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Sanov's theorem states that the sequence of
empirical measures associated with a sequence of iid
random variables satisfies the large deviation
principle (LDP) in the weak topology with rate
function given by a relative entropy. We present a
derivative which allows one establish LDP's for
symmetric functions of many iid random variables
under the condition that (i) a law of large numbers
holds whatever the underlying distribution and (ii)
the functions are uniformly Lipschitz. This heuristic
(of the title) is that the LDP follows from (i) provided
the functions are "sufficiently smooth". As an
application, we obtain large deviations results for the
stochastic bin-packing problem.
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1 The heuristic

Let Xl, X 2 , ••• be a sequence of independent random variables taking values
in a Polish space (E, d) with common law p,. Suppose that, for each n,
In : En -+ lR is symmetric and measurable and that (for any underlying
distribution Il) we have a strong law of large numbers:

Then, provided the In are sufficiently smooth, we might hope to deduce the
existence of a large deviation principle for the sequence In (Xl , ... ,Xn)with
rate function given by

J(y) = inf{H(vlll): I(v) = y},

where H(·I/l) is the relative entropy function:

H(vIJl) = { IE dv log ~~ v« JL •
00 otherwIse

(1)

This is a heuristic application of the (extended) contraction principle. It is
useful because, put simply, laws of large numbers are easier to prove than
large deviation principles.

For example, consider the stochastic bin-packing problem. Here E is the
unit interval and, for x E [O~l]n, n!n(Xl, ... ,xn) is the smallest number
of unit-sized bins required to pack n objects of respective sizes Xl, ... ,Xn .

It is well-known~ and easy to prove, that if Xl, X 2 , ••• is a sequence of
independent random variables taking values in [0, 1] with common law Il,
then

fn(X I , ... ,Xn) ~ c(J,£) ,

for some (finite) c(p.) called the 'packing constant'. According to the heuris
tic, the large deviation principle follows with rate function given by

J(y) = inf{H(vlJ.'): c(v) = y}.

We shall see later that this statement is (almost) correct.

In this short note we present a sufficient condition on the In which is both
simple to check and justifies the above heuristic. We make no attempt to
prove the best possible result; the aim of this note is to give the reader an
understanding of where the heuristic comes from and feeling for the 'type'
of condition under which we can expect it to hold.
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2 The main result

Let (E,d) be a bounded Polish space. Denote by M1(E) the space of Borel
probability measures on E, endowed with the weak topology, and by Mi(E)
the subspace of probability measures which are absolutely continuous with
respect to J-L. Suppose that, for each n, In : En -+ lR is symmetric and Borel
measurable and satisfies the Lipschitz condition

(2)

for all x, y E En, where K is a fixed constant (independent of n). We prove
the following.

Theorem 1 If there exists a mapping f : Mi(E) --+ R such that for each
v E Mi(E),

lim ( x(v xn
0 1;1)(dx) = 1(£1),

n 1R

then I is weakly continuous (in fact p-Lipschitz, where p is the MKO metric
defined by :1 below) and the sequence J-Lxn 0 1;;1 satisfies the LDP in lR with
good rate junction given by

J(y) = inf{H(vIJJ): /(£1) = y}.

We will begin by presenting the four main ingredients of the proof.

1. Sanoy's theorem. If X n are independent random variables taking
values in a Polish space (E, d), with common law J.L, and we set

n

Ln = L~Xi'
i=l

then the sequence £(Ln ) satisfies the LDP in M1(E) with good convex rate
function H (·11-£).

2. The extended contraction principle. Let X be a Hausdorff topolog
ical space, equipped with its Borel u-algebra, and let P,n be a sequence of
probability measures on X. Let Y be another Hausdorff topological space.
The usual contraction principle states that, if the sequence J.tn satisfies the

3



LDP in X with good rate function I : X --t Rt- and f : X --t Y is a continu
ous mapping, then the sequence J.Ln 0 /-1 satisfies the LDP in Y with good
rate function given by

J(y) = inf{I(x): I(x) = y}.

The extended contraction principle applies to the case where we have, for
each n, a mapping In : X --t Y and wish to obtain an LDP for the sequence
J.Ln 01;;1. There are a number of statements in the literature, dating back to
the seminal paper of Varadhan [10] (see also [1] and [8]) which are roughly
equivalent to the following. For completeness, we ~ave included a short
proof in the appendix.

Theorem 2 Assume that X is a metric space. Suppose that for each n,
SUPP J.Ln C Xn C X, In : Xn --+- Y is continuous, and the sequence J..Ln satisfies
the LDP in X with good rate function I with effective domain contained in
Xoo eX. Suppose also that there exists a continuous mapping f : Xoo --+ Y
such that whenever X n E Xn and X n --t X E X oo , we have fn(xn) --t f(x).
Then the sequence J-Ln 0 /-1 satisfies the LDP in Y with good rate function
given by

J(y) = inf{I(x): f(x) = y}.

In the context of Sanov's theorem, the extended contraction principle can be
stated as follows. Suppose that, for each n, fn : en -+ Y is symmetric and
Borel measurable and there exists a continuous mapping f : Mi(E) -+ Y
such that whenever, for x E Eoo,

~ tt5xi ~ v E Mi(E)
i=1

we have fn(Xl,.'. ,xn) -+ f(v). Then the sequence jjxn 0 1;;1 satisfies the
LDP in Y with good rate function given by

J(y) = inf{H(vl~): f(v) = y}.

3. The Monge-Kantorovich-Ornstein (MKO) distance. Let (E, d)
be a metric space. For 1r E M 1(E2), denote by 11"1 and 1r2 the respective
marginals of 1r in M1(E). The MKO distance between two probability mea
sures tL, v E M 1(E) is defined by

p(J1., v) = inf{t2 d(x, Y)7l"(dx, dy): 7l" E M 1(E2
), 7l"1 = 1', P2 = v}. (3)
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This measure of distance was first introduced in 1781 by Monge [6] in study
ing the most efficient way of transporting soiL It was later developed in a
measure-theoretic context by Kantorovich [5] and Ornstein [7], among others
(see Rachev [9] for an extensive and fascinating survey). For our purposes
it is sufficient to note that, if (E, d) is compact, then p metrises the weak
topology on M 1(E).

4. A concentration inequality. The final ingredient in the proof is
the following elementary concentration inequality, which is an immediate
consequence of the Azuma-Hoeffding inequality for martingale differences.

Lemma 3 Let (E, d) be a bounded metric space and In : En --+ 1R a sym
metric (Borel measurable) function which satisfies the Lipschitz condition

K n

Ifn(x) - fn(y)1 :5 - Ld(Xi'Yi)
n i=l

for all x, y E En, where K is a constant. Let Xl, ... ,Xn be independent
random variables in E and write xn = (Xl, ... ,Xn ) E En. Then:

p (lfn(Xn) - Efn(Xn)1 > t) ~ 2 exp -At2n

where A = 2/K 282 and 8 = SUPx,yEE" d(x, y).

vVe are now ready to prove Theorem 1. For x E E"', set

1 n
In(x) = - L dXi

n i=l

and, for each permutation u E Sn, write x 0 u for the permuted sequence
(Xu(l)' • .• ,Xu(n») E en.

By hypothesis, we have that for all x, y E E"',

K n

Ifn(x) - fn(y)1 ~ - L d(Xi, Yi).
n i=l

The first key observation is that, since In is symmetric, this implies

K n
Ifn(x) - fn(y)1 < inf - L d(Xi, YU(i»)

uESn n i=l

- Kp(ln(x),ln(Y)·
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If Yi are iid with common law v E Mi(E) then, again by hypothesis,
Efn(yn) --+ f(v). It follows, applying the concentration inequality (and
Borel-Cantelli) that In{yn) ~ I(v). We also have, by Sanov's theo
rem (and Borel-Cantelli), that In(yn) ~ v (in the weak topology). In
particular, there exists a sequence y E Eoo such that fn(yn) --+ f(v) and
In(yn) ~ v. It follows that, for any x E Eoo with In(xn) ~ v we have,
by the continuity of p,

and so fn(xn) --+ f{v), as required. In order to apply the extended con
traction principle, it remains to check that f is weakly continuous. For
p" II E Mf (E) we can find sequences x, y E E oo such that In (xn) ~ jj and
In (yn ) ~ II. From the above,

If (Jl) - f(v) I = lim Ifn(xn
) - fn(yn)1

n

< lim sup Kp(ln(xn
), In{yn))

n

K p{Jj, v),

as required. Note that we have established more, namely that f is p
Lipschitz. This completes the proof of the theorem.

3 Application to the stochastic bin-packing prob
leID

The standard reference on bin-packing is the book of Coffman and Lueker [2].
For x E [0, l]n, let nfn(xI' ... ,xn) be the smallest number of unit-sized bins
required to pack n objects of respective sizes Xl, ... ,Xn . It is well-known,
and easy to prove, that if Xl, X 2 , ••• is a sequence of independent random
variables taking values in [0, 1] with common law JL, then

fn{X I , ... ,Xn) ~ c(p,) ,

for some (finite) c(J..L) called the 'packing constant'. Mean convergence, which
is all we need to apply the theorem, follows from a simple subadditivity
argument.

Suppose for the moment that J-L is supported on a finite subset E of [0,1]
and let € > 0 be the minimal separation distance between elements of E.
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Then the In's satisfy the Lipschitz condition (2) on En with K = 1/f, and
we can apply the theorem to get that the sequence fn(Xn) satisfies the LDP
in [0,1] with good rate function given by

J(y) = inf{H(vIJL): c(v) = y}.

For general p" we need to do some extra work. Let F denote the distribution
function associated with p, and for each positive integer m, set

and
1 m-1

J1.;;' = m L p-1U/m).
;=0

Then, as Coffman and Lueker observe,

C(JJ) - 11m ::; c(p,~) ::; c(p,) ~ c(JL~) ~ c(p,) + 11m.

We also have"the related fact that J-Lxn o/;l is majorised (resp. minorised) by
(JJ~)xno/;1 (resp. (J.t~)Xnof;l). Combining these observations, we obtain
the following 'pseudo-LDP' for the sequence p,xn 0 1;;1: for c(p,) < q < 1,

1
limsup-logJJxn (/;l[q, 1]) ~ -liminfinf{H(vlJ.t): c(v) ~ q -11m}

n n m

and

1
liminf -logJ.txn(f;l[q, 1]) ~ -liminfinf{H(vIJJ): c(v) ~ q + 11m};

n n m

similar bounds hold for deviations to the left of c(JJ). If J is continuous
and increasing (resp. decreasing) to the right (resp. to the left) of c(J.t) , the
LDP holds with rate function J. To say more than that requires a careful'
analysis of the variational problem and is beyond the scope of this paper.

4 Concluding reUlarks

The main result of this paper can be extended in many directions. The con
centration inequality holds for Banach-space-valued functions, but not for
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unbounded d. In the case of unbounded d, Sanov's theorem can be extended
to hold in the corresponding MKO topology under a moment condition such
as

Eexp<5d(X1 , x) < 00,

for some <5 > 0 and x E E; however, since we cannot appeal to a concen
tration inequality we must assume that fn(Xn) converges almost surely to
f (p,) in the hypothesis.

An appealing feature of Theorem 1 is that we deduce the LDP under the
type of condition which is usually associated with concentration inequalities.
The particular'Lipschitz condition we assume is, in a sense, the most naive
in this class; it would be interesting to see if the LDP can be obtained under
more sophisticated (milder!) conditions that have been developed in that
area.

Finally, a word of caution. In many problems of combinatorial optimi
sation, such as the traveling salesman and longest increasing subsequence
problems, the functionals of interest are highly discontinuous and the heuris
tic discussed in this paper breaks down. This is because such functionals
depend on much finer properties of the empirical measure than those which
are asymptotically captured in the weak topology. There is a recent paper
by Deuschel and Zeitouni [4] which beautifully illustrates this point for the
longest increasing subsequence problem.

Appendix: Proof of Theorem 2

The simplest, way to prove Theorem 2 is as follows. Denote by N* the
extended natural numbers and equip N* with the metric

h(n,m) = I~ -~I,

with the convention that 1/00 = O. Then (trivially) the sequence (JJn, n)
satisfies the LDP in X x N*, equipped with the product topology, with good
rate function given by

n=oo
otherwise
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We can restrict this LDP to the (measurable) subspace

U Xn X {n},
nEN*

as the effective domain of Ie lies in this subspace (see, for example, [3,
Lemma 4.1.5]). The statement of the theorem now follows by applying the
usual contraction principle to the mapping

F: U Xn X {n} --+ Y
nEN*

defined by

F(x n) = { fn(x)
, f(x)

x E Xn , n < 00

n=oo.

Note that we have used the fact that since X is a metric space, we can check
continuity of F using sequences. •
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