

Performance Evaluation of Web Proxy
Cache Replacement Policies

Martin Arlitt, Rich Friedrich, Tai Jin
Internet Systems and Applications Laboratory
HP Laboratories Palo Alto
HPL-98-97(R.1)
October, 1999

E-mail: {arlitt, richf, tai}@hpl.hp.com

World-Wide
Web,
performance
evaluation,
proxy caching,
replacement
policies, trace-
driven
simulation

The continued growth of the World-Wide Web and the
emergence of new end-user technologies such as cable modems
necessitate the use of proxy caches to reduce latency, network
traffic and Web server loads. In this paper we analyze the
importance of different Web proxy workload characteristics in
making good cache replacement decisions. We evaluate
workload characteristics such as object size, recency of
reference, frequency of reference, and turnover in the active set
of objects. Trace-driven simulation is used to evaluate the
effectiveness of various replacement policies for Web proxy
caches. The extended duration of the trace (117 million requests
collected over five months) allows long term side effects of
replacement policies to be identified and quantified.

Our results indicate that higher cache hit rates are achieved
using size-based replacement policies. These policies store a
large number of small objects in the cache, thus increasing the
probability of an object being in the cache when requested. To
achieve higher byte hit rates a few larger files must be retained
in the cache. We found frequency-based policies to work best for
this metric, as they keep the most popular files, regardless of
size, in the cache. With either approach it is important that
inactive objects be removed from the cache to prevent
performance degradation due to pollution.

 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

user
latency,
e of
ent

cy of
riven
Web
over
and

ement
thus

hieve
ncy-
dless
be

ce-

ew
This
frus-

hnolo-
lieve

che.
ris-
teris-
y of
Performance Evaluation of
Web Proxy Cache Replacement Policies

Martin Arlitt, Rich Friedrich, and Tai Jin
Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304

{arlitt, richf, tai}@hpl.hp.com

Abstract

The continued growth of the World-Wide Web and the emergence of new end-
technologies such as cable modems necessitate the use of proxy caches to reduce
network traffic and Web server loads. In this paper we analyze the importanc
different Web proxy workload characteristics in making good cache replacem
decisions. We evaluate workload characteristics such as object size, recen
reference, frequency of reference, and turnover in the active set of objects. Trace-d
simulation is used to evaluate the effectiveness of various replacement policies for
proxy caches. The extended duration of the trace (117 million requests collected
five months) allows long term side effects of replacement policies to be identified
quantified.

Our results indicate that higher cache hit rates are achieved using size-based replac
policies. These policies store a large number of small objects in the cache,
increasing the probability of an object being in the cache when requested. To ac
higher byte hit rates a few larger files must be retained in the cache. We found freque
based policies to work best for this metric, as they keep the most popular files, regar
of size, in the cache. With either approach it is important that inactive objects
removed from the cache to prevent performance degradation due to pollution.

Keywords: World-Wide Web, performance evaluation, proxy caching, repla
ment policies, trace-driven simulation

1. Introduction

The World-Wide Web (“The Web”) has grown tremendously in the past f
years to become the most prevalent source of traffic on the Internet today.
growth has led to congested backbone links, overloaded Web servers and
trated users. These problems will become more severe as new end-user tec
gies such as cable modems are deployed. One solution that could help re
these problems is object caching [15][27].

In this paper we present a trace-driven simulation study of a Web proxy ca
Our goal in this study is to evaluate the effects of different workload characte
tics on the replacement decisions made by the cache. The workload charac
tics that we consider include object size, recency of reference, frequenc

were

roxy
rnet
Web
cted

xies
prox-
].
me.
n the
will
king
term
pol-
erit
racter-
ed hit
ntify

ack-
tion
sum-
har-
ions.
tion
sum-

are
rvers
at of

In
any
ni-
tes
reference and turnover in the active set of objects. These characteristics
identified in our Web proxy workload characterization study [2].

Our research on Web proxies has utilized measurements of an actual Web p
workload. We collected data from a proxy cache that is located in an Inte
Service Provider (ISP) environment. Subscribers to this ISP access the
using high-speed cable modems. Measurements of this proxy were colle
over a five month period (January 3rd - May 31st, 1997). In total more than 117
million requests were recorded.

Although other researchers have performed caching simulations of Web pro
these previous studies have been limited to either short-term traces of busy
ies [9][11][14] or long-term traces of relatively inactive proxies [19][25][26
Our study is the first to examine a busy proxy over an extended period of ti
Caching is more important in a busy environment as it reduces the demand o
shared external network link. The introduction of high-speed cable modems
significantly increase the demand on the shared external network link, ma
caches an even more valuable component of the Web architecture. Long-
traces are important in order to identify potential side effects of replacement
icies. Furthermore, our study identifies which workload characteristics m
consideration in cache replacement decisions and discusses why these cha
istics are important. We then use these characteristics to evaluate the achiev
rates and byte hit rates of several existing replacement policies and to ide
their strengths and weaknesses.

The remainder of this paper is organized as follows. Section 2 provides b
ground information on the World-Wide Web and discusses related work. Sec
3 describes the collection and reduction of the workload data set. Section 4
marizes the results of our workload characterization study focusing on the c
acteristics that merit consideration when making cache replacement decis
Section 5 provides the design of our trace-driven simulation study while Sec
6 presents the simulation results. The paper concludes in Section 7 with a
mary of our findings and a discussion of future work.

2. Background

The World-Wide Web is based on the client-server model [8]. Web browsers
used by people to access information that is available on the Web. Web se
provide the objects that are requested by the clients. Information on the form
Web requests and responses is available in the HTTP specification [13].

Figure 1 illustrates how a proxy can be used within the World-Wide Web.
Figure 1, clients 0-M are configured to use the proxy in order to resolve
requests for objects available on origin servers 0-N. All of the clients commu
cate with the proxy using the HTTP protocol. The proxy then communica

the

the
sted
’s

arent
d the

the
ject
n

are
be

te hit
the

cter-
Our
ests

che
load
d by
few
arac-
s (or

large
ting

sers
ron-
with the appropriate origin server using the protocol specified in the URL of
requested object (e.g., http, ftp, gopher) [20].

When the proxy receives a request from a client the proxy attempts to fulfill
request from among the objects stored in the proxy’s cache. If the reque
object is found (acache hit) the proxy can immediately respond to the client
request. If the requested object is not found (acache miss) the proxy then
attempts to retrieve the object from another location, such as a peer or p
proxy cache or the origin server. Once a copy of the object has been retrieve
proxy can complete its response to the client. If the requested object iscacheable
(based on information provided by the origin server or determined from
URL) the proxy may decide to add a copy of the object to its cache. If the ob
is uncacheable(again determined from the URL or information from the origi
server) the proxy should not store a copy in its cache.

Two common metrics for evaluating the performance of a Web proxy cache
hit rateandbyte hit rate. The hit rate is the percentage of all requests that can
satisfied by searching the cache for a copy of the requested object. The by
rate represents the percentage of all data that is transferred directly from
cache rather than from the origin server. The results of our workload chara
ization study indicate that a trade off exists between these two metrics [2].
workload results show that most requests are for small objects, which sugg
that the probability of achieving a high hit rate would be increased if the ca
were used to store a large number of small objects. However, our work
results also revealed that a significant portion of the network traffic is cause
the transfer of very large objects. Thus to achieve higher byte hit rates a
larger objects must be cached at the expense of many smaller ones. Our ch
terization study also suggested that a wide-scale deployment of cable modem
other high bandwidth access technologies) may increase the number of
object transfers. One of the goals of this study is to determine how exis
replacement policies perform under these changing workloads.

A proxy cache that is primarily intended to reduce response times for u
should utilize a replacement policy that achieves high hit rates. In an envi

Client 0

Server N

Proxy

Server 0
Origin

Origin

. .
 .

. .
 .

Client M

Figure 1. Using a Proxy within the World-Wide Web

por-
te hit

am-
e the
sible
be

uce

arch
we

rch.
cter-
n-
e of
rent

der to
ches
ossible
6].
o that

first
dd

l be
ossi-
zing
nt of

roxy
om-

ro-

ce-
roxy
the
n 3.3
ment where saving bandwidth on the shared external network is of utmost im
tance, the proxy cache should use a replacement policy that achieves high by
rates. A proxy cache could also utilize multiple replacement policies. For ex
ple, a replacement policy that achieves high hit rates could be used to manag
proxy’s memory cache in order to serve as many requests as quickly as pos
and to avoid a disk I/O bottleneck. The proxy’s much larger disk cache could
managed with a policy that achieves higher byte hit rates, in order to red
external network traffic.

The tremendous growth of the World-Wide Web has motivated many rese
efforts aimed at improving Web performance and scalability. In this section
focus on Web proxy research.

Understanding Web proxy workloads is an important first step in proxy resea
A quantitative way to understand these workloads is through workload chara
ization. A number of recent efforts [7][11][14], including our own [2], have ide
tified numerous characteristics of proxy workloads. We use this knowledg
proxy workloads to help identify the strengths and weaknesses of diffe
replacement policies.

Other researchers have focussed on managing proxy cache contents in or
improve hit rates (as well as other metrics). Currently there are two approa
to cache management. One approach attempts to use as few resources as p
by making good replacement decisions when the cache is full [9][19][25][2
The alternative approach is to provide the cache with abundant resources s
few replacement decisions need to be made. In this paper we focus on the
approach. While some organizations may be willing to continuously a
resources to their proxy cache, we feel that the majority of enterprises wil
more interested in achieving the best possible performance for the lowest p
ble cost. Thus, throughout the remainder of this paper, we focus on maximi
either the hit rate or the byte hit rate of a proxy cache that has a limited amou
cache space.

Several research efforts have evaluated the performance of existing Web p
server software. Almeida and Cao created a benchmark in order to directly c
pare the performance of different proxy servers [1]. Maltzahnet al. examined
the performance of several proxy servers in a live environment [22], and p
posed several methods for reducing disk I/O in proxy caches [21].

3. Data Collection and Reduction

In order to characterize the workload of a Web proxy and to conduct a tra
driven simulation of a Web proxy cache, measurements of an actual Web p
workload were collected. Section 3.1 presents background information on
data collection site. Section 3.2 discusses the data that was collected. Sectio

and
 set.

iness
ribers
pli-
criber
nver-
TTP,
ject
plex.

nter-
other
work-
tudy.

r this
Web

ent.
f the
erver

ble
set

d

describes how the collected data was reduced into a more manageable form
summarizes the assumptions we made to address the limitations of our data

3.1. Data Collection Site

The site under study provides interactive data services to residential and bus
subscribers using cable modems. The services available to the subsc
include email, network news and the World-Wide Web. Figure 2 shows a sim
fied view of the system under study. To access the available services a subs
uses a cable modem to connect to the server complex through the Signal Co
sion System (SCS). The SCS routes all requests for Web objects (i.e., H
FTP, and Gopher requests) to the Web proxy. This proxy includes an ob
cache so some of the client requests can be satisfied within the server com
On a cache miss the proxy retrieves the object from an origin server on the I
net. The access logs of this proxy were collected. Customer requests for
services such as Email and News are forwarded to a separate server; the
load of the Email and News server was not measured and is not used in this s

3.2. Data Collection

The access logs of the Web proxy described in Section 3.1 were collected fo
study. These access logs contain information on all client requests for
objects from January 3rd, 1997 until May 31st, 19971. Each entry in an access log
contains information on a single request received by the Web proxy from a cli
Each entry includes the client IP address (dynamically assigned), the time o
request, the requested URL, the status codes for both the proxy and origin s

1. The access logs were collected on a daily basis. The access logs were not availa
on 13 days and were incomplete on 4 other days. Despite these gaps in the data
we have a relatively complete view of the proxy workload for an extended perio
of time.

Server

. .
 .

SCS

Proxy

Internet

Origin

Origin
Server

. .
 .

Web

Client

Client

Subscribers

Web

Email
News

Router

Server Complex

Figure 2. Diagram of the System Under Study

plete
le 1.

B of
orage
tions
duc-

on
s log
nct
tle
ept
on-

ated.
om-

a time
our

ne
nd
ifica-
responses, the size of the response (in bytes) and the time required to com
the response. A summary of the amount of raw data collected is given in Tab

3.3. Data Reduction

Due to the extremely large access logs created by the proxy (nearly 30 G
data) we found it necessary to create a smaller, more compact log due to st
constraints and to ensure that the workload analyses and caching simula
could be completed in a reasonable amount of time. We performed these re
tions in several ways while still maintaining as much of the original informati
as possible. One very effective method of reduction is to represent the acces
information in a more efficient manner (e.g., map the unique URLs to disti
integer identifiers). We also removed information that we felt would be of lit
or no value in either the workload analysis or the simulation study (e.g., we k
only GET requests which accounted for 98% of all requests and 99.2% of all c
tent data). After reducing the access logs the overall statistics were recalcul
The results are shown in Table 2. The reduced data set is 4.5 GB (1.5GB c
pressed). This represents not only a tremendous space savings but also
savings as the log is in a format that dramatically improves the efficiency of
analysis tools and cache simulator.

Unfortunately, not all information of interest is available in the access logs. O
problem that we faced was trying to correctly identify object modifications a
user aborted connections. To address this problem we assumed that mod

Table 1. Summary of Access Log Characteristics (Raw Data Set)

Access Log Duration January 3rd - May 31st, 1997

Total Requests 117,652,652

Total Content Data Transferred 1,340 GB

Table 2. Summary of Access Log Characteristics (Reduced Data Set)

Access Log Duration January 3rd - May 31st, 1997

Total Requests 115,310,904

Total Content Bytes 1,328 GB

Unique Cacheable Requests 16,225,621

Total Uncacheable Requests 9,020,632

Unique Cacheable Content Bytes 389 GB

Total Uncacheable Content Bytes 56 GB

the
modi-
g the
umed

[2].
per-

l
ealed
ble.

ue
veral

erver
st be
duce
e hit,

th
dian

jects
a 148
ts are
fers.
er of
few

st
ol-

or
likely
y [2]
our
) of
sults

2].
tions and aborts could be identified by a change in the size of the object. If
size changed by less than 5% we hypothesized that the object had been
fied2; otherwise, we speculated that a user abort had occurred (either durin
current request or on a previous one). If no change in size occurred, we ass
that the object had not been modified.

4. Workload Characterization

In this section we present a summary of our workload characterization study
In particular we focus on the characteristics that we feel could impact proxy
formance and cache replacement decisions.

Cacheable Objects.In order for Web caching to improve performance it is vita
that most objects be cacheable. Our analysis of the data set under study rev
that 92% of all requested objects (96% of the data transferred) were cachea

Object Set Size. In Table 2 we reported that there were over 16 million uniq
cacheable objects requested during the measurement period. This is se
orders of magnitude larger than the number of unique objects seen in Web s
workloads [4]. Due to the extremely large object set size the proxy cache mu
able to quickly determine whether a requested object is cached to re
response latency. The proxy must also efficiently update its state on a cach
miss or replacement.

Object Sizes. One of the obstacles for Web caching is working effectively wi
variable-sized objects. While most of the requested objects are small (the me
object size in this data set was 4 KB) there are some extremely large ob
available. The largest object requested during the measurement period was
MB video. We speculate that the higher access speeds available to the clien
increasing the number of large transfers as well as the maximum size of trans
The issue for the proxy cache is to decide whether to cache a large numb
small objects (which could potentially increase the hit rate) or to cache a
large objects (possibly increasing the byte hit rate).

Recency of Reference.Most Web proxy caches in use today utilize the Lea
Recently Used (LRU) replacement policy (or some derivative of LRU). This p
icy works best when the access stream exhibits strong temporal locality
recency of reference (i.e., objects which have recently been referenced are
to be re-referenced in the near future). In our workload characterization stud
we found that one-third of all re-references to an object occurred within one h
of the previous reference to the same object. Approximately two-thirds (66%
re-references occurred within 24 hours of the previous request. These re
suggest that recency is a characteristic of Web proxy workloads.

2. We chose 5% as a threshold after an in-depth analysis of object size changes [

e
non-

mi-
nce,
. We
the

ly
va-
nefit
ate

ent
sers

were
oved

ctive

Sec-
sents
ction

ring
, 4
an
ment
to 16
o 1
otal
entire
ache.
B),
ct

cts
in-
Frequency of Reference.Several recent studies [4][10] have found that som
Web objects are more popular than others (i.e., Web referencing patterns are
uniform). Our characterization study of the Web proxy workload revealed si
lar results [2]. These findings suggest that popularity, or frequency of refere
is a characteristic that could be considered in a cache replacement decision
also found that many objects are extremely unpopular. In fact, over 60% of
distinct objects (i.e., unique requests)3 seen in the proxy log were requested on
a single time (we refer to these objects as ‘‘one-timers’’ [4]). Similar obser
tions have been made by other researchers [6][19]. Obviously there is no be
in caching one-timers. Thus, a replacement policy that could discrimin
against one-timers should outperform a policy that does not.

Turnover. One final characteristic that could impact proxy cache replacem
decisions is turnover in the active set of objects (i.e., the set of objects that u
are currently interested in). Over time the active set changes; objects that
once popular are no longer requested. These inactive objects should be rem
from the cache to make space available for new objects that are now in the a
set.

5. Experimental Design

This section describes the design of the Web proxy cache simulation study.
tion 5.1 introduces the factors and levels that are examined. Section 5.2 pre
the metrics used to evaluate the performance of each replacement policy. Se
5.3 discusses other issues regarding the simulation study.

5.1. Factors and Levels

Cache Sizes.The cache size indicates the amount of space available for sto
Web objects. We examine seven different levels for this factor: 256 MB, 1 GB
GB, 16 GB, 64 GB, 256 GB and 1 TB. Each level is a factor of four larger th
the previous size; this allows us to easily compare the performance improve
relative to the increase in cache size. The smaller cache sizes (e.g., 256 MB
GB) indicate likely cache sizes for Web proxies. The larger values (64 GB t
TB) indicate the performance of the cache when a significant fraction of the t
requested object set is cached. The largest cache size (1 TB) can store the
object set and thus indicates the maximum achievable performance of the c
The other cache sizes can hold approximately 0.06% (256 MB), 0.25% (1 G
1% (4 GB), 4% (16 GB), 16% (64 GB) and 64% (256 GB) of the entire obje
set.

3. The number of distinct objects represents an upper bound on the number of obje
that could be cached; the size of these objects (i.e., the unique bytes transferred)
dicates the maximum useful cache size.

-
t pol-
eate
ment
sly
st
om-
oli-

U-K
of the

een
ds

ery

ery
for

ndary
ond-
late
ven if
lluted
le-

by a
e sur-
fac-

d for a

the
deci-
am-
ize
ts to
ter-

isk
and
Cache Replacement Policies.The second factor that we investigate in this sim
ulation study is the replacement policy used by the cache. The replacemen
icy determines which object(s) should be evicted from the cache in order to cr
sufficient room to add a new object. There are many proposed cache replace
policies, too many to focus on in this study. We examine six different, previou
proposed replacement policies in this study: two ‘‘traditional’’ policies (Lea
Recently Used and Least Frequently Used), two replacement policies rec
mended for Web proxy caches (Size [25] and GreedyDual-Size [9]) and two p
cies designed for other computer systems (Segmented LRU [16] and LR
[23]). We chose these six policies because each one considers at least one
proxy workload characteristics when making a replacement decision.

The Least Recently Used (LRU) policy removes the object which has not b
accessed for the longest period of time. This policy works well in workloa
which exhibit strong temporal locality (i.e., recency of reference). LRU is a v
simple policy requiring no parameterization.

The Least Frequently Used (LFU) policy maintains a reference count for ev
object in the cache. The object with the lowest reference count is selected
replacement. If more than one object has the same reference count a seco
policy can be used to break the tie (our implementation uses LRU as the sec
ary policy). One potential drawback of LFU is that some objects may accumu
large reference counts and never become candidates for replacement, e
these objects are no longer in the active set (i.e., the cache could become po
with inactive objects). To alleviate this problem an aging policy can be imp
mented [24]. This aging policy requires two parameters:AMax, which places an
upper limit on the average reference count for all objects in the cache; andMRefs,
which imposes an upper limit on the reference count that can be obtained
single object. Whenever the average reference count for objects in the cach
passesAMax, the reference count of each object in the cache is reduced by a
tor of two.

The Size policy, designed by Williamset al. [25] specifically for Web proxy
caches, removes the largest object(s) from the cache when space is neede
new object. This policy requires no parameterization.

The GreedyDual-Size policy proposed by Cao and Irani [9] considers both
size of the object and its recency of reference when making a replacement
sion. Cao and Irani have proposed several variations of this policy [9]. We ex
ine two of these policies: GreedyDual-Size (Hits), which attempts to maxim
the hit rate of the proxy cache, and GreedyDual-Size (Bytes) which attemp
maximize the byte hit rate. Neither GreedyDual-Size policy requires parame
ization.

The Segmented LRU (SLRU) policy was originally designed for use in a d
cache [16]. We include it in this study because it considers both frequency

licy
tected
, the
bject
LRU
ce-
ed to
once
they
ently

s one
ate to

lace-
or-
oved

er
ject

che:
be

te hit
the

c in
me
rded
ore,
ely

s the
ter-
mp-
recency of reference when making a replacement decision. The SLRU po
partitions the cache into two segments: an unprotected segment and a pro
segment (reserved for popular objects). On the initial request for an object
object is added to the unprotected segment. When a cache hit occurs, the o
is moved to the protected segment. Both segments are managed with the
policy. However, only objects in the unprotected segment are eligible for repla
ment. When objects are removed from the protected segment they are add
the most recently used position in the unprotected segment. This allows the
popular objects to remain in the cache for a longer period of time in case
regain their popularity. If space is needed to add these objects, the least rec
used objects in the unprotected segment are removed. This policy require
parameter, which determines what percentage of the cache space to alloc
the protected segment.

The LRU-K replacement policy proposed by O’Neilet al. [23] also considers
both frequency and recency of reference when selecting an object for rep
ment. In an attempt to improve performance this policy retains historical inf
mation (the last K reference times) on objects even if they have been rem
from the cache. This policy requires two parameters:K andRP. The LRU-K
policy retains theK newest reference times for each object. Objects with few
thanK references are the first candidates for replacement, followed by the ob
with the oldest reference time. The parameterRP is used to limit the length of
time (i.e., the retaining period) for objects that are no longer in the cache.RP is
needed to prevent the policy from accumulating too much historical data.

5.2. Performance Metrics

In this study two metrics are used to evaluate the performance of the proxy ca
hit rateandbyte hit rate. The hit rate is the percentage of all requests that can
satisfied by searching the cache for a copy of the requested object. The by
rate represents the percentage of all data that is transferred directly from
cache rather than from the origin server.

A third metric of interest is response time or latency. We do not use this metri
this study for several reasons. High variability in transfer times for the sa
object make replacement decisions more difficult. Inaccuracies in our reco
response times also factored in our decision to not use this metric. Furtherm
Cao and Irani found that maximizing the hit rate reduced latency more effectiv
than policies designed to reduce response times [9].

5.3. The Simulator

This section discusses several remaining topics. Section 5.3.1 discusse
design and validation of our simulator. Section 5.3.2 describes how we de
mined the length of simulation warm-up. Section 5.3.3 summarizes the assu

istency

nec-
s on
gan
a

y pre-
tinct

O(1)
ata

ment
r is
ator
he

to
mil-
ire

ob-

ture
ces-
ate
rray
inter
ese
ion

e
ulator
ified
ore,

ults

ring
ccur

sient
trace-
tions we made regarding cacheable and uncacheable requests, cache cons
and other issues involved with object caching.

5.3.1. Simulator Description

Due to the extremely large data set that we use in our simulation study it was
essary to implement the simulator as efficiently as possible. Our focus wa
reducing the complexity of the actions performed by the simulator. We be
with the simulator used by Arlitt and Williamson [5]. Their simulator utilizes
large array that maintains metadata on each unique object in the data set. B
processing the data set and mapping all of the unique object names to dis
integers (as discussed in Section 3.3) their simulator is able to determine in
time if a cache hit or miss has occurred. Their simulator uses a linked list d
structure for sorting the objects in the cache according to the given replace
criteria. By combining the linked list with the array of metadata their simulato
able to locate objects in the cache in O(1) time. The bottleneck in their simul
is the time required to update the linked list following a cache hit or miss. T
linked list works very well for policies such as LRU, requiring only O(1) time
update the cache contents. Only 30 minutes was required to simulate all 115
lion requests when the LRU policy was utilized. However, most policies requ
O(n) time to perform updates when using a linked list. This is a significant pr
lem when there are millions of unique objects in the cache.

To lessen the effects of this bottleneck we replaced the linked list data struc
with a heap. This data structure requires only O(log n) time to perform the ne
sary reordering of the cache contents following a hit or miss. In order to loc
objects in the cache in O(1) time we maintain a pointer from the metadata a
to the corresponding object in the heap. It is also necessary to have a po
from the object back to it’s position in the metadata array. As a result of th
changes our simulator requires only 45 minutes to simulate all 115 mill
requests when using the more complicated replacement policies.

An important aspect of any simulation study is validation of the simulator. W
took numerous precautions to ensure correctness. For example, the sim
was initially tested using short traces (e.g., 100 requests) which could be ver
by hand. The results obtained from our simulator are repeatable. Furtherm
the performance of various policies using our simulator is similar to the res
reported in other studies [9][19].

5.3.2. Simulation Warm-up

When monitoring a system only the steady-state behaviour is of interest. Du
the initial or transient state of a cache simulation, many of the cache misses o
simply because the cache is empty (i.e., cold misses). To identify the tran
state we categorized the cache misses that occurred during each day in the

GB

een

due

ests

pty.
isses
e dra-
urce

cates
sed.
f all
due

rests
other

long

ite-
isses
for-
e;
ur-
the
ks,
bility
for-
byte
ding

hree
riod
cted.
the
driven simulation. Figure 3(a) indicates the misses that occurred in a 1
cache that utilized the LRU replacement policy. The four categories are:

1. cold miss: the initial request for an object

2. capacity miss: a request for an object that was in the cache but has since b
evicted

3. consistency miss:a request for an object in the cache that has been modified;
to the modification the object must be transferred from the origin server

4. other misses:requests that do not fit in one of the above categories (e.g., requ
for cgi-bin objects)

Figure 3(a) confirms that initially most misses occur because the cache is em
Once the cache has had time to add objects the percentage of cold m
decreases rapidly. Due to the limited cache space capacity misses increas
matically. After several weeks capacity misses have become the dominant so
of all cache misses. The continual increase in capacity misses over time indi
that the cache size is too small, at least when the LRU replacement policy is u
Even after five months cold misses still account for a significant percentage o
misses (over 20% of the misses in a 1 GB LRU cache). This phenomenon is
to the continuous growth in the number of Web objects and the changing inte
of users. Throughout the trace the percentage of consistency misses and
misses stays relatively constant. Finally, Figure 3(a) illustrates the need for
duration traces in supporting useful proxy cache performance analyses.

Figure 3(b) shows the performance of an infinite-sized cache. With an infin
sized cache no capacity misses occur. Thus instead of categorizing the m
that occur we monitor the effects of different warm-up periods on cache per
mance. In Figure 3(b) the firstx weeks of the trace are used to warm the cach
following the warm-up period the cache is simulated for an additional week d
ing which performance statistics were collected. Figure 3(b) shows that both
hit rate and byte hit rate of the cache are quite poor during the initial few wee
but are increasing rapidly (as more objects get added to the cache the proba
of a miss occurring decreases). After the first few weeks of simulation the per
mance of the cache is relatively stable. The continued growth in the hit and
hit rates is due to the increased sharing of object in the cache by an expan
user base.

After analyzing the results from Figure 3(a) and (b) we chose to use the first t
weeks of trace data (8% of all requests) to warm the cache. During this pe
the simulated cache operates in its usual manner but no statistics are colle
Statistics are only collected once the warm-up period has finished. We use
same warm-up period in all experiments.

ed to
he-
ified by
peci-
ative
ne)
these

ion of
not

ache-
ining

sider
e use
roxy
the
ply
ver
to be
s.

chro-
now

we
cur.
ues,
e in
eal
ome-
5.3.3. Cacheability and Consistency

In our study all requests except for aborted (i.e., incomplete) transfers are us
drive the simulation. We divide the completed transfers into two groups: cac
able requests and uncacheable requests. The cacheable requests are ident
the response status code recorded in the data set. According to the HTTP S
fication, responses with a status code of 200 (Successful), 203 (Non-authorit
Information), 300 (Multiple Choices), 301 (Moved Permanently) and 410 (Go
(except for dynamic requests) are considered to be cacheable [13]. Some of
responses could potentially be uncacheable. Feldmannet al. [12] found that
many HTTP requests and responses may be uncacheable due to the inclus
various header fields (e.g., cookies). Unfortunately the data we collected did
include the headers that would indicate which of these responses were unc
able. By assuming that all of these responses are cacheable we are determ
an upper bound on the achievable hit rates and byte hit rates. We also con
status 304 responses to be cacheable even though no data is transferred. W
status 304 responses to update the state information maintained by the p
cache on the object being validated. We believe that this information helps
replacement policy in determining the active set of objects. This does not im
that the cache would not forward Get-If-Modified requests to the origin ser
should such actions be necessary. All remaining responses are considered
uncacheable. All requests for uncacheable responses result in cache misse

Our simulator does not perform cache consistency functions such as asyn
nous validations. We do update the state information on objects that we k
have changed. Since our data set does not include Time-to-Live information
do not collect statistics on the number of validation messages that would oc
Also, we do not consider issues like security or authentication. These iss
along with consistency, require more in-depth coverage than we can provid
this study. Since our simulator does not provide all of the functionality of a r
proxy cache we expect our results (i.e., hit rates and byte hit rates) to be s
what optimistic.

0

10

20

30

40

50

60

70

0 3 5 10 15 20

P
er

ce
nt

ag
e

of
 T

ot
al

 M
is

se
s

Week

Cold Misses
Capacity Misses

Consistency Misses
Other Misses

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
er

ce
nt

ag
e

Length of Warmup (weeks)

Hit Rate Byte Hit Rate

Figure 3. Determining the Simulation Warm-up

(a) 1 GB LRU Cache (b) Infinite-sized Cache

pol-
rfor-
of the
ical
aph
hile
red

ire
du-
ance

ese
ked
ve a

res
;
ts
ges
U-
few
poli-

MB),
aller
6. Simulation Results

This section provides the simulation results of the proxy cache replacement
icy study. Section 6.1 examines the effects of parameterization on the pe
mance of the replacement policies. Section 6.2 compares the performance
different cache replacement policies. All of our results are shown in graph
format (Figure 4 - Figure 7). Each figure consists of two graphs, with the gr
on the left indicating the achieved hit rate for a cache of a particular size w
the graph on the right shows the achieved byte hit rate for a similarly configu
cache.

6.1. Parameterization

Three of the replacement policies under study (LFU, SLRU and LRU-K) requ
parameterization in order to function properly. We examine each policy indivi
ally in an attempt to determine the effects of each parameter on the perform
of the replacement policy.

The LFU replacement policy requires two parameters,AMax andMRefs, in order
to age objects in the cache. We experimented with different settings for th
parameters. We found that as long as the aging policy was periodically invo
(e.g., on a daily basis) the choice of values for these parameters did not ha
significant impact on performance of the LFU-Aging policy. Figure 4 compa
the performance of LFU without aging (LFU) to LFU with aging (LFU-Aging
AMax=10, MRefs=8,192). LFU-Aging clearly outperforms LFU. These resul
indicate that it is important for the replacement policy to be able to make chan
to the active set of objects. The performance of LFU is similar to that of LF
Aging in two situations. When cache sizes are large (e.g., 256 GB and up)
replacement decisions are needed and cache pollution is not a factor so the
cies have similar performance. When cache sizes are very small (e.g., 256
adding a single large object can result in the removal of a large number of sm
objects reducing the effects of cache pollution.

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

H
it

R
at

e
(%

)

Cache Size

LFU-Aging LFU

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

B
yt

e
H

it
R

at
e

(%
)

Cache Size

LFU-Aging LFU

Figure 4. Analysis of LFU performance

(a) Hit Rate (b) Byte Hit Rate

pro-
eter.

ache
ph for
and

e for
seg-

s too
t to
RU.
con-
han
for
s
for

we
Since
we

RU-

ns:

6.
last
htly
to

ary to
or-
The SLRU replacement policy uses a single parameter to set the size of the
tected cache segment. We examined a wide range of values for this param
Figure 5 shows the results when either 10, 60 or 90 per cent of the available c
space is reserved for the protected segment. There is one curve on the gra
each parameter setting. For example, the SLRU-90 curves indicate the hit
byte hit rate achieved when the SLRU policy reserves 90% of the cache spac
the protected segment. Figure 5 reveals that altering the size of the protected
ment does affect the performance of the cache. If the protected segment i
small (e.g., 10% of total space) then the policy gives significantly more weigh
the recency workload characteristic; as a result the policy behaves like L
When the protected segment is too large (e.g., 90% of total space) the policy
siders the frequency characteristic to be significantly more important t
recency. This causes the policy to retain a lot of extremely popular objects
extended periods of time, much like the LFU policy. The SLRU policy perform
best when a balance is found that allows for popular objects to be retained
long periods of time without becoming susceptible to pollution. In our study
found the best results occurred for a protected segment size of 60 per cent.
similar results were obtained in the original study using disk caches [16]
believe that this parameter setting is not specific to our data set.

The final replacement policy under study that requires parameterization is L
K. LRU-K requires two parameters. The first parameter,K , is the number of
reference times to retain for an object. The second parameter,RP, is the length
of time to keep this information. We examine several different configuratio
retaining either the last two (K=2) or the last three (K=3) reference times to each
object, and retaining history information for either one day (RP = 1 day) or for-
ever (RP = infinite). The results of these experiments are shown in Figure
With smaller cache sizes (e.g., 256 MB - 1 GB) retaining information on the
three references (for any length of time) provides higher hit rates and slig
higher byte hit rates. This can be attributed to the policy giving higher priority
the most popular objects. As the cache size gets larger it becomes necess
retain information for a longer period of time in order to achieve better perf

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

H
it

R
at

e
(%

)

Cache Size

SLRU-90 SLRU-60 SLRU-10

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

B
yt

e
H

it
R

at
e

(%
)

Cache Size

SLRU-90 SLRU-60 SLRU-10

Figure 5. Analysis of SLRU performance

(a) Hit Rate (b) Byte Hit Rate

two

. To
pol-

in
, the
he
est

icate
7%
of

, out-
een
small
For
a hit
as

hed.

r to
MB

age
eris-
all
from
t in
mance. Requiring less information about each object (i.e., using only the last
reference times) also improves performance for the larger cache sizes.

6.2. Comparison of Replacement Policies

In this section we compare the performance of all of the replacement policies
make the comparison easier we include only the ‘‘best’’ curve for each of the
icies that required parameterization (i.e., we use LFU-Aging (AMax=10,
MRefs=8,192) for the LFU policy, SLRU-60 for the SLRU policy and LRU-2
with infinite history for the LRU-K policy). We have also sorted the legend
each graph by the performance of the policies. For example, in Figure 7(a)
first policy listed in the legend is GDS-Hits. The GDS-Hits policy achieved t
highest hit rate. The last policy in the legend is LRU. LRU obtained the low
hit rate of the policies that we examined.

Figure 7(a) compares the hit rates achieved by each policy. The results ind
that the maximum achievable hit rate during the simulation period is 6
(obtained by all policies with a cache size of 1 TB). The remaining 33%
requests are for the initial requests for objects, for uncacheable objects (e.g.
put from dynamic or cgi objects) or for the updates of objects which have b
modified and cannot be served from the cache. Figure 7(a) shows that even
caches can perform quite well if the correct replacement policy is used.
example, a 256 MB cache using the GreedyDual-Size (Hits) policy achieved
rate of 35% which is 52% of the maximum achievable rate. This rate w
achieved while allowing for only 0.06% of the entire object set size to be cac

Figure 7(a) shows that the GreedyDual-Size (Hits) policy is vastly superio
other policies when hit rate is used as the metric. For small cache sizes (256
to 16 GB) GDS-Hits outperforms all other policies by at least 6 percent
points. The success of the GDS-Hits policy can be attributed to two charact
tics of the policy: it discriminates against large objects, allowing for more sm
objects to be cached; and it ages the object set to prevent cache pollution
occurring. During our experiments we monitored the number of objects kep

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

H
it

R
at

e
(%

)

Cache Size

LRU-3 (infinite)
LRU-2 (infinite)

LRU-2 (1 day)
LRU-3 (1 day)

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

B
yt

e
H

it
R

at
e

(%
)

Cache Size

LRU-2 (infinite)
LRU-3 (infinite)

LRU-2 (1 day)
LRU-3 (1 day)

Figure 6. Analysis of LRU-K performance

(a) Hit Rate (b) Byte Hit Rate

the
d of
cts
the
hen
uch

ing
r hit

ore
over
ailed
e be

-K)
arge
s as
ver,
etain
ache
orm

ow-
ace-
is the
-Hits
of

nder
riod
the cache under the various replacement policies. With a 256 MB cache
GDS-Hits policy held 170,000 objects (average object size 1.5 KB) at the en
the simulation. The LFU-Aging policy, by comparison, held only 20,000 obje
(an average object size of 13 KB). By inflating the number of objects kept in
cache GDS-Hits increases the probability that an object will be in the cache w
it is requested. The other size-based policies (GDS-Bytes and Size) have m
lower hit rates. GDS-Bytes attempts to improve the byte hit rate by favor
larger objects (it kept 26,000 objects in the 256 MB cache). Thus, the lowe
rate of GDS-Bytes is not unexpected. The Size policy discriminates even m
harshly against large objects. In the 256 MB cache the Size policy collected
900,000 objects (average object size 300 bytes). However, the Size policy f
to age the object set. The poor performance of the Size policy can therefor
attributed to cache pollution.

The frequency-based replacement policies (LFU-Aging, SLRU and LRU
achieve similar hit rates. Since these policies do not discriminate against l
objects (they do not consider object size at all) they require about four time
much cache space to achieve hit rates similar to the GDS-Hits policy. Howe
the frequency-based policies are able to discriminate against one-timers, r
popular objects for longer time periods and age the object set to prevent c
pollution. These characteristics allow frequency-based policies to outperf
recency-based policies.

The only recency-based policy that we examine is LRU. LRU achieves the l
est hit rate since it does not consider enough information when making repl
ment decisions and therefore tends to make poorer choices. Because of th
LRU policy requires almost eight times as much cache space as the GDS
policy to achieve similar hit rates to the GDS-Hits policy. One positive feature
LRU is that it ages the object set which prevents cache pollution.

Figure 7(b) shows the achieved byte hit rates for the replacement policies u
study. Figure 7(b) reveals a maximum byte hit rate during the simulation pe

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

H
it

R
at

e
(%

)

Cache Size

GDS-Hits
LFU-Aging

SLRU

LRU-K
GDS-Bytes

Size

LRU

0

10

20

30

40

50

60

70

256 MB 1 GB 4 GB 16 GB 64 GB 256 GB 1 TB

B
yt

e
H

it
R

at
e

(%
)

Cache Size

LFU-Aging
SLRU

LRU-K

GDS-Bytes
LRU

GDS-Hits

Size

Figure 7. Comparison of all Replacement Policies

(a) Hit Rate (b) Byte Hit Rate

to be
it is

e, a
the

ng,
ree
per-
ell
sible
tain

cies,

s of
it to
sed
pt to
the
licies.

not
DS-

t rate
orse
ache

This
and

ions
icies.
other
rnal
can

ilable
rfor-
side

olicy
rent
of 62% for the data set under study. The remaining 38% of the data needed
transferred across the external network link. The results also indicate that
more difficult to achieve high byte hit rates than high hit rates. For exampl
256 MB cache can achieve a byte hit rate of 15% which is only one quarter of
maximum achievable byte hit rate.

According to the results in Figure 7(b) the frequency-based policies (LFU-Agi
SLRU and LRU-K) are the best choice for reducing network traffic. The th
frequency-based policies achieve similar byte hit rates, approximately 2-4
centage points higher than LRU. The frequency-based policies work w
because they do not discriminate against the large objects which are respon
for a significant amount of the data traffic. Frequency-based policies also re
popular objects (both small and large) longer than recency-based poli
another reason that frequency-based policies achieve higher byte hit rates.

The LRU and GDS-Bytes policies have almost identical performance in term
byte hit rates. LRU does not discriminate against large objects which allows
outperform size-based policies which do. Although GDS-Bytes is a size-ba
policy it has been designed to treat large objects more favorably in an attem
improve the byte hit rate. Both LRU and GDS-Bytes require about twice
cache space to achieve byte hit rates comparable to the frequency-based po

Since size-based policies (generally) discriminate against large objects it is
surprising that these policies have the worst byte hit rate performance. The G
Hits policy requires four times more cache space to achieve the same byte hi
as a frequency-based policy. The byte hit rate of the Size policy is even w
than GDS-Hits because of more unfavorable treatment of large objects and c
pollution.

7. Contributions and future work

This paper has presented our performance study of a Web proxy cache.
study is the first to include the effects of high-speed cable modems by clients
also has the largest data set of any proxy workload. Trace-driven simulat
were used to evaluate the performance of different cache replacement pol
Our results indicate that size-based policies achieve higher hit rates than
policies while frequency-based policies are more effective at reducing exte
network traffic. The results show that a properly chosen replacement policy
reduce the purchase cost of Web proxy caches by making better use of ava
resources. The results also indicate that it is important to examine the pe
mance of replacement policies over extended time durations to test for
effects such as cache pollution.

The intent of this paper was not to promote the use of a single replacement p
for Web proxies. Instead, our goal was to explain the performance of diffe

did
d in
byte

hing.
ies

prod-
the

nting
lity
be
Web

the
ohn
con-
n for

xy
r

d

b’s
o.
policies by examining the workload characteristics that each policy used or
not use when making replacement decisions. This information can be applie
the design of a new replacement policy that achieves both high hit rates and
hit rates.

There are many open issues regarding Web proxy performance and Web cac
Future work in this area could include implementing new replacement polic
and other cache management techniques [3], for example, in actual caching
ucts. Other issues that require additional investigation include examining
relationship between hit rates and latency reduction for end users, impleme
a more efficient consistency mechanism [17][18] and adding more functiona
to Web proxy caches (e.g., accounting and security). Finally, much effort will
required to ensure that the majority of Web objects remain cacheable as the
evolves.

Acknowledgments

The authors would like to thank Mike Rodriquez of HP Labs and all the people in
Telecommunication Platforms Division (TPD) who supplied us with access logs; J
Dilley, Gita Gopal and Jim Salehi of HP Labs and the anonymous reviewers for their
structive comments on the paper; and Greg Oster of the University of Saskatchewa
his assistance with the development of the simulator.

 References
[1] J. Almeida and P. Cao, ‘‘Measuring Proxy Performance with the Wisconsin Pro

Benchmark’’, Technical Report, University of Wisconsin Department of Compute
Science, April 1998.

[2] M. Arlitt, R. Friedrich, and T. Jin, ‘‘Workload Characterization of a Web Proxy
Cache in a Cable Modem Environment’’, to appear inACM SIGMETRICS
Performance Evaluation Review, August 1999.

[3] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich and T. Jin, “Evaluating Content
Management Techniques for Web Proxy Caches”,Proceedings of the Second
Workshop on Internet Server Performance, Atlanta, GA, May 1999.

[4] M. Arlitt and C. Williamson, ‘‘Internet Web Servers: Workload Characterization an
Performance Implications’’,IEEE/ACM Transactions on Networking, Vol. 5, No. 5,
pp. 631-645, October 1997.

[5] M. Arlitt and C. Williamson, ‘‘Trace-Driven Simulation of Document Caching
Strategies for Internet Web Servers’’,The Society for Computer Simulation
SIMULATION Journal, Vol. 68, No. 1, pp. 23-33, January 1997.

[6] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm, ‘‘Enhancing the We
Infrastructure: From Caching to Replication’’, IEEE Internet Computing, Vol. 1, N
2, pp. 18-27, March-April 1997.

[7] P. Barford, A. Bestavros, A. Bradley and M. Crovella, “Changes in Web Client
Access Patterns: Characteristics and Caching Implications”, to appear inWorld Wide
Web, Special Issue on Characterization and Performance Evaluation, 1999.

-

d
ter

 of

e of
of

es:

et

’’,
g

l

xy

e

r

[8] T. Berners-Lee, R. Cailliau, A. Luotenen, H. Nielsen, and A. Secret, ‘‘The World
Wide Web’’, Communications of the ACM, 37(8), pp. 76-82, August 1993.

[9] P. Cao and S. Irani, ‘‘Cost-Aware WWW Proxy Caching Algorithms’’,Proceedings
of USENIX Symposium on Internet Technologies and Systems (USITS), Monterey,
CA, pp. 193-206, December 1997.

[10] C. Cunha, A. Bestavros, and M. Crovella, ‘‘Characteristics of WWW Client-base
Traces’’, Technical Report TR-95-010, Boston University Department of Compu
Science, April 1995.

[11] B. Duska, D. Marwood, and M. Feeley, ‘‘The Measured Access Characteristics
World-Wide Web Client Proxy Caches’’,Proceedings of USENIX Symposium of
Internet Technologies and Systems (USITS), Monterey, CA, pp. 23-35, December
1997.

[12] A. Feldmann, R. Cáceres, F. Douglis, G. Glass and M. Rabinovich, “Performanc
Web Proxy Caching in Heterogeneous Bandwidth Environments”, Proceedings
IEEE Infocom ‘99, New York, NY, pp. 107-116, March 1999.

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, ‘‘RFC 2068 -
Hypertext Transfer Protocol - - HTTP/1.1’’, January 1997.

[14] S. Gribble and E. Brewer, ‘‘System Design Issues for Internet Middleware Servic
Deductions from a Large Client Trace’’,Proceedings of USENIX Symposium on
Internet Technologies and Systems (USITS), Monterey, CA, pp. 207-218, December
1997.

[15] V. Jacobson, ‘‘How To Kill the Internet’’, SIGCOMM ‘95 Middleware Workshop,
Cambridge, MA, August 1995.

[16] R. Karedla, J. Love and B. Wherry, ‘‘Caching Strategies to Improve Disk System
Performance’’, IEEE Computer, Vol. 27, No. 3, pp. 38-46, March 1994.

[17] B. Krishnamurthy and C. Wills, ‘‘Study of Piggyback Cache Validation for Proxy
Caches in the World-Wide Web’’, Proceedings of USENIX Symposium on Intern
Technologies and Systems (USITS), Monterey, CA, pp. 1-12, December 1997.

[18] C. Liu and P. Cao, ‘‘Maintaining Strong Cache Consistency in the World-Wide Web
Proceedings of the 17th IEEE International Conference on Distributed Computin
Systems, May 1997.

[19] P. Lorenzetti and L. Rizzo, ‘‘Replacement Policies for a Proxy Cache’’, Technica
Report, Universita di Pisa, December 1996.

[20] A. Luotonen,Web Proxy Servers, Prentice Hall, Upper Saddle River, NJ, 1998.

[21] C. Maltzahn, K. Richardson and D. Grunwald, “Reducing the Disk I/O of Web Pro
Server Caches”, to appear in theUSENIX Annual Technical Conference, Monterey,
CA, June 1999.

[22] C. Maltzahn and K. Richardson, ‘‘Performance Issues of Enterprise Level Web
Proxies’’, Proceedings of the 1997 ACM SIGMETRICS Conference on the
Measurement and Modeling of Computer Systems, Seattle, WA, pp. 13-23, Jun
1997.

[23] E. O’Neil, P. O’Neil and G. Weikum, ‘‘The LRU-K Page Replacement Algorithm fo
Database Disk Buffering’’,Proceedings of SIGMOD ‘93, Washington, DC, May
1993.

-
n

s

’,
CA,

alo
and
rfor-
of

alo
ent

nce
ased
stem
trol
n of

onal
tan-

Cal-
he
ime
in

gh the
the
ar-
[24] J. Robinson and M. Devarakonda, ‘‘Data Cache Management Using Frequency
Based Replacement’’,Proceedings of the 1990 ACM SIGMETRICS Conference o
the Measurement and Modeling of Computer Systems, Boulder, CO, pp. 134-142,
May 1990.

[25] S. Williams, M. Abrams, C. Standridge, G. Abdulla, and E. Fox, ‘‘Removal Policie
in Network Caches for World-Wide Web Documents’’,Proceedings on ACM
SIGCOMM ‘96, Stanford, CA, pp. 293-305, August 1996.

[26] R. Wooster and M. Abrams, ‘‘Proxy Caching that Estimates Page Load Delays’
Proceedings of the 6th International World-Wide Web Conference, Santa Clara,
April 1997.

[27] World-Wide Web Consortium, ‘‘Replication and Caching Position Statement’’,
August 1997. Available at:http://www.w3.org/Propogation/
activity.html

 Vitae

Martin Arlitt is a research engineer at Hewlett-Packard Laboratories in P
Alto, California, USA. His general research interests are computer networks
computer systems performance analysis. His specific interests include pe
mance issues for the World-Wide Web. He graduated from the University
Saskatchewan in 1996.

Rich Friedrich is a Senior Researcher at Hewlett-Packard Laboratories in P
Alto, California, USA. He has held several research and product developm
positions within Hewlett-Packard including leading the system performa
engineering team that developed and optimized the first commercial RISC b
systems in the mid-1980’s and the design of a distributed measurement sy
for the OSF DCE in the early 1990’s. His current interests are in QoS con
mechanisms for Internet services, distributed systems and the visualizatio
large data sets. He was the program co-chair for the IEEE Sixth Internati
Workshop on Quality of Service. He attended Northwestern University and S
ford University.

Tai Jin is a research engineer at Hewlett-Packard Laboratories in Palo Alto,
ifornia, USA. He was a key contributor to the HP-UX networking projects in t
late 1980’s and was involved in the creation of the HP intranet. During that t
he developed a tool which revolutionized network software distribution with
the company. He has also created several useful services accessible throu
World-Wide Web. His interests include networked systems, exploiting
World-Wide Web, performance tuning, creating useful tools, and the stock m
ket. He graduated from Columbia University in 1984.

	Performance Evaluation of
	Web Proxy Cache Replacement Policies
	Martin Arlitt, Rich Friedrich, and Tai Jin
	Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304
	{arlitt, richf, tai}@hpl.hp.com
	1. Introduction
	2. Background
	Figure 1. Using a Proxy within the World-Wide Web

	3. Data Collection and Reduction
	3.1. Data Collection Site
	Figure 2. Diagram of the System Under Study

	3.2. Data Collection

	Table 1. Summary of Access Log Characteristics (Raw Data Set)
	3.3. Data Reduction

	Table 2. Summary of Access Log Characteristics (Reduced Data Set)
	4. Workload Characterization
	5. Experimental Design
	5.1. Factors and Levels
	5.2. Performance Metrics
	5.3. The Simulator
	5.3.1. Simulator Description
	5.3.2. Simulation Warm-up
	1. cold miss: the initial request for an object
	2. capacity miss: a request for an object that was in the cache but has since been evicted
	3. consistency miss: a request for an object in the cache that has been modified; due to the modi...
	4. other misses: requests that do not fit in one of the above categories (e.g., requests for cgi-...
	Figure 3. Determining the Simulation Warm-up

	5.3.3. Cacheability and Consistency

	6. Simulation Results
	6.1. Parameterization
	Figure 4. Analysis of LFU performance
	Figure 5. Analysis of SLRU performance
	Figure 6. Analysis of LRU-K performance

	6.2. Comparison of Replacement Policies
	Figure 7. Comparison of all Replacement Policies

	7. Contributions and future work
	Acknowledgments

	References
	[1] J. Almeida and P. Cao, ‘‘Measuring Proxy Performance with the Wisconsin Proxy Benchmark’’, Te...
	[2] M. Arlitt, R. Friedrich, and T. Jin, ‘‘Workload Characterization of a Web Proxy Cache in a Ca...
	[3] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich and T. Jin, “Evaluating Content Management ...
	[4] M. Arlitt and C. Williamson, ‘‘Internet Web Servers: Workload Characterization and Performanc...
	[5] M. Arlitt and C. Williamson, ‘‘Trace-Driven Simulation of Document Caching Strategies for Int...
	[6] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm, ‘‘Enhancing the Web’s Infrastruc...
	[7] P. Barford, A. Bestavros, A. Bradley and M. Crovella, “Changes in Web Client Access Patterns:...
	[8] T. Berners-Lee, R. Cailliau, A. Luotenen, H. Nielsen, and A. Secret, ‘‘The World- Wide Web’’,...
	[9] P. Cao and S. Irani, ‘‘Cost-Aware WWW Proxy Caching Algorithms’’, Proceedings of USENIX Sympo...
	[10] C. Cunha, A. Bestavros, and M. Crovella, ‘‘Characteristics of WWW Client-based Traces’’, Tec...
	[11] B. Duska, D. Marwood, and M. Feeley, ‘‘The Measured Access Characteristics of World-Wide Web...
	[12] A. Feldmann, R. Cáceres, F. Douglis, G. Glass and M. Rabinovich, “Performance of Web Proxy C...
	[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, ‘‘RFC 2068 - Hypertext Tra...
	[14] S. Gribble and E. Brewer, ‘‘System Design Issues for Internet Middleware Services: Deduction...
	[15] V. Jacobson, ‘‘How To Kill the Internet’’, SIGCOMM ‘95 Middleware Workshop, Cambridge, MA, A...
	[16] R. Karedla, J. Love and B. Wherry, ‘‘Caching Strategies to Improve Disk System Performance’’...
	[17] B. Krishnamurthy and C. Wills, ‘‘Study of Piggyback Cache Validation for Proxy Caches in the...
	[18] C. Liu and P. Cao, ‘‘Maintaining Strong Cache Consistency in the World-Wide Web’’, Proceedin...
	[19] P. Lorenzetti and L. Rizzo, ‘‘Replacement Policies for a Proxy Cache’’, Technical Report, Un...
	[20] A. Luotonen, Web Proxy Servers, Prentice Hall, Upper Saddle River, NJ, 1998.
	[21] C. Maltzahn, K. Richardson and D. Grunwald, “Reducing the Disk I/O of Web Proxy Server Cache...
	[22] C. Maltzahn and K. Richardson, ‘‘Performance Issues of Enterprise Level Web Proxies’’, Proce...
	[23] E. O’Neil, P. O’Neil and G. Weikum, ‘‘The LRU-K Page Replacement Algorithm for Database Disk...
	[24] J. Robinson and M. Devarakonda, ‘‘Data Cache Management Using Frequency- Based Replacement’’...
	[25] S. Williams, M. Abrams, C. Standridge, G. Abdulla, and E. Fox, ‘‘Removal Policies in Network...
	[26] R. Wooster and M. Abrams, ‘‘Proxy Caching that Estimates Page Load Delays’’, Proceedings of ...
	[27] World-Wide Web Consortium, ‘‘Replication and Caching Position Statement’’, August 1997. Avai...

	Vitae

