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Markov chains, large deviation principle for a Markov chain by viewing
contraction principle it as a functional i.i.d random variables.
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1 what and why

A sequence of random variables Z,,, taking values in a Hausdorff topological
space £ is said to satisfy the large deviation principle (LDP) with good rate
function J : Z — R, if J has compact level sets and, for all Borel sets B,
—igofJ < lirleinf%logP(Zn € B) < limnsup%logP(Zn € B) < —i%f J.
In any given example, this can be proved directly or, if Z is a topological

vector space with dual Z*, by considering the asymptotic behaviour of the

scaled cumulant generating functions H, : Z* — R defined by
1
Hn(t) = ;; IOg Eexp(n(tw Zn))

Alternatively, one can appeal to the contraction principle of large deviation
theory, which states the following. Suppose we have a sequence of random
variables X, satisfying the LDP in a Hausdorff topological space X with
good rate function I, and Z, = f(X,), for some continuous f : X — Z.

Then the sequence Z, satisfies the LDP with good rate function given by

J(z) =inf{I(z) : f(z) = z}.

The law of large numbers states, in its most general form, that a ‘smooth’
function of many independent random variables is roughly constant. There
is a rapidly developing branch of probability theory concerned with making
this statement precise, and does so mainly in the form of concentration in-
equalities. The contraction principle of large deviation theory provides an

alternative. To see this, think of X,, as some (one to one) encoding of n i.i.d.



random variables, &, ... ,&,. For example, we could let

1 n
Xn =~ > 8eirm € Ma(R x[0,1])

i=1

where by M, (S) we denote the space of probability measures on 5. If we use
a sufficiently course topology on M; (R x[0,1]), such as the weak topology,
then the sequence X, satisfies the LDP with a good rate function I (1]
Moreover, I(v) = 0 if, and only if, ¥ = p x A, where p is the law of & and
) is Lebesgue measure on [0,1]. (This implies that the law of large numbers
holds for the sequence of measures X,.) By the contraction principle, if
f: My(R x[0,1]) — Z is continuous, then the sequence f(Xy) satisfies the

LDP in Z with rate function given by
J(z) = inf{I(z) : f(z) =2},

and J(z) = 0 if, and only if, z = f(u x )). In particular, the law of f(Xn)
converges to f(u x A) exponentially fast. Thus, by ‘smooth’ in this context
we mean the function of the & can be represented as a continuous function

of the encoding X,,.

In principle, we can regard any random structure as a functional of some
pure, homogeneous, underlying randomness. If we are interested in proving
an LDP, why not just have one LDP, and deduce all others by contraction?

Although this is not a realistic proposal, it is philosophically attractive.

In this short note, we consider a class of Markov chains for which the large
deviation theory is well understood. However, it has always been studied

by considering directly the evolution of the chain. Motivated by the above



discussion, we would like to view the chain as a functional of a collection of

i.i.d. uniform random variables and derive the LDP by contraction.

2 how

Let {U;, i = 1,...} be a sequence of i.i.d., Uniform ([0,1]) random variables.
Define the following ‘empirical measure’ on S %! [0,1]%
1 n
Xn = ;l- Z 6(U,-,i/n) (1)
=1
where §, denotes a point mass at z. We equip M;(S) with the weak topology,
and denote by A the Lebesgue measure on [0, 1]. Barbe and Broniatowski [1]
prove that the sequence X, satisfies the LDP in M,(S) with good rate func-

tion given by

I(v) = H(v|)?) (2)

)

provided v < A? and v([0,1],-) = A; otherwise I {v) = co. We can construct
a Markov chain from the U; as follows. Let p : Rx R — R; be a Markov
transition density and for each z € R denote by g(-,z) the inverse of the
distribution function associated with the density p(z,:). We assume that
g:{0,1] x R — R is a bounded Lipschitz continuous function (see Lemma 3
below). Denote by D(]0, 1]) the space of right continuous functions on {0, 1]
having left limits. Consider the function F': D([0,1]) x M;(S) — D([0,1])

F(f,v) % /0 ' /0 o(u, £(s)) v(du, ds). )



Note that F (-, X,,) has a unique fixed point in D([0, 1]), which we denote by
®(X,), and we have the following representation. Consider a Markov chain
Z(k) in R with Z(0) = 0 and with transition density given by p,(z,y) =
p(z/n,y/n). Then {Z([sn])/n,0 < s < 1} has the same law as ®(Xy).

Now, if ® were defined and continuous on all of M;(S), we could immediately
deduce the LDP for ®(X,) by contraction. However, this is not the case.
What we can prove is that ® is defined and continuous on the set where the
rate function is finite. Note however that X,, does not belong to this set. We

therefore introduce the following absolutely continuous modification of X,:

. 2
Yo= "Z l{Ui?.l/"}l{[U.-—l/n,Ui)x =14} " A

i=1 oo
+ Z l{U-'<1/n}1{[o,U,-)x[%, H} 22 /U
=1

The second term is included to ensure that Y, € M;(S).

For p,v € My(S), define

ptp) = int { [ |o = yir(ds, )
T € M;(S?), [SW(-,dy) =pu, /S7r(dx, )=I/} ;b

this is a metric on M;(S) which is consistent the weak topology (see Rachev [3]
for a fascinating survey.) Clearly, p(X,,Ys) < 1/n almost surely, so that the
sequences X, and Y, are p-exponentially equivalent; it follows that the se-
quence Y, also satisfies the LDP in M, (S) (see, for example, [2]) with the

same rate function. Let
AI(S) = {V € MI(S) r )‘Za V([O1 1])) = /\}

S



Note that Y, € A;(S) for each n, and the rate function I is infinite outside
A,(S); we can therefore restrict the LDP for Y, to the space A;(S) (again,
see [2]).

Denote by C([0, 1]) the space of continuous functions on [0, 1], equipped with

the uniform topology, and note that F : C([0,1]) x A;(S) — C([0,1]).

Lemma 1 The function F(-,v) has a unique fized point ®(v) € C([0,1]) for
each v € A,(S). Moreover, the mapping ® : A,(S) = C([0, 1]) is continuous.

We can now apply the contraction principle to get that the sequence ®(Y;)
satisfies the LDP in C([0, 1]) with good rate function given by
J(f) =inf{I(v) : ®(v) = f}. (4)

The LDP for ®(X,,) (the scaled Markov chain) follows from the next lemma.

Lemma 2 The sequences ®(X,) and ®(Y,) are ezponentially equivalent in

c((o,1]).
The proofs are given below. Using these, we obtain

Theorem 3 The scaled Markov chain ®(X,) satisfies the LDP in C({0,1))
with good rate function J(f) given in (4).

Proof. Since Y, satisfies the LDP, by Lemma 1 the contraction principle
applies [2] and ®(Y,) satisfies the LDP with rate function (4). By Lemma 2,
so does ®(X,) [2]. .

We conclude our discussion with a technical point and proofs.
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Lemma 4 If the transition distribution function

Fr(a) = /0 p(z,y)dy

—00
is Lipschitz in x, uniformly in o, and the transition densities p(z,-) are

uniformly bounded away from zero and have compact support, the g is bounded

and Lipschitz continuous.

Idea of proof. Draw a picture of F;(c) and note that g(z,-) is obtained by
reflecting the graph about the diagonal. n

Proof of Lemma 1. Since v([0,1],-) = A and g is Lipschitz, we have:

F(f1,v) = F(farv)] < / / 19(w, £(5)) — 9(u, Fo(5)) v(du, ds)
SLCM@—Mmﬁ
<tC|lfr — f2loo-

Now we let t = 1/2C and deduce that the mapping which takes f € C([1/2C])
to the restriction of F'(f,v) to [0,1/2C] is a contraction and thus has a unique
fixed point in C([0,1/2C]); proceeding over successive intervals of length
1/2C we can recursively construct the unique fixed point ®(v). It rg;mains
to show that ® is continuous. We begin by proving that F' is cohtinuous.

Suppose (fa, va) — (f, ). Then, for each #,
Flan) )= [ [ otus 76) a9
+ [ ot ule) - gt 6) a9
=+ [ [ stw 5o vt ) = Fs)



For the first term we are using the fact that g is bounded and continuous, f
is continuous, and v, — v weakly; for the second term we use the facts that
g is Lipschitz, f, — f uniformly, and v, is a probability measure. It is clear
that the second term converges to zero uniformly in ¢. To see that the same
is true of the first term, note that the mapping ¢t — F(f,v,) is Lipschitz,
so that convergence is uniform on compacts. We have thus established the

continuity of F.

Now suppose v, — v and set f, = ®(v,). Observe that all fixed points
f are Lipschitz (with the same Lipschitz constant) and have f(0) = 0: it
follows that the set of fixed points is precompact, and so the sequence f, has

a convergent subsequence f,x) — f, say. Thus, by the continuity of F,

F(f7 V) = Ll(rlg F(fn(k): Vn(k))

= lim fay = .
nl(I,gf(k) f

Hence ®(v) = f. To complete the proof we note that, by uniqueness, any
other convergent subsequence must converge to the same f. Thus, if f, does
not converge to f, it has a subsequence which converges to some g # f, a

contradiction. . »

Proof of Lemma 2. We will show that ||®(X,) — ®(Y,)]le < 3/n almost
surely. Without loss of generality we assume that the Lipschitz constant of

the function ¢ is 1, and that it is bounded by 1. Fix £ < n, and set

€ = |®(Xn) k-1)/n — B(Ya)(k-1)/nl-



Then, since ®(X,)o = ®(Y»)o and (1 +1/n)" = ¢,
’(I)(Xn)k/n - (I)(Yn)k/nl

k/n 1
¢- / / (g, D(Ya)s) — 9(ts B(Xe)oryym) Y (s, ds)
(k=1)/n Jo :

k/n 1
<e€ +[ /0‘ I@(Yn)s — q)(Xn)(k—l)/n] Yn(du, ds)

k—-1)/n

2 (c+3)
<et+-—|e+-
n n

=0
1 1\"

We have thus proved our claim. ]
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