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We show how the Poisson summation formula can be used
to investigate the Abel summability of gap series. We use
the method to prove that the series 2:'ooo(-1)llx1l2 is Abel
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obtained essentially the same result as ours concerning the
latter series in[l]. Our proof is shorter and more
elementary_ We give some numerical estimates for the size
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Abel Summability of Gap Series

Abstract We show how the Poisson summation formula can be used to investigate the
Abel summability of gap series. We use the method to prove that the series L:~(_1)nx n

2

is Abel summable, but that the series L:~ (-1 )nx 2
n

isn't. Hardy obtained essentially the
same result as ours concerning the latter series in [1]. Our proof is shorter and more
elementary. We give some numerical estimates for the size of the oscillation of the series
L:~(-1)nx2n as x ~ 1_.

Definition The series L:~ an is Abel summable to A if the series L:~ anxn converges
for all 0 < x < 1 and if

Abel's Theorem If L:~ an converges in the ordinary sense to S then it is Abel summ­
able to S.

For a proof see [3] page 57.

Gap Series We shall be concerned with alternating gap series of the form

o

where a(n) is an increasing sequence of positive integers. We call such a series Abel
summable if

00

lim :L)_l)nxa(n)
x-tl_

o

exists finite. For example if a(n) = n we obtain

00

""'( )n nIlL..t -1 x = -- ~ -
o 1 +x 2

be
Poisson Summation Formula If f E L1(R) then we can define its Fourier transform to

j(x) = i: eitu f(t)dt.

We can also define the function

00

¢(t) = L f(t + n)
n=-oo
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which E L 1 [0, 1], and has nth Fourier coefficient

If the Fourier series E~=-oo cne27rint of ¢(t) converges to ¢(t) at t == 0 then we obtain the
Poisson summation formula

00 00

L f(n) = L j(27fn).
n=-oo n=-oo

The formula is valid, e.g., if ¢(t) is continuous at t == 0, and the series E~=-oo j(21rn)
converges. (See [2] page 129.)

Case a(n) == n. Consider the function f(t) == x 1tl == e-A1tl where x == e- A (A > 0). Its
Fourier transform is

j(u) == 100
eitue-.\ltldt = 2,X .

-00 A2 + u 2

The Poisson summation formula gives

00 00

for all 0 < x < 1, equivalently A > o. Validity is assured since the series on the right hand
side converges, and the series

00

n=-oo

converges uniformly over all t E R.
It follows that

as x -+ 1_, equivalently A -+ 0+, since the series on the right hand side converges uniformly
over A satisfying e.g. 0 < A < 1.

If we write instead f(t) == (-I)tx 1t l == e7rite-Altl then we have

A 2.A
f(u) = ,X2 + (u + 7f)2'

and therefore

~ (_ )n Inl _ ~ 2,X
n200 1 x - n~oo ,X2 + (2n + 1)27f2 ,
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which we can rewrite as

Hence, as we already know,

Case a(n) = n 2 . Consider the function f(t) = x t2 = e-At2 where x = e-A (A > 0).
The Fourier transform of f(t) is

The Poisson formula gives

validity being assured by the convergence of the series on the right hand side, and the
uniform convergence over t E R of the series

00

¢(t) = L e-..\(t+n )2.

n=-oo

Working instead with f(t) = e1rite-At2 we obtain

from which it follows that
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Iff e-(2n+l)21r2/4>" < Iff e-n21r2/4>..

n=O n=O

< Iff e-
n1r2

/
4

>..

n=O

fir e-1r2 / 4>..

= V~ 1- e-1f2 / 4A

---to

as A ---t 0+.

Case a(n) = 2n . Consider the function f(t) = e-e
1tl

• Its Fourier transform is

j(u) = i: eitue-eltl dt

= 2Re 100

eitue-e
t
dt

= 2Re 100

iu-1e-Sds,

putting s = et .

For Rea> 0 we have

Expanding e- S in powers of s we have

Both r(a), ~(a) analytically continue to all a not an integer :s; o. Therefore for all
real u =I 0 we have

A (. 00 (-l)k 1 )
f(u) = 2Re r(w) - {;k! iu+ k ·
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If instead we write f(t) == (_I)txe1tl == e1rite-'xeltl where x == e-'x (A > 0) then we
have similarly

A U == 2Re (r(i (u + 1f)) _ 00 (-1)k Ak )
I( ) ),i(u+1r) ~ k! i(u + 7f) + k

for all real u =I- -1f.
Poisson's summation formula gives

and hence

~(_I)nxen = ~ + 2Re ~ (r((2n + l)1fi) _ ~ (-I)k A
k

)f='o 2 f='o ),(2n+l)1ri f='o k! (2n + l)7fi + k ·

Observe firstly that

00 00 (-I)k Ak 00 00 (-l)k kAk

Re ~~~(2n+1)7fi+k= ~~~(2n+1)27f2+k2
00 (-l)kAk 00 1

= {; (k - I)! ~ (2n + 1)27f2 + k2

---+0

as A ---+ 0+.
Observe secondly that if we write A == e-J-t then

2Re ~ r((2n + l)~i) = 2Re ~ r((2n + 1)7fi)e(2n+l) lL1ri
L-J A(2n+l)1r~ L-J
n=O n=O

is I-periodic in Jl as Jl ---+ 00, equivalently A ---+ 0+_ Also the ratio of consecutive terms of

00 00 1
'""" Ir ((2n + 1)1fi) I == '""" ----;=:======~================;:::=:;:f='o f='o J(2n + 1) sinh(2n + 1)7f2

is < e-1r2 == 5.17 x 10-5 . The first term of

R ~ r((2n + l)7fi)
2 e L-J ),(2n+l)1ri

n=O

oscillates with amplitude
2 -2

--;:::::== == 2.03 x 10 .
Vsinh 1f2
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The sum of the rest of the terms is in modulus less than

2 1 -6
2 = 1.05 x 10 .

Vsinh 7r2 e7r
- 1

It follows that the series E~=o(_l)nx e
n

oscillates as x ---t 1_ with asymptotic ampli­
tude 2.03 x 10-2 to 3 significant figures.

Similar analysis applies for the series E~=o (-1) n x 2n except that the asymptotic am­
plitude of the oscillation is in this case

2 -3
---;:===================== = 2.75 x 10
V(log 2) sinh(7r2 / log 2)

to 3 significant figures.
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