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We present a simple, heuristic justification for the
diagonal approximation in the periodic orbit theory
of long-range spectral statistics for chaotic systems
without time reversal symmetry. For ergodic
systems, this extends the validity of the
approximation beyond the log(1/11) time, where it is
supported by more elementary arguments, t.2.. times
of the order of the Heisenberg time TH = 27thd. This
is in agreement with eigenvalue correlations in the
Gaussian Unitary Ensemble (GUE) of Random
Matrix Theory (RMT). For diffusive systems, the
same argument suggests that the diagonal
approximation breaks down on a time scale
consistent with that expected on the basis of the
scaling theory of localization.
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Random matrix theory (RMT) models the universal behaviour of quantum systems

that are chaotic in the classical limit [1, 2, 3, 4). Consider, for example, the form factor

where

K(T) = ~ JOO R(E)eicT/hdE,
d -00

(1)

(2)

is the two-point correlation function of the density of states d(E), (... )E is an average

over an energy range around E that is large compared to the mean level spacing and

small compared to E itself, and the mean density d == (d(E))E is of the order of !i-I in

a system with f degrees of freedom. It has been found that K(T) is well approximated

by RMT in most regimes of time T; that is, it is universal, being determined solely by

symmetries. Specifically, systems with no time reversal symmetry are modelled by the

Gaussian Unitary Ensemble (GUE), for which

K(T) = { i/TH for 0 < T ~ TH

for T > TH
(3)

(4)

where the Heisenberg time TH == 27rfid is conjugate to the mean level separation.

Deviations from (3) are appreciable in ranges of size Tc around T == 0 and T == TH ,

where Tc is the characteristic time scale for the decay of correlations in the corresponding

classical system (related to the smallest non-vanishing eigenvalue of the Frobenius-Perron

operator) [5, 6, 7]. Tc is analogous to the Thouless time in disordered systems and is

purely classical; thus in the semiclassical limit Tc/TH ---t 0 and Tc/TE ---t 0, where TE is

the Ehrenfest time, which is of the order log(l/n) for chaotic systems.

A semiclassical approximation to the density of states is given by the Gutzwiller trace

formula [2, 8]

d(E) = d + lR Ii< LAp eksp ,
7rn p

where the sum is over periodic orbits with action Sp (defined here to include the Maslov

index) and amplitude Ap = Idet(~~I)II/2' Tp being the period and M p the monodromy

matrix. Substituting this into (1) and (2) then gives [5] :

(5)
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This sum over orbit pairs is unfortunately intractable to analytic calculations for typical

systems. The standard approach is to make the diagonal approximation, which for

non-time-reversal symmetric systems takes the form

(6)

(Here the energy average has been assumed implicitly, and the symbol ("')E omitted.)

One justification is that as n ---7 0 the phase of the exponential in (5) oscillates rapidly

and consequently averages to zero unless Sp == BpI. This is clearly valid if otherwise

ISp - Spll > n. However, because of the exponential proliferation of periodic orbits in

chaotic systems, this condition can only hold for times T that are less than TE ; that

is, for times that are O(log(ljn)). Even so, when the sum in (6) is evaluated using the

Hannay-Ozorio de Almeida sum rule [9], one finds

(7)

when T > Tc , which coincides with the GUE expression (3) up to Heisenberg time TH ,

which is of the order of Ii1-f. It is therefore natural to ask why the approximation

works so far outside its obvious range of validity. Our purpose here is to present one

possible explanation. In addition, we will also show that our argument leads to predictions

for the time-scale on which the diagonal approximation (equivalent to diagrammatic

perturbation theory [10]) breaks down in diffusive systems that are in agree~ent with

the scaling theory of localization.

Our approach makes explicit use of the conjectured universality of the quantum spec­

tral statistics in classically chaotic systems of spinless particles without time reversal

(or any other anti-unitary) symmetry in the following way. For simplicity, we consider

a two dimensional billiard with no geometrical symmetry threaded by Aharonov-Bohm

flux lines [11), and average over the fluxes. It will be assumed that the form factor,

being universal, is invariant under this operation. We will then show that this implies

the exactness of the diagonal approximation in the range Tc < T < T*, where T* is of

the same order as TH. (The range 0 ::; T ::; Tc is already covered by the argument given

after (6), because Tc/TE ---7 0 as h ---7 0).

3



(8)

(9)

Before we start, it is worth noting explicitly that flux lines are central to our approach;

we cannot use a smooth magnetic field. The motion of a charged particle is different in

the two cases in several important respects. First, the classical motion is not disturbed

at all by the flux lines, whereas it is in a smooth magnetic field. Second, quantum wave

functions are diffracted by the flux lines and, by virtue of the boundary conditions, vanish

on each of them; hence their morphology is completely different from that encountered

in a smooth magnetic field. Third, all physical quantities are periodic in each flux, and

so any analogy with a real magnetic field can only hold when the fluxes are much smaller

than one fluxon. In the present work we make essential use of this periodicity.

Let the billiard be threaded by N + 1 flux lines with flux~s cPj (in units of one fluxon),

where j == 0,1, 2...N. The action of the periodic orbit p then satisfies

S SO N

; = ; + 21rLcPjWj,p
J==O

where 52 is the action of the pth orbit in the absence of the flux lines, and Wj,p is its

winding number with respect to the position of the j-th flux line. Hence the semiclassical

approximation to the form factor (5) can be written

K(T·,f.. <p) == ~" A A ,ek(sg-s~,)+i21rL;=o¢j(Wj,p-Wj,p')c5 (T _ Tp + Tp,)
, 0/0, T L..J p p 2

H p,p'

where <P denotes the set of fluxes cPj with j == 1,2, ... , N. If cPo is sufficiently large, the

system belongs to the class of systems described by general Hamiltonians where time

reversal symmetry is broken [12], independently of the values of cPo and cPj for j =J 0 (the

restrictions on this statement will be discussed below). Averaging over all 1>j with j > 0

will thus not affect K(T) in the universal regime, and so

where bi,j is the Kronecker c5-symbol.

At this stage we divide the perio.dic orbits into 2 classes, corresponding to those that

are self retracing and those that are not. For orbits that are self retracing, all winding

numbers vanish. The fraction of these compared to the set of all orbits of period T is of

the order of e-htT/ 2 , where ht is the topological entropy. Therefore their contribution to

the form factor can be ignored in the universal regime" where we shall work.
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Of the orbits that are not self retracing, many pairs (p, p') will not contribute to (10)

because they have different winding numbers. Moreover, assuming for the moment that

there is no restriction on the number of flux lines (such a restriction will, however, be

discussed below), the periodic orbits of a given period can be uniquely determined by

their winding numbers. To see this, take two differe~t periodic orbits, PI and P2, with

the same winding numbers around the flux lines already in place. A new flux line j12

can always be introduced in the space between the two orbits about which they will have

different winding numbers Wj12,Pl #- Wj12,P2' Hence if the density of flux lines is unbounded,

all non-diagonal contributions to the form factor can be removed, for any given fixed T,

by the averaging procedure described above; that is, the diagonal approximation can be

shown to be exact for all T.

We are now in the position of having proved too much, because the diagonal approx­

imation is in fact only exact up to T == TH. The question is, therefore, what determines

the breakdown of the flux line argument? To answer this, it is helpful to place the flux

lines at the vertices of a lattice with spacing a. Knowledge of all the winding numbers de­

termines the orbits with resolution a. The key point is that the approach described above

can only be applied when a is large compared to the de-Broglie wavelength A. There are

three ways to see this. First, the semiclassical trace formula (4) is only valid when A « a,

otherwise non-classical diffractive orbits must be included. (The only length-scale in the

scattering of plane waves by a single flux line is A, and the amplitude of the diffracted

waves decreases as J>./r, where r is the distance from the flux line). Second, the quan­

tum wave functions ca1?- only resolve the flux lines if their separation is large compared to

A. Third, because the wavefunctions must vanish on the flux lines, they typically cannot

extend over the billiard if A > a. (This is analogous to the situation for channels, where

if the wavelength is smaller than the width the wave is evanescent.) Thus as a is varied

there is a sharp transition in their morphology at A == a.

The fact that one must have A~ a sets a restriction on the ability of the flux lattice

to resolve periodic orbits. The corresponding limit of resolution in the time regime may

be estimated as follows. The probability density for an ergodic orbit of length 1 not to

pass through a given lattice cell S of size a x a is proportional to e- l / l • , where the mean

free path is l* == AIa, and A is the area of the billiard. (Usually the mean free path is
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(11)

l/na where n is the density of scatterers and a is their cross section; in the present case

there is one scatterer, the region 5, so n = 1/A, and in two dimensions a is the linear

size of S, therefore a ~ a.) The probability density for an orbit of period T not to pass

through 5 is therefore proportional to e-T / T * , where, taking a of the order of (but much

larger than) A,

T * Am T
== 'f}1 AP == 'T/ H

Here T] and T]1 == 27fT] are (undetermined) constants, m is the mass of the particle ~nd p

is its momentum.

An orbit that does not pass through the cell S differs by at least one winding number

from an orbit that does. Because of the exponential nature of the probability density,

nearly all of the orbits with period T < T* are uniquely determined by their winding

numbers and there the diagonal approximation holds. Conversely, almost alLorbits with

period T > T* cannot be resolved in this way and then the diagonal approximation can

no longer be justified. It is striking that T* is of exactly the same order as the time TH

on which the approximation is known to break down.

Our argument is equivalent to the following suggestive procedure. Take a typical

trajectory of length vT, where v is the velocity and T is the evolution time. Now give

the trajectory a width of a de Broglie wavelength A. The above discussion implies that

the diagonal approximation is justified for times up to the order of T*, when the area

swept out is equal to the total area of the billiard; that is, T* is the solution of ::vvT* ==

A. This generalizes immediately to billiards of arbitrary dimension f. Then T* is the

solution of (;v)f-1VT* == V, where V is the total volume. This clearly gives T* ==

V(2E) f-1mf /hf - 1 , which is again of the same order as the Heisenberg time. In a similar

way, the argument also extends trivially to smooth scalar potentials.

It seems reasonable to assume that there is no time scale between T* and TH , and that

therefore'TJ is of order unity, but we cannot find its value from the present arguments. The

most that we can conclude semiclassically is that in the region Tc « T «T* == O(TH ),

T
odK(T) _

H dT - 1. (12)

for non-time-reversal-symmetric ergodic systems. This extends the range of validity be­

yond the log(l/h) time that previously set the limit. For T < Tc the form factor is not
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universal and the assumptions underlying the flux-line argument do not hold. However,

the first argument, given in the paragraph after (6) does then apply, because TclTE -+ 0

as Ii --t 0, and so again the diagonal terms should be semiclassically exact.

OUf approach can also be extended to diffusive systems. Consider first the case of a

quasi-one-dimensional billiard, in which the motion is diffusive in one dimension. Again

the flux-line method provides a justification of the diagonal approximation up to a time

of the order of T*, when the area swept out by an orbit given a width '\, hT*1m, is equal

to the total area explored. This second area is proportional to the mean distance traveled

in the direction of diffusion, namely J DT* where D is the diffusion constant, and to the

billiard width w. Hence T* rv m 2w2Dlh2
• More generally, for diffusion in f dimensions

(13)

where Vf(T) is the volume explored by a typical orbit after a time T. If we take for Vf the

corresponding volume for a random walk [13], then, for example, T* rv exp(a2/1i) when

f := 2, and T* rv !ajlif - 1
- cl- f~2 for 2 < f < 4, where c is a constant and af depends

on m, v, D and the volume scale in system. The diagonal approximation is expected to

work for T < T*, in which range one has the classical result [10]

for Tc < T < T*. (14)

where P(T) is the probability density for a typical orbit to return to its starting point after

a time T. For T > T* quantum interference becomes important. It is interesting to note

that T* is of exactly the same order as the break time derived from the scaling theory

of localization. The flux line argument thus provides a semiclassical basis for Allen's

estimate for the parametric dependence of the localization length [14]. In addition, if

we assume that the time scale T* translates under Fourier transform in the variable lin
into a length scale for action correlations [15], then we also have a justification for the

corresponding assumptions made in [16].

It is worth noting that in diffusive systems RMT is only applicable if the localization

length exceeds the size of the system £, that is when T* is larger than the Thouless

time £2/D, and that our arguments are being applied in the nonuniversal regime before

RMT is valid [17]. The justification relies on there still being an ensemble of systems
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with different fluxes all having the same classical limit, and on the assumption that the

form factor depends only on the classical dynamics. The fact that in ergodic systems the

diagonal approximation applies in the nonuniversal regime when T < Tc provides further

support [5, 6, 7].

The simple arguments we have presented support the correctness of the diagonal ap­

proximation for systems without time reversal invariance that are modeled by GUE in

the universal semiclassical regime, where RMT holds. This results from a pure quan­

tum symmetry: the existence of a continuous family of quantum systems with t~e same

classical limit. The possibility to vary the phases of the contributions of the various

periodic orbits without any effect on the classical dynamics leads to the conclusion that

the off-diagonal contribution averages to zero for times less than T*, which is of the or­

der of the Heisenberg time TH . Unfortunately, our argument does not extend directly

to time-reversal-symmetric systems. To do so would require the construction of families

of systems with GOE statistics for which off-diagonal terms in the periodic orbits sums

could be eliminated by averaging over one or more parameters. It is striking that for such

systems the diagonal approximation is not exact, but that it does hold approximately on

time scales of the order of TH (in the sense that it predicts the correct universal slope of

the form factor as T/TH -+ 0). It would be interesting, therefore, to pursue this line of

reasoning further. With this point in mind, we again draw attention to the fact that our

flux-line argument does not resolve contributions from self-retracing orbits, or trajecto­

ries in their neighborhood, which probably playa central role in the semiclassical theory

of time-reversal-symmetric systems [18].

Also with this in mind, we return to make a final comment about (10). In the flux­

line construction we left one flux (labeled j == 0) fixed and large, to ensure that we

stayed within the GUE. However, this is not strictly necessary, because the GOE-GUE

transition is semiclassically sharp; specifically, in a billiard with a single flux ¢, the level

statistics are, on the scale of the mean level spacing, GOE when ¢ == 0 and GUE when

¢2J-LTH >> 1, where J-LTH is the mean-square winding number of orbits whose period is

TH [12J. (For the form factor to take the GUE form throughout the regime Tc < T < T*

similarly requires ¢2pTc » 1.) Thus if the form-factor is averaged over all of the

fluxes, the result is semiclassically close to the GUE expression. This has interesting
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implications. Consider a billiard in which the dynamics is time-reversal-symmetric. The

level statistics will then be COE and one may expect this to be seen in the semiclassical

periodic orbit sum (5). Now introduce a set of flux lines, as above, and average over

all of them. The result is a similar orbit sum, but contains only those pairs that have

the same winding numbers about all of the positions where the flux lines were - this

corresponds to (10) without the contribution from the j == 0 flux. Note that no fluxes

appear in the final expression. This implies that if one sums over all pairs of orbits in

(5) one will get the COE form factor, but if one sums only over those pairs that have

the same winding numbers about some arbitrarily chosen set of points, one will be left

with the CUE form factor, at least for T < T*. Thus the semiclassical difference between

the COE and the CUE is in orbits that have different winding numbers about one or

more such points. One such pairing is between an orbit and its time-reverse, leading to

the derivative of K(T) at T = 0 being twice the CUE value, but the fact that the K(T)

is not exactly linear implies that there are more. It possible that this may be a clue as

to the semiclassical origins of weak localization corrections. The fact that orbits in the

vicinity of self-retracing trajectories are an exceptional set with respect to the flux line

argument again hints at their involvement in these corrections [18].
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