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1 Introduction

Watermarking of digital images is a process in which information is embedded in digital im-

ages, in a manner that does not damage the image quality, and is robust to non-destructive

image processing procedures [2]-[6]. In other words, a good digital watermark can not be

removed from an image without degrading it signi�cantly. Applications of digital water-

marking include digital security, and copy-right protection.

In this report we focus on watermarks for a special type of images, namely, printed halftone

hardcopies. The idea is to watermark prints in order to authenticate a document or to

identify the printer that produced it. Thus we do not intend the watermark to be robust to

scanning an reprinting (the resulting new hardcopy will carry the watermark and signature

of the new printer). Potential applications are related to secure printing, and include tracing

illegal image documents, and embedding of digital signatures, and authenticating information

in picture ID cards.

Watermark methods should enable a su�cient amount of embedded information introducing

only minimal distortion to the image and its visual quality. In this report we analyze the

special case of Error Di�usion halftone rendering and introduce a bound on the amount of

information (rate) that can be embedded in an image if its quality is not to be reduced more

than a speci�ed (distortion) parameter.

Note that the proposed bound is di�erent from the known rate-distortion bound in Informa-

tion Theory. There the distortion relates to the same data the rate refers to (the watermark

information in our case). In this report the distortion is in what might have been the channel

in Information Theory (the image in our case). A rate distortion analysis of watermarking

in its standard meaning was presented in [1].

In the next section a halftone distortion function is proposed, and an Error Di�usion based

halftoning + mark-embedding scheme is selected so as to minimize the distortion induced

by the watermark. In Section 3 a lower bound on the distortion is derived based on a

statistical model for natural images. In Section 4 it is argued that achieving the lower

bound may be formalized as an estimation problem. A simple estimator is proposed and

its distortion performance is discussed in Section 5. Section 6 presents some examples of

halftone watermarks, and demonstrates the results both numerically and visually. The report

is concluded with a discussion in Section 7.
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2 Distortion in Halftone Processes

This section introduces a distortion measure for halftone images, and compares a few ways

to embed a watermark in images according to the expected distortion.

Suppose a halftone image is watermarked, and suppose both the mark encoder and the

mark decoder have coordinated a set of image locations (pixels), whose halftone bits are the

watermark content. If by some twist of luck the image halftones in those locations agree with

the information that the mark encoder intended to embed in the image, then undoubtly, the

mark went through without any distortion what so ever. Nevertheless, it is reasonable to

assume that only part of the halftones (most likely half of them) agree with the watermark

information, the rest of the halftones are necessarily forced to ip.

How much distortion should be charged for any such undesired ip? We propose to determine

the distortion introduced by changes to the desired halftone pattern through a hypothetic

\perceived image" ~G, an image that could have caused the new halftone pattern. The mark

distortion is a measure kG � ~Gk of the di�erence between the perceived image and the

original image G, where k � k is a root mean square measure. The di�erence G � ~G is a

\Salt&Pepper" type noise1 rather than the classic \White Noise", therefore the total square

error is normalized by the number of ips, rather then by the total number of pixels in the

image. Thus, the distortion measure is the standard deviation of the additive noise at the

ip locations.

Note that ~G is not unique, namely, given the distorted halftone there are several di�erent

candidates for ~G. The distortion measure is de�ned to be the minimal distortion over all the

possible ~G's.

~G and consequently the halftone distortion measure depend on the halftoning process. In

this report we limit ourselves to Error Di�usion. Figure 1 describes the ow chart for the

basic Error Di�usion: The continuous gray value information gij 2 [0; 1] ows sequentially

(in raster scan order). A corresponding error value eij incurred by \past" halftones (and

stored in the error bu�er) is added to give the \desired value" sij (the value that we would

have wanted to render in the ij location). Since only halftone values (0 or 1) are possible,

the closest is selected by comparing the desired value to 0.5.

1The di�erence is zero anywhere accept the ip locations, and potentially near them.
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Figure 1: Flow chart of Error Di�usion halftoning.
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8>>><
>>>:

1 sij � 0:5

0 sij < 0:5

(1)

The new error nij = sij � hij, incurred in obtaining hij, is \di�used" to \future" pixels

(neighboring pixels who are yet to be halftoned). Floyd and Steinberg [7] have suggested a

preferred di�usion �lter related to the conventional raster scan, see Figure 2, where 7=16 of

nij is di�used forwards, 1=16 to the location one pixel ahead in the next line, 5=16 to same

position in the next line, and the rest to one position back in the next line.

3/16 nij

Present

Past Past Past

FuturePast

Future Future Future

1/16 nij

7/16 nij

5/16 nij

Figure 2: The Floyd and Steinberg �lter for di�using error nij to the future pixels.

Now let us determine the best way to incorporate watermark embedding into Error Di�u-
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sion. Figure 3 describes ow-charts for three such schemes, in which we assume that the

watermark locations have been predetermined by both the encoder and decoder. In the naive

implementation of Figure 3a the watermark is imposed simply by replacing the halftone hij

at the predetermined locations by the next watermark bit wk.

Assuming the watermark embedding scheme described in Figure 3a induced a single ip at

location i0; j0, what is the corresponding distortion? As mentioned before, there are many

images that result in that ip. It is easy to see that ~G = G � �i0j0 is one of them, where

�i0j0 is a delta function at i0j0, and the sign '�' is determined according to the ip direction.

However a unit size delta is larger than necessary. The least local error due to a ip is

di0j0 = jsi0j0 � 0:5j (2)

however, a local distortion that is smaller than unity necessarily causes a di�erence between

the actual error, nij, and the same term in the halftone of ~G. This di�erence may induce

changes in nearby locations or farther away in future locations. Wherever it occurs an

additional distortion of ~G is due. If the image is large enough all error term di�erences have

to be accounted for somewhere in future locations, thus other possibilities for ~G are of form

~G = G� di0j0�i0j0 � (1� di0j0) �
X
m�0

�m � �imjm (3)

where locations imjm, for m > 0 are in the \future" of i0j0, and �m are weights such thatP
m�0�m = 1, and �0 � 0.

The algorithm described in Figure 3b is very similar, only the watermark embedding is more

sensibly located inside the feedback (directly after the thresholding). This way the Error

Di�usion mechanism can be used to hide the watermark by modifying the \future" pattern.

In this case it is possible to show that the images that cause this pattern are of the form

~G = G� di0j0�i0j0 � di0j0 �
X
m�0

�m � �imjm (4)

Here also
P

m�0�m = 1, but now �0 � 0. To compare the two algorithms consider that

di0j0 is distributed in [0; 1], with a strong bias towards the lower values, and thus the second

algorithm is preferred.
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Figure 3: Watermark embedding schemes: a) Naive watermarking. b) Post-threshold watermark-

ing. c) Pre-threshold watermarking.
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In Figure 3c the watermark embedding is pushed back even further to before the thresholding.

In this implementation, the mark is embedded by replacing sij at the predetermined locations

with minimal intervention values vk, that are equal to sij in case of concensus (i.e. the next

halftone would by wk anyway), or else � > 0 close to 0:5, with �! 0.

vk =

8>>>>>>>><
>>>>>>>>:

sij concensus(sij; wk)

0:5 + �

0:5� �

otherwise

8>>><
>>>:

wk = 1

wk = 0

(5)

with: concensus(sij; wk)
4
= ((sij < 0:5) and (wk = 0)) or ((sij � 0:5) and (wk = 1))

In this scheme the distortion may be attributed to the present location with no di�usion

artifacts, and it is easy to see that the image

~G = G� di0j0�i0j0 (6)

results in the required halftone pattern. Naturally this is the preferred halftoning+marking

scheme.

Figure 4 presents examples of watermark embedded halftones using the above watermark

embedding algorithms. Shown are a halftoned image of constant original tone (without

watermark) in Figure 4a, the ip locations in Figure 4b, and the results of inducing a ip at

the designated positions using the three watermark embedding algorithms in 4c-e.

(a) (b) (c) (d) (e)

Figure 4: Test of watermarking schemes: a) Error di�usion with no watermark. b) Flip locations.
c) Naive watermarking. d) Post-threshold watermarking. e) Pre-threshold watermarking.

Note that the naive watermark embedding algorithm in Figure 4c produces poor results.

Better results are produced by the other two algorithms in Figures 4d and 4e, which seem
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to have almost equivalent quality. The reason for the good quality in Figure 4d is that the

error (4) of Post-threshold watermarking is predominantly high frequency. This reduces the

visible noticeability, especially in a halftone. The frequency factor is not reected in the

proposed distortion measure.

3 Bounding the Distortion

In this section we use a statistical model for natural images to deduce a lower bound on the

watermark distortion.

Images have approximately constant gray value almost anywhere, hence a random family of

images having a constant gray value with a small additive noise, is a reasonable model for

small neighborhoods of pixels. The random image I = A + N is composed of a constant

image A with a gray value uniformly distributed in [0; 1], and a White Noise image N with a

small standard deviation � � 0:01. It is hopped that the statistics of this model are similar

to those obtained on collections of natural images.

The probability distribution Pd of the minimal distortion dij in (2) is presented in Figure

5. It shows that dij is much more often smaller than 0:5 than otherwise, which justi�es the

preference of the second watermark embedding scheme over the �rst one.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

Pd

d

Figure 5: Probability distribution of dij .

Suppose it were possible to attach the set of watermark locations to any halftone image.

This situation would have given the watermark encoder the freedom to embed the water-
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mark wherever it does the least harm. To make things more realistic suppose also that the

watermark encoder has to decide on a location before it is aware of the bit it has to place

there (otherwise the distortion would have been zero for practically any rate). In this hypo-

thetic situation the best embedding strategy is to place the information in those locations

for which dij = 0. If there are enough such locations, the mark has incurred zero distortion,

however, if more information bits are needed, locations for which dij > 0 have to be em-

ployed as well. Alternative embedding strategies can not be better then this one, and will

necessarily result in a worse (or at best - equal) distortion for any given rate.

In the above embedding strategy, larger rates, employ larger chunks from the lower part of

Pd so that the rate is their 0-order moment, and the resulting distortion is the square root of

their normalized 2nd-order moment. Thus the distortion versus rate bound is the following

parametric curve:

(D(d); R(d)) =

0
@
vuut
R d
0 �

2Pd(�)d�
1
2
�
R d
0 Pd(�)d�

;
Z d

0
Pd(�)d�

1
A (7)

where Pd(�) is the probability distribution function presented in Figure 5, and d the marginal

distortion (i.e. the maximal distortion embedded at a single location). The graph of (7) is

the dotted graph in Figure 6. Any distortion smaller or rate larger than this curve are not

possible.
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Figure 6: Lower distortion versus rate bounds. Dotted graph - expected from the statistics of

unmarked halftones. Solid graph - accounting for the e�ect of the distortion on the statistics.
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Evidently, the bound (7) depends on the statistics of dij, however since dij's distribution

changes once the watermarking starts to add distortion, the real bound on the distortion for

a given rate has to be computed from the modi�ed distribution. The solid graph in Figure 6

was computed from distributions of dij obtained by inducing a random ip (with probability

0.5) in locations for which dij was smaller then a prede�ned threshold. The probability

distributions for threshold values 0, 0.12, 0.24, . . . 0.96 are presented in Figure 7.

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

Pd

d

Figure 7: Probability distributions for dij at various rates of watermarking.

This bound is fantastic, since it implies that one can achieve a rate of 0.005 (i.e. a watermark

information bit for every 200 pixels) with no distortion at all, and a rate of 0.05 (a bit in

20 pixels) with a distortion of 0.01 (i.e. no more than the White Noise we expect to see

in natural images; ��4 gray levels in the 255 scale). Note that White Noise occurs on all

the pixels whereas in this case, the distortion occurs only in the ip locations. A distortion

of 0.01 is therefore an additive Salt&Pepper noise (zero in most places) with a standard

deviation of 0.01 on the ip locations (one of every 40 locations).

This brings up the questions: Is this bound tight? Can we somehow achieve it in practice?

The answer is unfortunately No, however we can get quite close to it, as is shown in the

following sections.
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4 Estimating the Di�usion Error

In this section a method is suggested for selecting locations in which a watermark can be

embedded so as to minimize the distortion. Achieving the lower bound described above is

equivalent to an estimation problem to which the proposed method is a straight forward and

easily implementable solution.

Since the situation described above in which watermark embedded locations are indepen-

dently communicated to the decoder is not realistic some other indicators of the mark loca-

tions should be available to the mark decoder. Better embedding locations are characterized

by low dij, thus any indicator achieving the lower bound is an accurate predictor of low dij's.

Since natural images include a small but non-ignorable amount of randomness, an accu-

rate prediction of dij is impossible. Realistic implementations of the watermark embedding

should therefore include estimators of low dij's. The quality of the watermark will depend

on the estimation quality.

In order to maintain the watermark integrity, and since in reality dij can not be accurately

predicted in the decoder, the encoder has to employ the same estimator to determine the

mark locations it uses. Thus we arrive at the watermark encoder ow chart of Figure 8.

Note that the data the estimator can use is limited to the data available in the decoder at

the given stage which is the causal2 halftone image. In other words dij's should be estimated

from the causal halftone pattern.

Since images are usually locally constant (the image model we use is even more restricted

in that sense), the average of the causal halftone neighborhood of a pixel should give the

estimator a good approximation of the local gray value in the original image. Having that

information it can emulate the halftoning algorithm and estimate dij. This process is best

explained by an example: Suppose a White pixel (marked by an X) has the causal halftone

neighborhood described in Figure 9. The decoder has to decide whether dij was large or small.

To that end consider that a low dij means that, both the Black and the White halftones

were reasonable possibilities for hij, and that the decision that was �nally made (White� 1)

could have been di�erent if sij were a little smaller than it really was3. For Figure 9a it

is evident that a Black halftone was not a reasonable possibility at that position, therefore

2The term causal refers to the pixels that were previously processed.

3sij should have been, at least, dij smaller.
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Figure 8: Flow chart of watermark encoder.

the estimator should indicate that dij was large. On the other hand, in Figure 9b both

halftones seem to be a reasonable possibility for the given location, and thus in this case,

the estimator should indicate that dij had a small value, and that the White value of the

halftone is a watermark. A similar analysis for a di�erent purpose appears in [8].

? ?

(a) (b)

Figure 9: Pixels in causal neighborhoods indicating dij was probably: a) large. b) small.

The above example does not constitute a real estimator of dij, nor is such an estimator

necessary. All one needs is an estimation of whether dij is smaller than a prede�ned threshold

value which determines the rate (and the distortion), or not. Since operating an estimator

on-line is time consuming, it is wiser to do the estimation o�-line and pick up a list of all

the neighborhoods which estimate a small dij. This is described in the next section.

5 Determining Watermark Location

This section describes and analyses a causal estimator of low dij values, allowing for consistent

determination of watermark embedding locations in both the encoder and the decoder. Its
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derivation was based on statistics obtained from a database approximating our model of

natural images.

The estimation was performed o�-line as follows: Natural images are represented by a set of

249 images of constant gray level f4; 5; : : : 251g with additive independent noise distributed

uniformly in the range f�4; 4g. The size of all the images is 500 � 500. This set was

halftoned without any watermark. Resulting \natural halftones" were analyzed to �nd a

set of predominant neighborhoods (neighborhoods with more than 50 occurrences). Then,

the sample average of d2 was calculated for each predominant neighborhood. Each value

represents the expected average square distortion incurred if the corresponding neighborhood

is added to the estimator's lookup table. Finally, the predominant neighborhoods were

ordered on a list in an increasing distortion order. Partial lists o� the top of this list were

used for estimator lookup tables. More entries in the lookup table correspond to higher rate

(and higher distortion).

All the above was done for three di�erent neighborhood sizes: 4, 11, and 21. The neighbor-

hoods are depicted in Figure 10. Note that the neighborhoods are causally nested in each

other.

4

11+10=21

4+7=11

Figure 10: The three neighborhoods used in the simulations.

The solid graph in Figure 11 is a section of the (solid) lower bound in Figure 6. The other

graphs describe the rate and distortion performance of the proposed encoder for the three

neighborhood sizes, each parameterized by a growing size of estimator lookup table.

Note that if it were true that by inspecting causal neighborhoods one can accurately predict

the value of dij, then all the occurrences of a given neighborhood would have corresponded

to a single value of d, and the lower bound of Section 3 would have been reached. In practice

all predominant neighborhoods have typical narrow dij-histograms, which get narrower as

the size of the neighborhood increases. The width converges at a neighborhood size of 21

bits. The narrowest dij-histograms are however not narrow enough to be considered accurate
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Figure 11: Distortion versus rate graphs: Solid - lower bound. Dash-dot - estimator size 4. Dot -

estimator size 11. Dash - estimator size 21.

predictors of dij. This fact is responsible for the gap between the best estimator performance

and the lower bound in Figure 11.

The performance of the proposed estimators does not converge to the lower bound, however

since accurate prediction of dij is not possible the lower bound can not be reached and

the estimators might yet be close to optimal. The proposed estimators might have been

considered optimal if the following assumtions were true:

1. The statistics of unmarked halftones holds for watermark distorted halftones.

2. The database for the statistics was large enough.

3. The estimation can be based only on causal neighborhood information.

In practice non of the assumptions is true:

1. As already mentioned in Section 3 watermarking changes the statistics of the halftones,

hence, the estimators are based on an analysis of the wrong family of halftones. A

better estimation is expected with lookup tables compiled for the required rate. This

was not done here since obtaining the optimal list for a given rate is a delicate feedback

optimization, which is out of scope for this project.

2. The database represents well the statistics of small neighborhoods. For larger neigh-

borhoods it might be insu�cient. A larger database might improve the performance
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of large-neighborhood estimation, and push the performance convergence higher than

21 bit neighborhoods.

3. The causal neighborhood is not the only perceivable simple information one can use

for estimation. For example one can use information about the previous ip loca-

tions (so as to spread them evenly in the image). Figure 12 is an example of the

possible advantage of that kind of information. The dash-dot graph in Figure 12

describes a non-estimator method using prede�ned locations that are randomly dis-

tributed, whereas the prede�ned locations for the dotted graph were evenly spaced in

a blue noise distribution.
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Figure 12: Distortion versus rate graphs: Solid - lower bound. Dash - estimator size 21. Dash-dot

- Random locations. Dot - Evenly spaced locations.

To conclude the presentation of the proposed estimator note that:

� Comparing the performance of the 21bit estimator and the two non-estimator water-

mark encoders in Figure 12, positions it well between those and the lower bound.

� The proposed 21 bit watermark encoder predicts impressive watermark rates for a

relative modest distortion, for example: Rate 0.01 (one bit in every 100 pixels) for a

distortion of about 0.09 (an additive shot noise with � = 23 gray levels on the ip

locations - one in every 200 pixels).
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6 Simulation Results

Up to this point, the analysis and the comparisons were done on a family of images describing

an abstract image model. Its important to verify that the conclusions apply to real images.

This is done in the following section.

Figure 13 shows the lower bound, and the performance curve of the 21 bit estimator. Those

are derived from simulations based on an image model and were already presented above.

Additional points marked by X's denote the rate and distortion of a watermark embedded

in a real image by the proposed 21 bit estimator. Di�erent points correspond to a varying

size of estimator look up table, taken o� the top of the neighborhood list produced for the

natural image model. As can be seen the performance predictions based on the natural

image model are relevant for real images.
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Figure 13: Distortion versus rate graphs: Solid - lower bound. Dash - estimator size 21. X marks

- performance of estimator size 21 on a real image. Circles - instances presented in Figure 14.

Figure 14 presents a part of the Lena image, halftoned without a watermark, and with

two rates of watermark (circled out in Figure 13). Each of the halftone images is rendered

at 150dpi. In Figures 14b(c) the watermark encoder used an estimator lookup table of

1500(13,500) entries, and embedded 2,729(37,299) bits of watermark information, i.e. a bit

for every 96.1(7.0) pixels, or a rate of 0.010(0.142). The standard deviation of dij at the

1,388(18,503) ip locations was 25.7(37.4) gray levels, or a distortion of 0.101(0.147) in the

normalized scale used above.

The di�erence between Figures 14a and 14b is practically imperceptible, whereas the distor-
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(a) (b) (c)

Figure 14: a) No watermark. b) Watermark Rate 0.010. c) Watermark Rate 0.142.

tion in in Figure 14c is visible. Another insight may be gained by comparing the watermarked

halftones in Figure 15. All three images have a watermark rate of 0.04 (a bit for every 25

pixels). In Figure 15a the watermark was embedded by the proposed estimator (size 21),

in Figure 15b the watermark was embedded in (blue-noise) evenly distributed prede�ned

locations, and in Figure 15c the locations were chosen randomly. The respective distortion

measures are 0.110, 0.200, and 0.204.

(a) (b) (c)

Figure 15: Watermark rate = 0.04: a) Estimator size 21. b) Evenly spaced locations. c) Random

locations.

Note also that whereas the distortion in Figure 14c gives the impression of an additive White

Noise, the Salt&Pepper artifacts of the distortion are more visible in Figures 15bc (because

of the occasional really bad locations chosen by the non-estimator embedding methods).
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7 Discussion

This discussion is devoted to some of the assumptions that were made in this report and to

practical implementation notes.

� The absence of watermark distortion in the analysis, points at the most signi�cant

practical consideration regarding this research. It has been implicitly assumed that

individual halftone dots may be identi�ed in the printed image without any error.

This is, however, not true. In practice printers might mess up the alignment, and cover

up neighboring locations, in addition, several mechanical de�ciencies may occasionally

destroy halftone patterns. All this does not necessarily prevent watermarking, it simply

calls for some practical implementation measures, mainly exploiting the vast amount

of information bits for redundant coding. Practical considerations of that sort are,

however, out of the scope of this report.

� Since the error type is Salt&Pepper rather than White Noise, it is not possible to

characterize it properly in a single distortion term. The full characterization of the

noise should include two terms: The density of the noisy locations (in our case half

the rate), and the error variance at the noisy locations. Since we describe distortion

versus rate (rate is the �rst term), we normalize the square distortion by the number

of ip locations (thus obtaining the second term), rather than by the size of the image

which is commonly done when assuming White Noise.

� The distortion measure (bundled with a few other assumptions) was checked in a (non-

extensive) comparison of the visual quality of the alternative embedding routines of

Figure 3, (see Figure 4). Nevertheless, there is room for improved measures especially

by considering the frequency content of the error.

� The distortion measure is based on the distortion between two con-tone images: The

original image and an image that would have caused the distorted halftone. As was

pointed out in the text, there are many such images, and one needs to consider only

the one with the smallest distortion. The minimization has been performed with an

implicit assumption that the di�erence is causal, i.e, the di�erence occurrs at the

ipped halftone location and possibly in \future" pixels. This assumption is intuitive

and reasonable, but not necessary.

� Results obtained by the proposed image model apply for real images. There are however

better models.
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� The image model used in practice was a limited set of 500�500 images. This set is suf-

�cient for most of the statistical test that were needed, however for large neighborhood

sizes it may be stretching the limits. This fact may explain some of the results ob-

tained for large estimator neighborhood sizes (general perfomance may be better, and

speci�cally, convergence may occur at estimator sizes that are larger than obtained).

� The watermark embedding and decoding complexity has not been treated in this re-

port. Necessarily larger neighborhoods as well as longer lookup tables require more

computations.

� The lower bound is not tight. Being equivalent to a predictor justi�es its use as a goal

for practical embedding algorithms. Nevertheless, an alternative tight lower bound

might yet exist.

� As mentioned in the text, compiling the estimator lookup tables is a delicate feedback

optimization: Any choice of neighborhoods modi�es the error statistics for the selected

neighborhoods as well as others. The compromise made by borrowing lookup tables

from the no-distortion statistics is probably responsible for a collapse of the estimator

performance in high rates. This phenomenon was not presented in the graphs. It

occurs only in rates that are out of the rate-range referred to in this report (those rates

are not interesting for practical purposes).

� A better performance is possible if error correction codes are used in the watermark.

Consider the possibility for the encoder to blu� occasionally, when it notices that

embedding a certain watermark will introduce a very large error. If the decoder can

corrects the resulting errors in the watermark it might be used to reduce the distortion

(with a necessary reduction in the rate due to the error correction). The error correction

possibility was not explored in this report.
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