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A method is described to represent points on elliptic
curves over F2n‚ in the context of elliptic curve
cryptosystems‚ using n bits. The method allows for full
recovery of the x and y components of the point. This
improves on the naive representation using 2n bits and
on a previously known compressed representation
using n + 1 bits. Since n bits are necessary  to represent
a point in the general case of a cryptosystem over F2n,
the representation described in this note is minimal.
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1 Background

Elliptic curve (EC) cryptography is gaining favor as an e�cient and attractive al-
ternative to the more conventional public key schemes, e.g., RSA.

EC cryptosystems are based on operations involving points on an elliptic curve over
a �nite �eld. Popular choices for the underlying �nite �eld are Fp, the integers modulo p
for a (large) prime number p, and F2n , a �nite �eld of characteristic two and dimension n.
This note focuses on the latter type of �eld. The following paragraphs give background
on �nite �elds and elliptic curves just su�cient to describe the proposed method. For
more detailed background, see, for instance, [1] and the extensive bibliography therein.

The elements of F2n are represented by binary vectors of length n. Addition in the
�eld is a bitwise \exclusive or" operation, and �eld multiplication, in one of its possible
forms, can be implemented as multiplication of binary polynomials of degree at most n�1
modulo a binary irreducible polynomial of degree n (this is referred to as a polynomial

representation).

A point is a pair (x; y) of elements of F2n . The points of interest for the EC cryp-
tosytem will be those satisfying an equation of the form

y2 + xy + x3 + a2x
2 + a6 = 0; (1)

where a2 and a6 are �xed elements of F2n , and all operations are over F2n . Points in
F 2
2n satisfying Equation (1), together with a postulated point at in�nity are referred to

as rational points on the elliptic curve. Since the underlying �eld is �nite, the number of
rational points on the curve is �nite, and will be denoted by jEj.1

It turns out that an addition operation can be de�ned on the elliptic curve points,
and that the points, together with this operation, form an abelian group. By the Hasse
Theorem, the size of the abelian group is known to fall in the interval

q + 1� 2
p
q � jEj � q + 1 + 2

p
q; (2)

where q = 2n. For an e�ective elliptic curve cryptosystem, the coe�cients a2 and a6 are
chosen so that the elliptic curve group has a large cyclic subgroup of prime size p, i.e.,
jEj can be written as jEj = s � p, where s is a small integer and p is prime. A point P of
order p is then chosen as the generator of the cyclic subgroup, and all EC cryptographic
protocols are based on computing points of the form

kP = P + P + P + � � �+ P| {z }
k times

:

1In the more general theory, points over the algebraic closure K of F2n are considered, and the set of curve points with
coordinates in an intermediate �eld K, F2n � K � K is generally denoted by E(K). For K = K, this set is in�nite. In
this note, we restrict our attention to the points in E(F2n), and we drop the dependency on the �eld from the notation.
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With well chosen curve parameters, if k and P are given it is fairly easy to compute kP ,
but the inverse problem, i.e. recover k from P and kP is computationally unfeasible as
per current algorithmic knowledge. This inverse problem is known as the elliptic curve
variant of the discrete logarithm problem.

The trace of x 2 F2n over F2 is de�ned by

T (x) =
n�1X
i=0

x2
i

:

It is well known that T (x) 2 f0; 1g for all x 2 F2n , and that the trace is a linear operator,
i.e., T (a+ b) = T (a) + T (b). Also, for all x 2 F2n , T (x

2) = T (x).

Dividing Equation (1) by x2, and writing z = y=x, we obtain

z2 + z + x + a2 +
a6
x2

= 0: (3)

It is known that this equation has a solution in z if and only if T (x+ a2 + a6=x
2) = 0. If

z0 is such a solution, then z0 + 1 is also a solution. In terms of the original equation, if
y is a solution for a given x, then so is y + x.

In the prior art, a compressed representation of rational points is de�ned [2], based
on the observation that given the x coordinate of a point (x; y), the y coordinate can
be obtained by solving the quadratic equation (1) in y, or its equivalent (3) in z. Such
a quadratic equation will have two solutions in general. Therefore, a bit is necessary
to specify which solution corresponds to the point (x; y) at hand (the second solution
corresponds to the point (x; x + y)). Thus, the point representation requires n + 1 bits
(n for x, and 1 to break the ambiguity in y), as opposed to 2n bits in a straightforward
representation.

In this note, we observe that in fact, only n � 1 bits are required to describe x
for rational points used in an EC cryptosystem. Thus, a point can be represented in n
bits, in a form that allows full recovery of x and y. The advantages of this approach
are the obvious savings in representation length, and the fact that the entities stored
and transmitted in the cryptosystem (�eld elements, points) can all be represented with
n-bit vectors, without need for \odd pieces" (e.g. the extra bit in compressed point
representation, which was implemented in [2] to occupy a full byte).

2 Compact representation

The proposed representation is based on the following facts:
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1. Given an arbitrary point P = (x1; y1), the point 2P = P + P = (x2; y2) satis�es

x2 = x21 +
a6
x21

(4)

(see [1]).

2. Given that P is a point on the curve, z1 = y1=x1 and x1 must satisfy (3). Therefore,
we must have

T (x1 + a2 +
a6
x21
) = 0:

Recalling the properties of the trace operator, and the fact that �a = a for all
a 2 F2n , the last equation implies

T (x21 + a2 +
a6
x21
) = 0;

or equivalently, using also (4),

T (a2) = T (x21 +
a6
x21
) = T (x2):

Now, P is a generic point, so the last equation implies that the x coordinate of any
point of the form 2P must satisfy

T (x) = T (a2): (5)

3. We now recall that most common protocols in an EC cryptosystem use points
belonging to a cyclic subgroup of order p of the curve group, where p is a large
prime and thus odd. Therefore, every point Q in the cyclic subgroup can be written
as Q = 2P for some other point P in the subgroup and, hence, the constraint (5)
is satis�ed by all the points of interest.

4. The coe�cient a2 is part of the de�nition of the cryptosystem, and therefore known
to all parties before any meaningful use of curve points can be made. Therefore,
T (a2) is a binary constant.

5. The trace operator, being linear, can be implemented as an inner product

T (x) = t � x =
n�1X
i=0

tixi; (6)

where x = (x0; x1; : : : ; xn�1) denotes the n-dimensional binary vector representing
x, and t is and n-dimensional binary vector with entries given by ti = T (�i),
where [�0 �1 � � � �n�1] is the basis used to represent F2n over F2. Thus, t is easy to
compute a priori, and it is guaranteed that ti = 1 for at least one i, 0 � i � n�1.
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6. To represent x in n � 1 bits, knowing that it satis�es (5), we choose a coordinate
i such that ti = 1, and we eliminate that coordinate from x. To reconstruct x, the
missing coordinate is uniquely recovered by forcing x to satisfy

t � x = b;

where b = T (a2). The coordinate \punctured" from x can be used to accomodate
the bit necessary to specify y. In polynomial representation, when n is odd, it is
known that t0 = 1. This is true also in the case of normal bases, another popular
�eld representation, where t = [1 1 : : : 1]. In those cases we can choose i = 0 and
puncture the �rst bit position in x.

Finally, it is known that jEj satis�es jEj � 2b mod 4 (where, in an abuse of notation,
b is regarded as an integer). Thus, the maximum possible value of p is jEj=2, and indeed
subgroups attaining this maximum exist for certain values of a2 and a6. Recalling that
jEj falls in the interval given by (2), it follows that values of p > q=2 = 2n�1 are possible,
as shown in the example below. It follows that n bits are necessary to represent a
curve point in a cryptosystem supporting all possible values of n, a2, and a6 (a further
reduction of one bit could be possible in principle for the case T (a2) = 0, although no
e�cient method to obtain such a reduction is known).

Example. Let n = 163, and let f(x) = x163 + x7 + x6 + x3 + 1 be the irreducible
polynomial used to represent F2163 . Let a2 = 1 and

a6 = 6DBA33035286FB596884FC7B3148D5B2A0F180F76;

where hexadecimal notation is used in the natural way to group bits, and bits are ordered
left-to-right from most signi�cant (coe�cient of x162) to least signi�cant (coe�cient of
x0). The corresponding elliptic curve E has order

jEj = 11692013098647223345629480233048147171889149744282 = 2p;

where
p = 5846006549323611672814740116524073585944574872141

is a prime satisfying p = 2162 + 785658941507320844700237.

The question of whether an in�nite sequence of values of n exists for which curves
with p > 2n�1 can be found is open, and related to the (hard) question of whether there
is an in�nite sequence of primes in the set

[
j

n
i j 2j+1�2

p
2j � 2i � 2j+1+2

p
2j
o
;

see [3]. The answer to the question is conjectured to be positive.
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