') satisfies the MDP in R with speed A;;2 and rate function
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