
rh~ HEWLETT
~1'.J1 PACKA~D

Geome.tric Phases1 Reduction and
Lie-Poisson StrUcture for the
Resonant Three-Wave Interaction

Mark S. Alber), Gre~ory G. Luther, Jerrold E. Marsden3

& Jonathan M. Robbins~ .
Basic Research Institute in the
Mathematical Sciences
HP Laboratories Bristol
HPL-BRIMS-98-08
April, 1998

three-wave interaction;
geometric phases;
reduction; Lie-Poisson
structure

Hamiltonian Lie-Poisson structures of the three­
wave equations associated with the Lie algebras
su(3) ana su(2,1) are delivered and shown to be
compatible. POIsson reduction is performed using
the method of invariants and geometric phases
associated with the reconstruction are calculated.
These results can be applied to applications of
nonlinear-waves in, for Instance, nonlinear optics.
Some of the general structures presented in the
latter part of ~IS paper are implicit in the litet:atur~;
our purpose IS to put the three-wave Interaction In
the modem setting of geometric mechanics and to
explore some new things, such as integrability, in
thIS context.

I Department ofMathematics, University ofNotre Dame, Notre Dame, IN 46556
2 Engineering Sciences & Applied Mathematics Department, McConnick S~hool of Engineering &, Applied Science,
Northwestern University, 2145 Sheridan Road, Evanston, 11.
3 Control & Dynamical Systems 107-81, Caltech, Pasadena, CA 91125
4 The Basic Research Institute in the Mathematical Sciences (BRIMS), Hewlett-Packacd Laboratories, Filton Road,
Stoke Gifford, Bristol, BS12 6QZ, UK

Internal Accession Date Only



Geometric Phases, Reduction and Lie-Poisson Structure
for the Resonant Three-wave Interaction*

Mark S. Albert
Department of Mathematics
University of Notre Dame

Notre Dame, IN 46556
email: Mark.S.Alber.l@nd.edu

Gregory G. Lutherl

Engineering Sciences and Applied Mathematics Department
McCormick School of Engineering and Applied Science

Northwestern University
2145 Sheridan Road

Evanston, II 60208-3125.
email: ggluther@nwu.edu

Jerrold E. Marsden§
Control and Dynamical Systems 107-81

Caltech,
Pasadena, CA 91125

email: marsden@cds.caltech.edu

Jonathan M. Robbins'
The Basic Research Institute in the Mathematical Sciences (BRIMS)

Hewlett-Packard Laboratories
Filton Road, Stoke Gifford

Bristol BS12 6QZ, UK
and

School of Mathematics
University Walk, Bristol BS8 1TW UK

email: j.robbinS@bristol.ac.uk

Spring, 1995; this version, January 30, 1998

1



Abstract

Hamiltonian Lie-Poisson structures of the three-wave equations associated
with the Lie algebras 5u(3) and 5u(2, 1) are derived and shown to be compatible.
Poisson reduction is performed using the method of invariants and geometric
phases associated with the reconstruction are calculated. These results can
be applied to applications of nonlinear-waves in, for instance, nonlinear optics.
Some of the general structures presented in the latter part of this paper are
implicit in the literature; our purpose is to put the three-wave interaction in
the modern setting of geometric mechanics and to explore some new things,
such as explicit geometric phase formulas, as well as some old things, such as
integrability, in this context.
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1 Introduction

Resonant wave interactions permit the exchange of wave action or energy among
nonlinear modes in a variety of physical systems. For instance, the three-wave in­
teraction occurs when the wave numbers and frequencies of three nonlinear waves
satisfy either the matching conditions k l = k 2 - k 3 , and WI = W2 - W3 for a decay
process or the matching conditions k l = - k 2 - k3 , and WI = -W2 - W3 for an explo­
sive process. The three-wave equations describe the resonant quadratic nonlinear
interaction of three waves and are obtained as amplitude equations in an asymptotic
reduction of primitive equations in optics, fluid dynamics and plasma physics.

The purely quadratic three-wave system of ordinary differential equations is

d91. _
dt = 181"Y19293 ,

d92 .
dt = 182/29193 ,

d93 . _
dt = 183/39192 .

Here, the Ii are nonzero real numbers such that 11 + 12 + 13 = O. Each 9i E C,
so these are systems of ordinary differential equations on cJ. For a fixed choice
of the Ij, the choice of signs, determined by (81,82,83) distinguishes between three
decay interaction8 which have bounded solutions in time and an explo8ive interaction
which has solutions that blow up in finite time. Choosing 11,/3 > 0 and 12 < 0,
the decay systems are obtained by choosing (81182,83) as (1,-1,1), (1,-1,-1) or
(-1, -1,1). The explosive system is obtained by choosing (-1, -1, -1).

These systems are represented below as Lie-Poisson equations for the groups
SU(3) and SU(2,1). .

Decay Interaction. One of these is obtained by choosing

(81,82,83) = (1,-1,1) and ((1,/2,/3) = (1,-2,1).

After changing variables to Ql = \1'291, Q2 = 92 and Q3 =\1'293, (1.1) takes the
standard form

(1.4)

(1.5)

(1.6)

and models the dynamics of three resonantly coupled positive-energy waves. All
solutions in C3 remain uniformly bounded.
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Explosive Interaction. This is obtained by choosing

(SI, S2, sa) = (-1,-1,-1) and ('Y1,'"Y2,'"Ya) = (1,-2,1).

After changing variables to Q1 = J'2iil, Q2 = q2 and Qa = J'2ifa, this system takes
the standard form

(1.7)

(1.8)

(1.9)

and models the dynamics of three resonantly coupled waves with indefinite sign for
each conserved quantity. Solutions in cJ can blow up in finite time. (see Zakharov
and Manakov [1] or Ablowitz and Segur [2]).

Basic wave interactions of this kind are fundamental in the understanding and
analysis of a variety of phenomena including patterns, symmetry induced instabili­
ties, the Benjamin-Feir instability and many others. The three-wave equations are
closely related to the equations governing coupled harmonic oscillators, tops, the
rigid body and even to the traveling wave solutions of the Maxwell-Bloch equations
[3] governing the interaction of light with a two-level atom. This is understood by
realizing that the three-wave equations are the complex equations for a resonant
three degree of freedom Hamiltonian system. They contain the Euler equations (see
for instance Guckenheimer and Mahalov [4]) associated with SO(3) as a real sub­
space of SU(3). The Maxwell-Bloch equations are also contained in the three-wave
equations (see David and Holm [5] for details). Some general references to litera­
ture on the integrable three-wave equations is found in Whitham [6] Ablowitz and
Haberman [7]' Kaup [8, 9, 10], Zakharov and Manakov [11], Ablowitz and Segur [2],
Newell [12], and Ablowitz and Clarkson [13].

The integrable Hamiltonian structure of the three-wave equations is of course
well known; we explore it from a somewhat novel point of view in what follows.
As we will show, these equations possess a Lie-Poisson structure in addition to
the canonical Hamiltonian structure. One of the three-wave decay systems is Lie­
Poisson for the Lie algebra su(3). Two of the decay systems and the explosive three­
wave system are Lie-Poisson for su(2,1). Using the method of translation of the
argument, two compatible Hamiltonian structures are obtained. One is the canonical
Hamiltonian structure embedded in su(3) or su(2,1); it has a cubic Hamiltonian.
The other is non-canonical having a standard left invariant Lie-Poisson bracket; it
has a quadratic Hamiltonian. These two Poisson brackets lead to a recursion relation
that is expressed in terms of Lie brackets. This recursion relation is the same one
that is found using the Lax pair approach.

Solutions for the integrable three-wave equations and other similar systems are
well known. In our approach below, they are reduced and integrated using a pair of
8 1 actions, the canonical Hamiltonian structure and the technique of invariants. In
solving the reconstruction problem, phase formulas analogous to those obtained for
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the rigid body [14] are obtained. These formulas give the value of the phase shifts
that accompany the periodic exchange of wave action in resonant wave systems (see
for instance [15, 16, 17, 18, 19]).

Though the main development is restricted to the three-wave system, we remark
that as in the case of the n-component Euler equations [20], all of the basic results
described below generalize to n-wave systems (see Kummer [21] for a treatment of
reduction for the n-degree of freedom Hamiltonian with resonances). The structure
of the n-wave interaction is related to the family of Lie algebras in 5u(n) or 5U(P, q).

The general picture developed here is useful for many other purposes, includ­
ing polarization control (building on work of Holm, David and Tratnik [22]) and
perturbations of Hamiltonian normal forms (see work of Knobloch, Mahalov and
Marsden [23], Kirk, Marsden and Silber [24], and Haller and Wiggins [25]). They
have also been used to analyze quasi-phase-matched second harmonic generation [26]
in nonlinear optics where the transfer of energy or wave action among the waves is
controlled by modulating the quadratic nonlinearity.

2 The Canonical Hamiltonian Structure.

A Ii-weighted canonical Poisson bracket on cJ is used. This bracket has the real
and imaginary parts of each complex dynamical variable qi as conjugate variables.
The Hamiltonian for the three-wave equations is cubic in this setting.

The Canonical Symplectic and Poisson Structure. Writing qk = Xk + iYk
and treating Xk and Yk as conjugate variables, the (scaled) canonical Poisson bracket
is given by

3 (OF oG oG OF)
{F,G} = I>klk --- --

k=l OXk Oyk OXk Oyk

In standard matrix notation this is

{F,K} = (VF)J (VK) ,

(2.1)

(2.2)

where the gradients are standard gradients in ]R6 (with the variables ordered as
(Xl,X2,X3,Yl,Y2,Y3)) and where

J= ( 0 r)-r 0

and r is the 3 x 3 matrix with Sk,k on the diagonal and zeros elsewhere.
This bracket may be written in complex notation as

. 3 (OF oG oG OF)
{F,G} = -21. ~Sklk 0 k a- - 0 k 0-

k=l q qk q qk

The corresponding symplectic structure is written as follows:

3 1
w«ZI, Z2, Z3), (WI, W2, W3)) = - L -Im(zkwk) .

k=l Sk,k
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The Hamiltonian. The Hamiltonian for the three-wave interaction is

1
Ha = -"2 (iiIq2Qa + qlQ2qa) (2.6)

Hamilton's equations are

dqkdt = {qk,H} , (2.7)

and it is straightforward to check that Hamilton's equations are given in complex
notation by

dqk . 8H- = -2~8k"Yk- . (2.8)
dt 8Qk

One checks that Hamilton's equations with H = Ha coincide with (1.1).

Therefore, the following standard result holds.

Proposition 2.1 With the preceding Hamiltonian Ha and the symplectic or equiv­
alently the Poisson structure given above, Hamilton's equations are given by the
three-wave equations (1.1).

Integrals of Motion. In addition to H3 itself, one identifies the following con­
stants of motion,

K l - ! ('q11
2

+ Iq21
2

) (2.9)
2 81"Yl S2"Y2

K 2 - ! ('q21
2

+ Iqal
2

) (2.10)
2 82"Y2 Sa"Ya

Ka - ! ('q11
2

_ Iqal
2

) (2.11)
2 8I"YI 831a

These are often referred to as the Manley-Rowe relations. The Hamiltonian with
any two of the Kj are checked to be a complete and independent set of conserved
quantities in involution (the K j clearly give only two independent invariants since
K l - K 2 = K a). In the sense of Liouville-Arnold this system is therefore integrable.

To integrate the three-wave equations one typically makes use of the Hamilto­
nian, Ha, plus two of the integrals, Kj, to reduce the system to quadratures. This
procedure is usually carried out using the transformation qj = ...;p;exp i¢Jj. Below
a different approach is described. It appears to be less cumbersome, and it provides
considerable geometric insight.

First observe that the following proposition holds.

Proposition 2.2 The vector function (K}, K2, Ka) is the momentum map for the
following symplectic action of T a = 8 1 X 8 1 X 81:

(qllq2,qa)'- (ql exp(-i"Y),q2 exp(-i-y) , qa) ,

(qll q2, qa) .- (qll q2 exp(-i-y), qa exp(-i"Y» ,

(qll q2, qa) .- (ql exp(-i-y), q2, qa exp(i"Y» .
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Any combination of two of these actions is generated by the third reflecting the
fact that the K j are linearly dependent. Another way of saying this is that the
group action by r 3 is really captured by the action of T2.

3 Poisson Reduction

In this section symplectic and Poisson reduction are performed on the three-wave
Hamiltonian system using the 8 1 symmetries associated with the momentum maps
Kk. In terms of Poisson reduction, the process is to replace cJ - cJ /T2

• The
symplectic leaves in this reduction are obtained using the method of invariants.

Invariant coordinates for three-wave reduction. Invariants for the T 2 action
are:

x + iY = qlihq3,

ZI - Iq112 - Iq21
2

,

Z2 - Iq212 - Iq312 .

(3.1)

(3.2)

(3.3)

These quantities provide coordinates for the four-dimensional orbit space cJ /T2 .
The coordinates, X, Y, ZI and Z2 are Hopf-like variables (see, e.g., [27]) and they
generalize the well known Stokes parameters (see, e.g., [28]) to resonant interactions
for systems with more than two complex components.

Reduced three-wave surfaces. The following identity holds for"these invariants
and the conserved quantities:

where ~4 = (S111S21'2S3"Y3)/(Sl'i'1 +S21'2)(S21'2+S31'3)2. Trajectories in these reduced
coordinates lie on the set defined by this relation. Using the conservation laws Kk
and the definitions of ZI and Z2, a se~ond relation between Kl,K2 and ZI,Z2 is
identified and either of the coordinates Zj is removed reducing the number of real
dimensions to three. In]R3 the reduced trajectories lie on the invariant set:

X 2 + y 2 = ~3(l5 - Z2)(2831'3K2 + Z2)(2s21'2K2 - Z2) , (3.5)

where ~3 = (S111S21'2831'3)/(S21'2 + 831'3)3 and l5 = 2821'2Kl +2831'3(K1 - K 2). This
relation defines a two dimensional (perhaps singular) surface in (X, Y, Z2) space,
with ZI determined by the values of these invariants and the conserved quantities
(so it may also be thought of as a surface in (X, Y, Z}, Z2)as well). The relations
between the invariants and the conserved quantities may imply inequalities for, say,
Z2; these may imply that the corresponding surface is compact. A sample of one
of these surfaces is plotted in Fig. 3.1. These surfaces will be called the three-wave
surfaces below.
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2

-2.5

Z2-3

-3.5

2

Figure 3.1: A three-wave surface is drawn in (X, Y, Z2) coordinates for the de­
cay interaction. Trajectories are also drawn showing the phase space of the re­
duced three-wave equations on the three-wave surface when (8ll 82, 83) = (1,1,1),
h'l,'Y2,'Y3) = (1,1,-2), and (K1,K2 ) = (1,-1/2).

Reduced three-wave equations. Any trajectory of the original equations de­
fines a curve on each three-wave surface, in which the Kj are set to constants. These
three-wave surfaces are the symplectic leaves in the four-dimensional Poisson space
having coordinates (X, Y, Zl, Z2).

The original equations define a dynamical system in the Poisson reduced space
and on the symplectic leaves as well. Using these new coordinates the Poisson
bracket and the Hamiltonian are reduced directly. The reduced Hamiltonian is

Hr =-X . (3.6)

. With the reduced Poisson brackets in (X, Y, Z2), H r produces the reduced equations
of motion

- 0,

8¢>
= 8Z2 '

dX

dt
dY
dt

dZ2

dt
where the dynamical invariant ¢> is defined by

¢> = (82"(2 + 83'Y3) [(X 2 + y 2
)

K3(5 - Z2)(283'Y3K2 + Z2)(2s2T'2K2 - Z2)]
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Following Kummer [29,21], the reduced equations may be written as P = {F, Hr }

for the Poisson bracket

{F,G} = \7¢>. (\7F x \7G) . (3.11)

The trajectories on the reduced surfaces are also obtained by slicing the surface
with the planes H r = Constant. The Poisson structure on «:3 drops to a Poisson
structure on (X, Y, Z], Z2)-space and this in turn induces the Poisson structure
above. Correspondingly, the symplectic structure drops to one on each three-wave
surface - this is an example of the general procedure of symplectic reduction (MMW
reduction [30]). Notice however, that the three-wave surfaces may have singularities
- this is because the group action is not free; this is one aspect of singular reduction.
For the three-wave system a singular point appears on the three-wave surface when
Iq]12j(snd = Iq31 2j(S3'Y3) or equivalently K] = K2 and K3 = O. The geometry
shows that that a homoclinic orbit passes through such a singular point-these are
cut out by theplane H r = 0 when Hr = -X.

4 Three-wave phase formulas

The reduced dynamics determines the evolution of the wave intensities. Once it has
been solved, the full dynamics of the three-wave system, including the wave phases,
may be reconstructed.

In this section we consider the decay interaction, and, for definiteness, the par­
ticular case (SI, S2, S3) = (1, -1, 1), epitomized by (1.4)-(1.6) (analysis of the other
decay interactions is quite similar). In this case the reduced dynamics is typically
periodic (the exceptions are fixed points, homoc1inic orbits and heteroc1inic orbits),
but the full dynamics is not. Thus, after a period T of the reduced dynamics, the
wave intensities return to themselves while the phases are shifted.

The initial and final wave amplitudes are related by the phase symmetries (2.12)­
(2.13) (as remarked in Section 2, the third phase symmetry (2.14) is generated by
the first two), so that

q] (T) = exp(-i~¢>dql(0) ,

q2(T) - exp(-it:1¢>l - it:14>2)Q2(O) ,

q3(T) - exp(-i~¢>2)q3(0) .

(4.1)

(4.2)

(4.3)

There are two methods for calculating the total phase shifts ~4>1 and ~</>2' The
first, the traditional method, involves integrating the system by means of action­
angle variables. One finds a canonical transformation from the wave amplitudes
qj to new canonical coordinates, in which two of the generalized momenta are the
constants of motion Kl and K2; their conjugate angles, </>1 and </>2, are then ignorable
coordinates. Once the reduced dynamics is known, the total phase shifts ~¢>l and
~¢>2 may be computed by integrating Hamilton's equations

. 8H
¢>j = 8K· '

J

9
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in which the Hamiltonian is expressed in terms of action-angle variables, over the
reduced period T.

While straightforward in principle, in execution the traditional method is rather
involved. In contrast, the alternate method of geometric phases (Marsden, Mont­
gomery and Ratiu [31], Marsden [32], Shapere and Wilczek [33]), while requiring
some additional theoretical machinery, leads in many cases to simpler calculations,
as well as a suggestive geometric description of the phase shifts. Its application to
the three-wave system, which may be viewed as a generalization of Montgomery's
[14] analysis of rigid body rotation, is described in (Alber et al. (19)); here we give a
brief account of the method and a summary of the results. For discussions of the well
known geometric phases which appear in polarization optics (eg, Pancharatnam's
phase), the reader is referred to (Shapere and Wilczek [33]) and (Bhandari [34]).

4.1 The general case.

The requisite additional theory is that of connections on principal bundles. For
a discussion in the context of geometric phases and reduction, see (Marsden (32))
and the references therein. Here we shall proceed rather informally. A principal
bundle W is a manifold composed from two smaller ones, a base manifold W and
a Lie group G. W is constructed by attaching a copy of G - a fiber - to each
point of the base W in a particular way. G acts on W by group translation in the
fibers. The simplest case, a trivial principal bundle, is where W is just the Cartesian
product W x G. A general principal bundle cannot be so expressed. While it is
always possible to partition it into regions U that are themselves cartesian products
(j x G of neighborhoods (j in the base with G, these regions may fit together in an
interesting and nontrivial way, reflecting topological properties of the bundle.

Principal bundles typically arise in the following way. Suppose G acts smoothly
on a manifold W. Then W is foliated into disjoint group orbits (ie, sets of points
related to each other by group operations); the group orbits may be labelled by
points in the quotient space W = WIG. If G acts freely (ie, 9 . w =f: w unless 9 is
the identity), then each group orbit is a copy of (ie, is diffeomorphic to) G. The
quotient space W is a manifold, and W may be regarded as a principal bundle with
base W, whose fibers are the group orbits.

This is precisely the situation which obtains in the theory of reduction of Hamil­
tonian systems with symmetry (Marsden and Weinstein [30)). For the three-wave
system, the symmetry group is T 2 , with action on phase space c'3 given by (2.12)­
(2.13). Let W C c'3 denote the level set K 1 = kl, K2 = k2 of the momenta which
generate the torus action. W is invariant under the T 2-action, so that the Hamilto­
nian vector fields

6 - d~lo (qlexp(-i{),q2 exp(-i')'),qa),

6 = d~ 10 (q}, q2 exp(-if), qa exp(-i')'»

(4.5)

(4.6)

generated by K1 and K 2 are tangent to W. The T2-action on W is free provided
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k l and k2 are not critical values of the momentum map. The critical values are
k l = 0, k2 = 0, and k l = k2, and their level sets require separate consideration (see
Section 4.2 below).

Here we assume that k l and k2 are positive and distinct, and, for definiteness,
that k l > k2 (the alternative case k2 > k l is obtained just by exchanging indices).
Then the torus action is indeed free, and W is a principal T 2-bundle. The base
manifold W is just the three-wave surface (3.5). We denote by p : W ---+ W the
canonical projection.

More concretely, what this means is that we can introduce new coordinates
qj = qj(k}, k2, ifJ}, ifJ2, X, Y, Z2) in terms of which the phase symmetries (2.12) and
(2.13) are simply translations in the angles ifJI and ifJ2, respectively. kl and k2

determine the values of the momenta, while X, Y and Z2 are coordinates on the
three-wave surface (and therefore are constrained by (3.5)). However, any such
system of coordinates necessarily has singularities. For fixed k I > k2 , these are
generically of Dirac-string type (ie, isolated points on the three-wave surface), and
reflect the fact that W is a nontrivial bundle.

A connection on W is a pair of one-forms Al and A2 satisfying the conditions

L{rAs = 0,

{r .J As = ors,

(4.7)

(4.8)

where Lx and X.J respectively denote. the Lie derivative and contraction with
respect to X. A connection may be understood as a convention for resolving vectors
in W into components parallel and transverse to the fibers. Explicitly, the vertical
(along the fiber) component Xv of a vector X is given by (X.J A I )6 + (X.J A2)6i
the horizontal (transverse to the fiber) component Xh is given by X - Xv' The
first condition (4.7) requires this decomposition to be invariant under the phase
symmetries, while the second (4.8) requires that Xv = X if X is tangent to the
fiber. These conditions do not determine the connection uniquelYi the freedom lies
in specifying which subspace of vectors is purely horizontal.

The exterior derivative of a connection, Le. the pair of two-forms VI = dA I
and V2 = dA2, is the curvature. Together with the homotopy formula Lx =
X.Jd + dX.J, Eqs. (4.7) and (4.8) imply that X.J Vr = 0 if X is vertical; this in
turn implies that the curvature projects down to a pair of two-forms Vi and V2

(also called the curvature) on the three-wave surface W, uniquely defined by the
condition

(4.9)

A fundamental result states that the integral of the curvature is an integer multiple
of 271", ie

(4.10)

The integers C} and C2 are called the Chern numbers of the bundle. Nonzero
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Chern numbers imply the bundle is nontrivial. Explicit calculation gives

Cl - 0, C2 = -1,

Cl - -1, C2 =0,

for k1 > k2 > 0 ,

for k2 > k1 > 0 .

(4.11)

(4.12)

The decomposition of the total phase shifts (4.1)-(4.3) into geometric and dy­
namical contributions is defined in terms of the connection, as follows. Over a period
T of the reduced motion, a trajectory qj(t) of the three-wave equations describes a
path din W whose endpoints %(0) and qj(T) lie in the same fiber. We connect the
endpoints by a path d' in the fiber (precisely how won't matter) to obtain a closed
curve C = c' + c". See Fig 4.1.

c"--
w

the capS

uced trajectory

the three wave surface

Figure 4.1: The geometry used to reconstruct solutions in c'3 from periodic orbits
on the three-wave surfaces is shown.

The integrals of the connection forms Al and A2 along c" yield, from (4.8), the
phase shifts -1:::'4>1 and -~¢>2 (modulo 2n-). Integrating the connection along the
entire closed curve c, we obtain

~4>1 - ~¢>t + ~4>f ,
~4>2 - ~4>~ + ~4>~ ,

(4.13)

(4.14)

where the dynamical phase ~4>~ is given by the integral of Ar along the trajectory
d, and the geometric phase ~¢>~ by minus the integral of Ar along the closed curve
c.

Using Stokes' theorem, the geometric phases may be expressed as integrals ­
Is Vr dB of the curvature over a surface S in W bounded by c. With (4.9), this ex­
pression may be projected down to the three-wave surface to give ~¢>~ = - Is V;. dB,
where B is a surface bounded by the periodic orbit of the reduced dynamics. Ex­
pressed in this way, it is evident that the geometric phases depend only on the curve
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described by the reduced orbit and not on the rate at which this curve is traversed
- in contrast, the dynamical phases t:::.cJI~ = J[ qj(t).J Ar dt do depend on this rate.
The geometric phases are the phase shifts (also called holonomy) accumulated along
the horizontal lift qj(t) of the reduced orbit. (The horizontal lift qj(t) is a path in
W projecting onto the reduced orbit whose velocity qj is horizontal, so that local
rate of phase change, as defined by the connection, is zero). In other words, phase
is parallel transported along qj(t). A nonvanishing dynamical phase reflects the fact
that phase is not parallel transported along the dynamical trajectory qj(t).

It remains to specify a particular connection, which we call the kinematic con­
nection. What distinguishes the kinematic connection is that it is defined purely
in terms of the symplectic structure and the action of the symmetry group, and
therefore is independent of the Hamiltonian. Thus it is characteristic of all systems
defined on a given phase space (((:3 in the present case) invariant under a given
symmetry (Le. the torus action (2.12)-(2.13». We shall give a general account in a
subsequent paper, and confine our attention here to the three-wave system.

According to the symplectic reduction theorem (Marsden and Weinstein [3D)),
W is a phase space naturally endowed with a reduced symplectic form w. The
kinematic connection is defined (up to a choice of gauge) simply by requiring its
curvature ~ to be proportional to w. The constant of proportionality (which can
depend on ki and k2 ) is then determined by the Chern numbers (4.10), which gives

VI - 0,

V2
W

-
k2

(4.15)

(4.16)

(4.17)

for the kinematic curvature:
(The kinematic connection is related to the mechanical connection (Marsden

[32)) for point symmetries on cotangent bundles; the mechanical curvature is also
proportional to the reduced symplectic form. For point symmetries, however, the
reduced phase space is typically unbounded, while the Chern numbers vanish.)

Using (4.15)-(4.16), the kinematic connection can be constructed explicitly; our
calculations follow those in the Duistermaat-Heckman [35] theorems concerning the
dependence of the reduced symplectic form on momentum. Omitting further details,
we simply state the results.

The dynamical phases are given by

[T 8H
f!.</J~ = J

o
8K

r
dt ,

where the Hamiltonian H is expressed in terms of coordinates a = arg qIchq3 and
Z = -lq212/(21'Y2IK2) + Iq312/(2'Y3K2) on the three-wave surface as well as the mo­
menta K I and K 2 , as follows:

H(a,Z,KI,K2 ) = - bIb21'Y3K23(1- Z)(Z + l)(Z - (1- 2KI/K2»] 1/2 coso.
(4.18)

(It turns out to be more convenient to use Z, whose range -1 :5 Z :5 1 is fixed,
instead of Z2.) If Z and a were action-angle variables for the reduced dynamics, then
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(4.17) would represent the time integral of the frequencies in the angles conjugate to
Kr . The geometric phases compensat~ for the fact that Z and a are not action-angle
variables. For them one obtains

/).q/f - 0,

A(S)
- --;;.-.

(4.19)

(4.20)

(4.21)

Thus, the first geometric phase vanishes, while the second is proportional to the
symplectic area A(S) = Is w bounded by the reduced trajectory.

As is readily verified, the Hamiltonian (4.18) satisfies the relation KI8H/8Kl +
K28H/aK2 = 3H/2. With (4.17) this gives an identity for the weighted sum
K 1/).</>t + K2/).</>~ of the dynamical phases (a sum of actions),

d· d 3
K 1/).</>1 + K 2/).</>2 = 2.HT.

Together with (4.13)-{4.14) and (4.19)-{4.20), this yields the following phase iden­
tity for the total phase shifts:

(4.22)

(The phase identity also follows directly from integration of the canonical one form
defined below, as in [14].)

The foregoing analysis provides a natural and useful decomposition of the total
phase shifts. The dynamical part can be computed without introducing action­
angle variables, while the geometric part is simply an area enclosed on the three­
wave surface. The identity (4.22) is not easily obtained using traditional techniques.
These are some of the advantages of the method of geometric phases.

4.2 The case of second harmonic generation.

The preceding analysis breaks down at critical values of the momentum. For exam­

ple, the momentum level set k 1 = k2 ~ k, where IqI12/'Yl = Iq31 2/"'Y3, contains the
fixed points ql = q3 = 0; at these fixed points, the torus action is not free (setting
</>1 = -</>2 in (2.12)-{2.13) leaves the fixed points invariant).

An important case is where "'Yl = "'Y3 de! "'Y. Then the three-wave equations (1.1)­
(1.3) (or, rather, the particular decay case we are considering) are invariant under
the interchange symmetry ql - q3, while the level set k1 = k2 is itself invariant under
interchange. On this level set, the wave amplitudes ql and q3 differ by a phase factor

expi/3 which is constant in time. Letting q de! exp(-i/3/2)ql = exp(i/3/2)q3), the
three-wave equations reduce to

(4.23)

(4.24)
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This corresponds to the case of second harmonic generation (SHG) in nonlinear
optics.

Like the three-wave equations, the SHG equations (4.23)-(4.24) may be written
in Hamiltonian form. Taking the scaled Poisson bracket on C2 to be

. 8F8G . 8F oG
{F, G} = -2'l'Y--=- - 4'l1'Y21--_ - (F - G) ,

8q oq Oq20q2

the Hamiltonian is given by

(4.25)

(4.26)

The SHG equations are invariant under the phase symmetry (Le. circle-, or 8 1_

action)

(q,q2) 1-+ (qexp(-i4», q2 exp(-2i4>)) ,

which is generated by the conserved momentum

(4.27)

(4.28)

(The bracket (4.25) is defined so that K 1 and K2 coincide with K on the degenerate
level set.) Letting W denote the level set K = k, we can apply reduction with respect
to the circle action to obtain dynamics on the (two-dimensional) reduced phase space
W = W /81. The full dynamics may be reconstructed, and the total phase shift
accumulated over a period decomposed into geometric and dynamical contributions,
by following the general procedure described in Section (4.1). However, for the SHG
system (and, more generally, for systems invariant under a circle action), a simpler
calculation of the geometric and dynamical phases is obtained by integration of
the canonical one-form [14], as we describe below. This case is also an example of
discrete reduction as described in [32].

Let d denote the curve described by the wave amplitudes (q(t), q2 (t» over a
period T of the reduced dynamics. The initial and final points are related by the
total phase shift ti.4>, so that

(q(T),q2(T» = (q(0)exp(-iti.4»,Q2(0)exp(-2iti.4>)) . (4.29)

The initial and final conditions may be connected by a curve d' generated by the
circle action (4.27) so that c = d + d' is a closed curve in in C2 • Let e be a
canonical one form on C2, Le. a scaling of the Poincare one form defined by

1 1e = -4' (qdij - ijdq) + -8"I(Q2dih - ij2dq2) ,
'l'Y 'l 'Y2

with the property that -de is the symplectic form w. By Stokes' theorem,

1e+ { 8 = { de,
c' Jell JE
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where ~ is a surface bounded by c which projects down to a surface f; bounded
by the reduced orbit. (A more careful argument-as in holonomy theorems-shows
that the existence of these surfaces is not necessary.)

Noting that IE W = If; w, where w is the reduced symplectic form, we obtain

f 8+ f 8 = - ~w.
Je' Je" Jf;

Along the curve c!' generated by the symmetry, we get

f e = -kt!1¢,
Je"

while along the dynamical trajectory c! we get

(4.32)

(4.33)

(4.34)1e =1(Q,Q2)...J edt = ~HSHGT.

Letting A(E) denote the symplectic area of E, we obtain from (4.32) - (4.34)
the expression

t!1'" = 3HsHGT A(E)
." 2k + k '

(4.35)

(4.36)

(4.37)

for the total phase shift in the SHG dynamics. The first term is the dynamical phase
t!1¢d, and the second is the geometric phase t!1¢9.

It is worth reconciling this result with the general results Comparison of (4.1)­
(4.3) and (4.29) gives the relation

t!1¢ = l:!&¢l + l:!&¢2
2

between the total SHG and three-wave phase shifts. We obtain a similar relation
for the geometric phases by setting kl = k and taking the limit k2 --+ k from below.
This gives

lim l:!&¢Jf + l:!&~ = A(S) = A(E) = l:!&¢9.
k2-+k- 2 2k k

(One has to check that A(S) = 2A(f;) in this limit.) Similarly, for the dynamical
phases, the identity (4.21) gives

(4.38)

Thus, by passing from the three-wave equations to the SHG equations, we resolve
the singularity on the three-wave surface which appears for k1 = k2, and obtain a
sensible continuation of the two geometric and dynamical phases l:!&¢~ld across these
critical values of the momentum.
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5 The Lie-Poisson Structure

In this section the three-wave equations are written on the dual of the Lie algebra of
the group SU(3) or SU(2, 1) using a Lie-Poisson structure. This Lie-Poisson system
of equations has a quadratic rather than cubic Hamiltonian. ,The compatibility of
the canonical and Lie-Poisson structures is discussed in the next section.

The Lie-Poisson description is obtained by recasting (1.1) as a differential equa­
tion in su(3)*, the dual of the Lie algebra of SU(3), for one of the decay interactions
and a differential equation in su(2, 1)*, the dual of the Lie algebra of SU(2, 1), for
the explosive interaction and the other two decay interactions.

Map to the dual of the Lie algebra. Define a map U : cJ --+ su(3)* and a map
U : C3 ~ su(2, 1)* as follows. Identify su(3) with su(3)* using the standard Killing
form:

(A, B) = Tr(AB) . (5.1)

Thus, su(3)* ~ su(3) is concretely realized as the space of complex skew Hermitian
matrices with zero trace. The standard Killing form is also used to pair su(2, 1) with
.5u(2, 1)*. While the resulting inner product remains nondegenerate in this case, it
does become Lorenzian.

To obtain complex Hamiltonian systems for which the complex conjugate equa­
tions are self consistent we restrict the map so that

(5.2)

where M = diag(m},m2,m3) and mj = ±l. The map of q = (Q1,Q2,q3) to the
matrix U is then

(5.3)

where U E su(3)* for (m}, m2, m3) = ±(1, 1, 1) and U E su(2, 1)* otherwise.
Define a second map Q1 : Cl --+ .5u(3) or Q1 : Cl ~ su(2, 1) as

where O:j E lit We take 0:1 > 0:2 > 0:3 > 0 throughout.
The three wave equations are written in matrix form as

dU
di = -[U,Ql]

17
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where [,] : g x g -+ g is the Lie bracket and in this context is equivalent to standard
commutation of matrices. In component form these equations are:

dql m3 _

dt
- --(02 - (3)q2q3 ,

m2
dq2

-(03 - (1)q1q3 ,
dt

-

dq3 m 2( ).
dt

- -- 01 - 02 iiIq2 .
ml

(5.6)

(5.7)

(5.8)

Letting

'Y3 = (01 - (2), and (8}, 82, 83) = (mafm2' -1, m2fm l),

one obtains the three-wave system (1.1) after qk -+ iqk. Note that with this defini­
tion, L: 'Yk = 0 automatically.

The quadratic invariants. The quadratic invariants (2.9)-(2.11) for (5.6)-(5.8)
are

2K3 =

_ m21q112 + Iq212

m3(02 - (3) (01 - (3) ,

Iq212 mdq312
-:--:"::':;:';:""'-7 + -""'-:'':''='':'':'''''-7"

(01 - (3) m2(01 - (2)

m21q112 ml1q312

m3(02 - ( 3) m2(01 - ( 2)

(5.9)

(5.10)

(5.11)

Ifany two of these are positive or negative definite solutions are necessarily bounded.
When this is not true solutions may blow up in finite time. If m = (m}, m2, m3) is
±O, 1, 1), ±(1, 1, -1) or ±(1, -1, -1) the system corresponds to a decay interaction
and if m = ±(1, -1, 1) it is an explosive interaction. Notice that from the definition
of the map U one decay interaction is associated with .su(3) and the other two as
well as the explosive interaction are associated with .su(2, 1).

The quadratic Hamiltonian. The quadratic Lie-Poisson Hamiltonian is H2 =
-Tr(UQI)f2, and it has the explicit form

H 2 = m2011q112 + m3021q212 + m3031q312 ,
m1 ml m2

This Hamiltonian can be written in terms of the quadratic invariants as

m3
H2 = 201(02 - (3)-(K1 + (JK2) ,

m1

where
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The Lie-Poisson bracket. As we show below, Q1 = -8H2!8U, so we can write
dU/dt = [8Hz/8U, Uj. The general theory of Li~Poisson structures is used to con­
struct the Lie-Poisson bracket

{i,k}l (U) = - (U, [:~, :~]) ,

where for 9 = su(3) or su(2, 1), f, k : g* --+ R, 8fIoU, 8k/8U E g, and U E g*.

(5.12)

(5.13)

Theorem 5.1 Choose 1'1,1'3 > 0 and 1'z < 0, or Q1 > Qz > Q3 > O. With these
definitions, the three-wave decay equations are Lie-Poisson equations on su(3)* for
s = (1, -1, 1) and m = ±(1, 1, 1); the three-wave decay equations are Lie-Poisson
equations on sU(2, 1)* for s = (-1, -1, 1) and m = ±(1, 1, -1), or s = (1, -1, -1)
and m = ±(1, -1, -1); the explosive three-wave equations are Lie-Poisson equations
on su(2, 1)* fors=:(-I,-I,-I) andm=±(I,-l,I).

Proof Let F: g* --+ R, then with the definitions above, dF/dt = {F,Hz}, or

(:~, ~~) = - (U, [:~, 88~z]) ,
where (,) is defined by the trace as above. Now, DHz(U) . V = -Tr(VQ1 (U))/2­
Tr(UQ1(V))/2 for V E g*. We claim that Q1 is a symmetric linear function of U.
In fact, one can check directly that Q1(Ukj = Ci,jUi,j (no sum), where Ci,j is a
symmetric matrix. Thus,

Tr(UQl(V)) = Tr (~Uk,jCj'k\';'k) = ~Uk,jCj,k\';,k = Tr(Q1(U)V) .
J ),k

Hence, DHz(U) . V = -Tr(VQl(U)) and so 8Hz/8U = -Ql(U), Using this fact,
write

(5.14)

to obtain

dUdi = - [U, Qlj . (5.15)

It is checked that these indeed are the three-wave equations. •

6 Connections between the two Hamiltonian structures

The three-wave equations have now been expressed using both the well known canon­
ical Hamiltonian structure and the Lie-Poisson structure. In this section the rela­
tionship between them is discussed. A recursion relation is also produced and it is
shown to be the same one obtained using the Lax approach.
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Second Hamiltonian structure. Modify the Lie-Poisson bracket for the three­
wave equations as follows:

(6.1)

in which the first matrix is fixed at Uo, where Uo E su(3)* or Uo E su(2,1)* is
independent of t and is to be specified. Taking ofIoU and ok/oU at U, this new
bracket produces the equations of motion,

(6.2)

By choosing Uo to be a constant diagonal matrix with Tr(Uo) = 0 and k oc H3, so
that ok/6U = Q2, Q2 is quadratic in the qi, we arrive at the three-wave equations.
In this way the scaled canonical Hamiltonian structure is obtained directly from
the Lie-Poisson bracket. Compatibility follows since this is a ''translation of the
argument" of the Lie-Poisson bracket, where {,} = {, h(U) + ~{, }o(Uo) for an
arbitrary real" constant~. Both {, h and {,}o are Poisson Brackets and the Lie­
Poisson bracket with a shifted argument is also a Poisson bracket [36,37]. The two
three-wave brackets are therefore compatible.

Recursion relation. Having obtained the Lie-Poisson structure and the compati­
bility of the two Poisson brackets the recursion relation for the three-wave equations
are found. Equate the two Poisson brackets and write

(Uo, [:~, (6~~1)]) = (U, [:~, (~~)])

For this relation to hold the Lie brackets,

(6.3)

(6.4)

must also be equal. This is exactly the recursion relation obtained using the Lax
approach. For the three-wave system it is invertible, and a complete set of (6k/6U)j
is constructed.

The Lax equations. To demonstrate the connection with the Lax approach let
D,P,Q E su(3) or let D,P,Q E 5u(2, 1). Write

>.D
dD
dt

- [P,D] ,

- [Q,D].

(6.5)

(6.6)

Compatibility of these two equations leads to

dP
Cit + [P, Q] = 0 .
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Let P = ~A+U and Q(N) = I:f==o Qj~N -j, where A, U, Qj E 5u(3) or A, U, Qj E

5u(2, 1). Define A to be A = diag(,81, ,82, ,83) with I:~=l,8k = O. The Qj are general
elements of the Lie algebra. As in (5.3), U maps C3 into 5u(3) or 5u(2, 1). With
this definition for P (6.7) becomes

(6.8)

Now using the series for Q(N), the coefficients of powers of ~ yield

dU
(6.9)di + [U,QN] = 0, ...

[A, Qj] + [U, Qj-1] = 0, ... (6.10)

[A, Qo] = O. (6.11)

The first equation is the integrable three-wave system. The second is the recursion
relation. The final equation constrains the Qj so that Qo E ker adA. Letting
Qj = (ok/oU)j and A = Uo this is exactly the recursion relation obtained using the
method of Poisson pairs. The recursion relation implies that [U, Ql] = -[A, Q2], so
the three-wave equations are also written .

(6.12)

Carrying out the recursion (6.9)-(6.11) explicitly for the three-wave equations
with N = 1 and diag(Qj) = 0 for j > 0, it is found that with Qo = diag(.BY,~,~),

or

(,8p - 13J)
(Q1)ij = ({3i _ (3j) Uij .

Thus we find that 01 = (~ - .BY)/(132 - 131), Q2 = (138 - {ff)/(,83 - 131), Q3 ­
(13g - ,8~)/(,83 - fh), so Ql is the map in (5.4). At the next iteration

3

(Q2)ik = ~rijkUijUjk ,
j=1

where
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Note that rijk is invariant under all permutations of its indices so we write r = rijk

and

(6.14)

Note that [U, Q2] = 0 terminating the recursion.
With these definitions, dU/dt = [A, Q2] yields

dql m3 _

dt
- --(/h - 132)rq2q3 ,

m2
dQ2

-({33 - {31)rqlq3 ,
dt

-

dq3
- m2 (132 - {33)rq2iiI ,

dt -
ml

(6.15)

(6.16)

(6.17)

(6.18)

which are the three-wave equations in (5.6)-(5.8) since ({31 - {32)r = (02 - (3),
({33 - {31)r = (03 - 01), and (132 - f33)r = (01 - (2)'

Conservation Laws and Hamiltonians. The Qj are gradients of Hamiltonian
functions, and Qj = -5Hj/5U, where the Hamiltonians

Hj+! = -Tr(UQj)/(j + 1) .

Here, (j +1) is the highest power of qk in Hj+l' The cubic Hamiltonian defined here
is proportional to the one associated with the scaled canonical structure from above.
The quadratic Hamiltonian, H 2 , is associated with the Lie-Poisson structure.

These conserved quantities are found in a number of ways. The method of
Poisson pairs produces invariants and their involutivity. The so called master con­
servation law is obtained by showing that the equation

reduces to

d
dt (D, U) = ~ (D, [U, Qo]) .

(6.19)

(6.20)

Then using the recursion relation and in this case D = Q(2) , one finds that d (U, D) / dt =
O. In this way the Hamiltonians

(6.21)

are obtained, where H~ = -2i(m3/ml)rH3 if qk -+ iqk.
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7 Discussion

Equations (6.5) and (6.6) provide alternate methods for solving the three-wave equa­
tions. They are used to construct the Lax pair of (6.7), which are linear equations
for the evolution of an associated eigenfunction. Recall that as D evolves, its deter­
minant and the values of Trace(Dk ) remain invariant. Since the coefficients of the
spectral curve,

r = Det(D - yH) =°, (7.1)

involve only these quantities r is also invariant. By constructing the Baker-Akheizer
functions of the associated linear spectral problem or by constructing new coordi­
nates using D, algebra-geometric methods are applied to integrate the system in
terms of theta functions on Riemann surfaces.

Finally, recall that (6.7) is the Lax equation for P. If P and Q = Q(l) are linear
in ~ then (6.7) contains the three-wave equations, as shown above; (6.7) is then the
so called A-representation for the three-wave equations (see [20,38]). The three-wave
system exhibits a rich Hamiltonian structure that has only been partially discussed
here. Note for instance that this system can be expressed in terms of the R-matrix
representation. Also note that the A-representation for the three-wave equations is
a reduction of the loop algebra associated with 5u(3) or 5u(2, 1). A more complete
treatment of the general structure of integrable equations of this type is found for
instance in Refs. [36, 37, 39].

The family of n-wave interactions is connected to the groups SU(n) and SU(p, q).
The structures described above for the three-wave example also follow for these
higher-dimensional groups. Here integrability of the n-wave interaction on en is
connected with the fact that there are a series of U(l) subgroups in SU(n) and
SU(p, q) that reduce the equations on en to equations on surfaces in ]R3. In Kum­
mer [21] the resonant Hamiltonian system with n-frequencies was analyzed using
the reduction procedure discussed here for the three-wave system. Using n - 1 in­
dependent Sl symmetries the n-wave system is ultimately reduced to quadratures.

Solutions of the three-wave system analyzed here are also traveling wave or
stationary solutions of an integrable partial differential equation (for solution of the
partial differential equation see Refs. [1, 7, 8,9, 10, 11, 12, 13]). In this sense
the integrable structure outlined above generalizes to the structure of the partial
differential equation. More generally, each integrable system of ordinary differential
equations is associated with a hierarchy of evolution equations through (6.5)-(6.6)
by letting A --+ a/ax, d/dt --+ a/at and associating D, P, and Q with an appropriate
group. For instance, the three-wave system is realized as an integrable PDE and the
ODE system (1.1) gives traveling wave solutions. Further, the three-wave system is
closely connected to the rigid body. The Euler equations are on the real subspace
formed by taking 5u*(3) --+ 50*(3). It follows that there is a related real partial
differential equation for which the Euler equations are stationary or traveling wave
solutions.
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