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1 Introduction

We study the approach to the classical liinit of the diagonal matrix el
ements of an operator A, assumed to correspond to a classical observable
Ac(z), in the eigenstate basis of a classically chaotic quantum system. The
quantum equidistribution theorem of Shnir.elman [1], further developed by
Zelditch [2] and Colin de Verdiere (3), states that, for classically ergodic sys
tems, the diagonal elements An tend to the microcanonical average of Ac(z).

Eckhardt et al [4] developed a semiclassical theory for the variance 0'2

of the expectation values An' thereby establishing the rate at which the
classical limit is approached. For strongly chaotic systems (eg, systems for
which correlation functions decay faster than lit), they obtained the result

2 a
0" = T

H
9 , (1)

where Q = (A~)E is related to the classical variance ((.) E denotes the average
over the energy shell), TH is the Heisenberg time (ie, the time conjugate to
the mean level separation) of the system, and 9 is a symmetry factor equal
to two for time-reversal invariant systems and one for systems without time
reversal symmetry.

Time-reversal is a symmetry "linked to a global property of the spectrum.
In random matrix theory, systems without time-reversal symmetry belong to
the unitary ensemble (the Gausssian unitary ensemble (GUE) for Hamilto
nians; the circular unitary ensemble (CUE) for unitary operators), whereas
time-reversal-invariant systems (without spin) belong to the orthogonal en
semble (the Gaussian orothogonal ensemble (GOE) and the circular orthog
onal ensemble (COE), respectively). A central theme of-quantum chaology
is the conjecture [5, 6], supported by extensive numerical evidence [7] and
semiclassical theories [8], [9], (10], [11], that this classification appli~s as well
to classically chaotic quantum systems in the semic~assicallimit.

Much attention has been given to the transition between the orthogonal
and unitary ensembles [12], [13]. Our purpose here is to study the variance
of diagonal matrix elements in this regime, both in terms of a semiclassical
theory based on the trace formula, and direct numerical calculations. The re
sults obtained also hold for systems with false broken time-reversal symmetry
[14], [15].

The paper is organised as follows. In Section 2, we obtain the transi
tional behaviour of the variance 0-

2 as time-reversal symmetry is gradually
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broken. The result is of the form (1), but the factor 9 is found to depend on
a symmetry-breaking parameter, decreasing from two to one as this param
eter increases. We compare this expression with numerical calculations of
quantum expectation values for a family of strongly chaotic systems (Section
4). The systems we consider, perturbed cat maps, are described briefly in
Section 3.

2 Derivation of the variance

We consider quantum maps, though essentially the same analysis can
be applied to quantum Hamiltonians. A quantum map is represented by a
unitary matrix U, whose dimension N plays the role of the inverse of Planck's
constant. We denote its eigenvectors and eigenvalues by In) and exp( -iOn).
U corresponds to a classical map rjJ, assumed to be chaotic. Let A be a
quantum observable with classical limit Ac(z). For convenience we take A
to be traceless, so that its diagonal matrix elements An = (nIAln) have zero
mean, and the phase space average of Ac(z) vanishes. Let

(2)

denote the variance of the An.
Our analysis is a straightforward extension of that of Eckhardt et al [4],

who obtained a semiclassical expression for a 2 for systems with and without
time-reversal symmetry. Here we allow the dynamics to depend on a param
eter ~ which gradually breaks time-reversal symmetry, or more .generally,
an anticanonical symmetry. An anticanonical symmetry K is an involution
(ie, K 0 K = 1) obtained from the composition of the time-reversal map T
with a canonical transformation; a classical map ¢ is invariant under K if
K 0 cP 0 K = ¢-1. For ease of discussion, we will, in this section, take K to
be simply time-reversal itself (though for the family of maps considered in
Section 3, it won't be). Thus, we suppose ¢ has time-reversal symmetry only
for ~ == o. A is assumed to be ~-independent and time-reversal invariant
(ie, Ac 0 T == Ac). To make the discussion self-contained, we present the
derivation in full.
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Consider the smoothed, weighted spectral density,

dA(O) = ~ f Tr(AU'")eiT9h,,(lrl)
21r T=-OO

N

L Anc)€(O - On) .
n=l

(3)

Here hf(lrl) is a smooth cut-off function, decreasing from one, when ITI ~
llf, to zero, when ITI » l/f. Its discrete Fourier transform,

is a smoothed periodic delta function with peaks ~of width f.

Squaring the expression in (3), we obtain

N

d~((}) = L Am An 8€(9 - Om)8€(O - Om) .
m,n=l

(4)

(5)

Taking € to be sm~ller than the mean eigenangle spacing (= 21rIN), we may
neglect the off-diagonal (m =/: n) terms in the sum. For the diagonal terms,
we make use of Berry's observation [9] that the product of two eSE'S is again
delta-function like. Specifically,

(6)

where the scaled width f' and normalization constant a depend on tpe par
ticular form of c5€(O). Our results do not depend essentially on t~e chosen
form; we note that a is given by

Thus, integration of (5) over 0 yields the formula

a 2 = af f. 211" rf (O)dO
N Jo A

for the variance.
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A semiclassical expression is obtained from the weighted trace formula
[16]

dA ((}) = ~ L ApwpeiTp8+21riNSph€(lrpl) . (9)
21f p

The sum is taken over periodic orbits p of the classical map, including both
positive and negative traversals, with integer periods Tp, actions Sp and am
plitudes wp = l/rp l det(Mp - [)1- 1/ 2 expressed in terms of the monodromy
matrix Mp and repetition number Tp • The quantity Ap = I::~l Ac(zs) is
the classical observable Ac(z) summed along the (not necessarily primitive)
orbit.

Squaring the expression in (9), we obtain

d~(O) = 412 LApAqwpWqei(Tp-rq)8+21riN(Sp-Sq)h€(lrpl)h€(lrql) , (10)
1r p,q

We evaluate the double sum. in the diagonal approximation, which in the
present case means keeping contributions only from q = p and q = p*, where
p* labels the time-reverse of the orbit p when K = O. This is justified by the
fact that the off-diagonal contributions are semiclassically smaller [10].

As discussed by Berry and Robnik [17] in the context of Aharonov-Bohm
billiards, when K, =I 0, the phase differences Llp = Sp - Sp* cause the q = p*
contributions to cancel. Complete cancellation occurs as K, increases over a
classically small range, and the differences Ap - Ap* and wp - wp* can be
neglected for K, in this range. Restricting the orbit sum to positive traversals,
we obtain thereby

d~((}) = 2:2 L A;w~ (1 + e21riNt>p) h~(rp) . . (11)
p

Next, terms in the sum are replaced by their average values for long orbits.
Assuming such orbits to be uniformly distributed in phase space, we take Ap

to be randomly distributed with zero mean and variance

(A;) == CtTp , (12)

where Ct is the phase space average of A~(z). For the phase differences 6.p =
Sp - Sp*, we make the ansatz that these are normally distributed with zero
mean and variance (~;) = ~Tp proportional to the period. Averaging the
phase factors exp(21riN~p) with respect to this distribution, we get that

(13)
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As discussed in the Appendix (see also [13]), the parameter ~ is proportional
to K

2
, and may be estimated empirically from the classical dynamics.

Finally, we invoke the Hannay-Ozorio de Almeida sum rule [8} to replace
the weighted sum over orbits E p i p lwp l2 by a sum over periods l:~1. From
these considerations we obtain

00

d2(O) = 2~2 E(1 + e-21r2N2~"')h;(T). (14)
7=1

Substituting (14) into (8) and making use of (7), we obtain our main result,

(]"2 = 0: 9£(2~2N2~) , (15)

where
E~l e-STh;(i)

9£(8) = 1 + 2:~1 h;(T) · (16)

The function gf(S) interpolates between the limiting values for the time
reversal-invariant and non-time-reversal-invariant cases [4]: 9f(S) decreases
from two, when 8 «: f, to one, when 8 »E. For Lorentzian smoothing, ie
hf(lil) = exp -(flrf), the'sums in (16) are easy to evaluate, and one obtains
the explicit expression

(17)

(18)

The smoothing width € determines the scale over which the transition
(15) occurs. Within the simple diagonal approximation employed· here, its
value cannot be precisely fixed, but is constrained by the requireme~t that
€ be smaller than the mean spacing 21r/ N. For consistency with th~ more
general semiclassical method of [10], its value shouid be of the ord~r of the
mean level separation, ie 27r/ N (it is under this assumption that the diagonal
approximation can be justified). When comparing (15) to numerical results,
we will take f = 7f / N, ie, half the mean spacing.

For 8 small (eg, of order €), the expression (17) simplifies to

1
9£(8) = 1 + 1 + 8/2E·

This expression is what one obtains by replacing the sums E~l in (16) by
integrals Jooo dT, and therefore gives precisely the form of 9€(8) appropriate
for flows (as opposed to maps).
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3 Perturbed Cat maps

Cat maps, or hyperbolic automorphisms of the two-torus, are area-preser
ving maps of the torus of the form

¢JM(Z) == M . z mod 1, (19)

where z = (q, p) mod 1 and M is an integer matrix with unit determinant
and trace greater than two. Cat maps are amongst the simplest examples of
hyperbolic systems. An exact quantization procedure was found by Hannay
and Berry. [18]. (By exact, we mean that quantization of the iterated map,
which is i,tself a cat map, gives the same result as iteration of the quantized
map). We will take

M = [~ ~] , (20)

for which the quantized map has a simple form. We note that ¢JM is invariant
under the time-reversal map T(z) = (q, -p).

While the classical dynamics of the cat maps is generic, the quantum
behaviour is not; degeneracies in the periodic orbit spectrum of number
theoretical origin lead to different spectral statistics than those of the circu
lar ensembles of random matrix theory [19]. Basilio de Matos and Ozorio de
Almeida [20] quantized nonlinear perturbations of the cat map (which, ac
cording to Anosov's theorem (see Arnold [21]), remain hyperbolic for small
enough perturbations), and found their spectral statistics to be generic. As
they demonstrated, particularily convenient perturbations from the point of
view of quantization are near-identity shears in momentum and position.
These are maps of the form

(J"p(q, p; Ko)

<7q (q,p; "')

(q,p - ~OF'(q))

(q - ~G/(p),p) .
(21)
(22)

The parameters KO and ~ determine the perturbation strength. The semiclas
sical asymptotics of perturbed maps of this type was developed by Boasman
and Keating [22].

We consider the family of maps

(23)

obtained by composing the cat map (19) with a fixed momentum shear ap

and a family of position shears (J"q depending on K. The momentum shear
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Up serves to break the number-theoretical degeneracies of the unperturbed
cat map. However,. because, like the cat map (19), up is invariant under
time-reversal, the composition cPM 0 up is invariant under the anticanonical
symmetries T 0 up and <PM 0 T. Thus, the spectral statistics of the singly
sheared cat map are found to be COE [20}. The second shear in position
destroys these anticanonical symmetries for K, =1= 0, and the spectral statistics
of the doubly-sheared cat map are typically found to be CUE.

The quantized maps are N-dimensional unitary matrices

(24)

We give their explicit form in a position representation. The quantized cat
map UM is

(iN)-1/2 exp (21ri(l- kj + k2 )/N) x

(exp(21ri(Nm2 + (2k - j)m)))m ' (25)

(26)

(27)

F(q)

G(p)

where ( )m denotes an average over integers m [18]. UQ and Up are diagonal
matrices with elements exp(-21riNK,G(kjN)) and exp(21riNKoF(kjN)) re
spectively. The matrix fjk= J-& exp(27rijk jN) represents a finite-dimensional
Fourier transform.

The shear functions F and G are taken to be

4~2 (sin 21rq - ~ cos 41rq) ,

4~2 (cos 21rp - ~ sin 41rP) ·

KO is fixed to be 0.08. Given this value of ~o, it can be shown, Qsing the
conditions of Anosov's theorem, that the perturbed map ¢; remains hyperbolic
for", ranging between between 0 and 0.03. For larger K, the map dynamics
becomes mixed, and the semiclassical structure is strongly affected by orbit
bifurcations [23]. The theory developed in Section 2 is only valid in the
hyperbolic range.
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4 Numerical Results

We take A == cos 21ffj. In the position representation, A is represented
by a diagonal matrix with elements cos(21fk/N). The classical observable
Ac(z) = cos 21fq is invariant under the anticanonical symmetry T 0 Gp , as is
the classical map ¢ when ~ == o.

Let us first consider the fully unitary case, which is achieved with ~ =
0.03. In figure 1, we display a combined histogram of values of An for Hilbert
spaces dimensions N == 493,495,497,499 and 501. Each set of values is scaled
to its varia~ce it 2:;;=1 A~ to make the comparison with the superimposed
Gaussian normal distribution.

0.40

0.30

0.20

O.0~5~.0---_~3.r:u-O.L.Ll.ll..LL.L 5.0

Figure 1: Scaled to their variance, the values of An for various values of N
are shown, together with the normal distribution.

IIi figure 2, we display the combined distribution of values -Qf An for
~ == 0.003, ie, in the transition regime. The dimensions N are as above, and
the values are scaled by the variance predicted by the semiclassical formula
(15) and (17), with € == 1f/ N. (It was checked that scaling with respect to
the numerically computed variance, .as in figure 1, makes no discernible dif
ference.) f, is eS,timated numerically from the classical dynamics, as discussed
in the Appendix. There are marked deviations in the computed distribution
from Gaussian behaviour.

In figure 3, the numerically computed variances are compared with the
semiclassical formula (15) and (17) (E and ~ are as above). The agreement
is reasonably good, and improves with increasing N, as expected. It was
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0.40

0.20

Figure 2: Scaled by the variance predicted by (15) and (17), the values of An
for various values of N are shown, together with the normal distribution.

confirmed that, provided f is on the order of the mean spacing, the quality
of the fit does not depend on its precise value.

There are two anomalies in the data. At N = 501 and at N = 593, the
computed variance for K, = 0.005 is actually less than that for K, = 0.03;
ie, the ordering of the upwards triangles and circles in figure 3 is reversed.
To explain these anomalies, we have to go back to the results of the linear
cat map. Firstly, the dimensions we worked with are all odd, with clusters
around N = 400, 500 and 600. For instance, around 500, the values of
N chosen were 493 to 503 in steps of two. We avoided even N's because
their number-theoretical degeneracies are harder to break - they do nqt give
generic random matrix statistics.

On the other hand, there is the high rigidity which now and agaill occurs
for a given N. This is another peculiarity due to the unusually high quan
tum period function n(N) for the propagator Uc [19]. For the problematic
dimensions, we have n(501) = 498 and n(593) = 594.
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Figure 3: Variances for the operator A = cos 2'Trq, for values of N around
400, 500 and 600. ~ assumes the following four values; 1 x 10-3 , squares;
2 x 10-3, downward triangles; 5 x 10-3 , circles; and 3 x 10-2, upward triangles.
Superimposed are the semiclassical predictions (15) and (17) with f. = 'TrIN.

In figure 4, we show the results for the total transition: COE to CUE.
The semiclassical predictions do not depend on € in this case.

0.0050

0.0040

~

0'
..

0.0030 .-

0.0020

'\ :-

0.0010

200 300 400 500 600
N

Figure 4: Variances for the operator A for K, = 0 (time-reversal symmetry
intact), diamonds, and K = xl0-2 (time-reversal symmetry fully broken),
circles. The lines are predictions of the semiclassical theory of [4], 9 = 2 and
9 = 1 in eq.(15), respectively.
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5 Conclusions

We have developed a semiclassical theory for the transitional form of the
variance of diagonal matrix elements of hyperbolic systems as time-reversal
symmetry is gradually broken. The symmetry factor 9 in (1) is found to
decrease from t.wo to one as the symmetry-breaking parameter increases.
There is good agreement with numerical calculations performed on a family
of perturbed cat maps, specifically introduced to allow the effects of broken
time-reversal symmetry to be studied.

The distribution of diagonal matrix elements in the transition regime
shown in figure 2 exhibits interesting deviations from Gaussian behaviour,
which we feel merit further investigation. It would also be interesting to
compare our semiclassical approximation with exact results obtained from
the nonlinear a-model [24].
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A The variance of ~p

The relationship between the variance ~7p of the action differences ~p

and the perturbation constant K can be deduced by a Taylor expansion of
the actions. The first correction in the action in the perturbed case is of
order K 2 , and therefore

(28)

To determine the constant of proportionality numerically, the variance ~

was evaluated for a subset of periodic orbits of a given period, from T == 3
to T = 15. Orbits invariant under time-reversal were discarded from the
calculation. (As is easily verified for the unperturbed cat map (19), all period
two orbits are time-reversal invariant.)

With the exponential increase in the number of orbits with period, only
a subset of the periodic orbits with T ~ 8 could be included. For a given
period, this subset corresponded to orbits of the unperturbed cat map lying
on a rational lattice with with maximum denominator q. It so happens that
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Figure 5: The variance of periodic orbit actions, ~r, for K p = ~.OI, together
with a linear fit, for which p(T) = 6.34 x 10-87 - 1.5 X 10-7 , and hence
c = 6.34 X 10-4 •

all the orbits of period 13 are in the same rational lattice, with q = 3691..
These orbits were not investigated, as the objectives of keeping all orbits on °a
rational sublattice and restricting computational efforts to a reasonable level
were incompatible. Typically, for T ~ 8, hundreds of orbits were considered.
Repetitions must be (and were) included in this calculation. K was set to
0.01. .

Though we have not used this approach, one could of course estimate
the variance by computing action differences for nonperiodic orbits of given
length 7, and averaging over initial conditions.
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