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Somersault is a platform for developing distributed
fault-tolerant software components and integrating
these critical components with other components into
distributed system solutions.  Critical application
processes are mirrored across a network, with each
critical process being replicated in a primary and
secondary.  Replication of processes and recovery from
the failure of a replica are handled transparently.
Somersault provides a fault-tolerant communication
transport protocol, which can be plugged into an Object
Request Broker, a combination which achieves
replication transparency.
Somersault has been developed at Hewlett-Packard
Laboratories, and runs on standard operating systems
such as Unix and NT. Somersault has been through two
iterations of algorithm design, implementation and
optimisation in order to achieve high message
throughput and fast recovery from failure.  At the time
of writing it is undergoing industrial trials and detailed
performance testing.
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1 INTRODUCTION

The demand for highly available systems, operating 24 hours a day and 7 days a

week, is extending beyond the traditional areas of telecommunications and banking.

Information Technology systems, for both internal operations and customer-facing

services, are becoming mission-critical to more and more enterprises.

High availability software technology for centralised systems, typically based on

clusters of computers, is well understood and in widespread deployment, eg [5], [6].

Increasingly, decentralised approaches, i.e. distributed systems, are being used in

mission-critical systems.  However one of the main challenges to the uptake of

distributed systems is high availability. Distributed applications are generally

perceived to be less reliable than centralised applications. Industry efforts to apply

distributed computing, such as OMG [11] and TINA-C [12], have identified the

requirement for fault-tolerant distributed computing software technology.

In theory, one of the benefits promised by distributed software systems is higher

availability. System components can be replicated, and the replicas can be

geographically distributed, to enable continued system operation in the event of

component failure.

This paper describes a middleware technology which aims to realise this promised

benefit of distributed systems. Our aim is to support the distributed application

programmer by offering powerful high availability abstractions, enabling the

programmer to concentrate on the application.

1.1 High Availability Approaches

High Availability (HA) obeys one of the truisms of distributed systems: “One size

does not fit all”. Different HA solutions fit different application classes. Our

requirements and design goals are motivated by very demanding applications such as

telecoms, finance, electronic business and air traffic control :-

• Continuous Availability i.e. service interruption on failure is measured in seconds,

and recovery is fully automated

• High message throughput i.e. up to thousands of messages per second

• Need to maintain consistent state and guarantee message delivery.
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1.2 The Somersault Approach: Process Mirroring

Our approach is to replicate at the process level by maintaining a hot standby replica

i.e. a primary process and secondary process. We characterise this as a roll-forward

approach (hence the name “Somersault”), as compared to the roll-back approach of

restarting from disk. We use the term “Process Mirroring”, by analogy to Data

Mirroring. Process mirroring allows applications to survive hardware failures and

operating system failures. Application failures that are not replicated can also be

survived (replicated code bugs such as divide by zero cannot be masked).

Process Mirroring implies the need to manage each pair of replica processes,

including detecting failures and recovering from failures, and to maintain identical

computation and consistent state in each pair of processes. Somersault provides the

infrastructure to do all of these tasks automatically in the form of a C++ middleware

library. The library is fully functional in its own right, or can be integrated with

CORBA to offer a simpler programming model.

Section 2 describes the “insides” of the Somersault approach to replication and

reliable messaging. Section 3 outlines how the system is used i.e. how it looks from

the “outside”. Section 4 describes the use of Somersault with CORBA. Section 5

discusses the performance and scalability characteristics of the approach. Section 6

makes comparisons with related work and section 7 concludes.

2 SOMERSAULT ON THE INSIDE

This section describes the approach, to the depth of understanding needed by fault-

tolerant system designers using the Somersault platform. A full description of the

algorithms and the implementation is outside the scope of this paper.

A regular distributed system has processes that communicate using a process-to-

process protocol. A Somersault system has units that communicate using a unit-to-

unit protocol. The Somersault units are of two types: a single non-fault-tolerant

process is called a “simple unit”; and a collection of replicated processes is called a

“recovery unit” (see figure 1). Processes within a recovery unit will be distributed

across a network to achieve tolerance of faults.
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A regular distributed system has
communicating processes

A Somersault distributed system has
communicating units – units are single
processes or groups of replicated processes

Figure 1 Somersault System Model

Both simple units and recovery units are addressed as single entities and are

indistinguishable from a messaging standpoint. The Somersault messaging protocol is

a general n-to-m connection-oriented transport allowing an n-process unit to connect

to and communicate with an m- process unit.

The minimum recovery unit has three processes: the Primary, Secondary and Witness.

Only the primary and secondary replicate the application. All of these processes are

involved in failure detection, the witness acting as a tie-breaker.

Whilst the Somersault messaging protocol supports the general case of n application

replicas, there are diminishing returns from using more than 2 replicas (and growing

costs in increased usage of computer cycles). This paper will describe the 2-replica

case, which is the one our implementation supports. Our examples will illustrate a

simple unit, typically a non-fault-tolerant client, communicating with a recovery unit,

typically a fault-tolerant replicated server.

The following subsections describe how Somersault :-

1. Detects failures within a recovery unit by the use of heartbeats and a unit

membership protocol

2. Replicates processes within a recovery unit, ensuring computation is mirrored

3. Handles communication between units, via a reliable messaging protocol with

strong semantic guarantees

4. Handles failover i.e. deals with messages and connections at the time of a failure

5. Handles recovery i.e. rebuilds the unit after a failure and continues processing.
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2.1 Failure Detection

Recovery Unit

Processes in a recovery unit use heartbeats for
failure detection. Group membership
consensus is enabled by a Witness (W)

S

W

P

Figure 2 Failure Detection in a Recovery Unit

The processes of a unit pass heartbeat messages to one another. Suspicion is raised

over the health of a process when its heartbeat is missing. In this case a unit

membership consensus protocol is invoked to decide a new unit membership. There

are various unit membership protocols that could be used e.g. those reported in [3]

and [14]. We use a simple quorum protocol, with the witness avoiding the “split-brain

problem” because an odd number of processes take part in the voting. For the rest of

this paper we will ignore the witness process.

2.2  Replication : Process Mirroring

We model an application process as a state machine driven by non-deterministic

events. We assume that the only observable behaviour of a process is its message

communication. Two copies of the same process will be replicas, if they:

1. Receive the same input messages in the same sequence.

2. Experience in the same sequence the same non-deterministic events e.g. reading a

real-time system clock, e.g. calling a random number function.

Somersault ensures that the process pair act as replicas by allowing the primary to

perform non-deterministic events and then making the secondary perform identically.

This is achieved by a logging channel between the primary and secondary,

implemented as a messaging connection, shown in Figure 3. Non-deterministic events

are logged on the channel and fed to the secondary process in the order they occurred

at the primary.
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Somersault logs non-determinstic events from
the primary to the secondary and feeds them
to the application level.

Replica 2

Event
Scheduler

Replica 1

Event
Scheduler

Application
Level

Somersault
Level

Primary Secondary

Event Log

Figure 3 Non-Deterministic Event Logging

There are two types of non-deterministic event :

1. Those that can occur at any time, e.g. a timer expiring or an input message. The

Somersault event scheduler controls the delivery of timeouts and messages to the

application, and it controls thread execution.

2. Those that occur at a specific point in the execution of the application code, e.g.

system calls, e.g. a random number function. We call this type Non-Deterministic

Choice. Somersault captures the result of a non-deterministic choice in the

primary and injects it at the secondary. This requires the application programmer

to make non-deterministic choices explicit.

2.3 Unit Communication: Secondary Sender Protocol

The Somersault communication protocol provides unit-to-unit asynchronous

messaging with the properties that all replicas consume input messages in the same

order; and all replicas generate output messages, but only one copy of each output

message is sent.1

                                                

1 We will use two sets of terms for talking about messaging. “Send” and “receive” refer to the actual

transfer of a message between processes across a network. Send and receive will always be performed

by Somersault. “Consume” and “generate” refer to the exchange of application messages between

Somersault and the application level. Somersault delivers input messages for the application to

consume.  The application generates output messages for Somersault to send. All of the application

replicas in a unit consume and generate messages.
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Inputs

Outputs

Logging

Somersault Connection

P

S

P = Primary process
S = Secondary process

Figure 4 Somersault connection

A connection between two units is implemented using two reliable first-in-first-out

network connections: one for receiving messages and one for sending them, as shown

in Figure 4. Input messages are sent on the connection to the primary. Non-

deterministic events, including the inbound messages, are logged to the secondary.

Output messages are sent on the connection from the secondary: it is this

characteristic which gives the protocol its name, “secondary sender”.

P

S

m1

m1

m1

The secondary sends messages, so both the
primary (P) and the secondary (S) have a copy

Figure 5 Message Send

If a recovery unit sends a message it is sent by the secondary, as shown in Figure 5.

Process mirroring ensures that the secondary reflects the primary, so both the primary

and secondary will generate the message, although not necessarily at the same time.
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P

S

ack

ack

m1

The secondary sends the ack, so both the primary
(P) and the secondary (S) have received m1

ack

m1

Figure 6 Message Acknowledgement

Figure 6 shows that acknowledgements, as with output messages, are only issued by

the secondary. The receipt of an acknowledgement is thus an assurance that the

messages acknowledged have been received at both replicas.

P

S

m1

The primary (P) logs m1, m2, m3 to the secondary
(S) in the order that they were consumed

m1, m2, m3

m2

m3

Figure 7 Message Order

All input messages are received by the primary and logged to the secondary, see

Figure 7. Message consumption is a non-deterministic event, but process mirroring

ensures that the secondary will consume messages in the same order as the primary.

2.4 Failover

The secondary sender message protocol ensures that connections are re-established as

required and that messages are not lost or re-ordered in the event of the primary or

secondary failing. It does this using a windowing protocol that works at the level of

unit-to-unit communication. Messages are buffered at the primary and secondary and

resent as required when a process is lost.
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S

m1

The primary (P) fails after receiving messages m1,
m2, and m3, but only managed to log m1

m3
m2

m1

P

Figure 8 Lost State On Primary Failure

In the case of primary failure it is possible that some non-deterministic events never

make it across the logging channel to the secondary, see Figure 8. The primary may

have performed some work and generated some outputs that the secondary never did.

After failover the secondary will receive the same input messages and repeat the

work, possibly with a different outcome due to non-deterministic events that have not

been replicated, including the message receipt order. This is not a problem because

only messages sent by a unit (output by the secondary) are externally visible.

2.5 Recovery

If the primary failed, the secondary will be promoted to be the primary. The first step

of creating a new secondary is to create a process that joins the recovery unit. It must

now become a replica. This involves copying runtime state from the primary and then

synchronising to join the secondary sender protocol. A logging channel is opened

from the primary to the new secondary. The primary serialises its state and passes it

down the logging channel to the new secondary, which rebuilds the state. When all

the state has been passed, the secondary becomes the sender. The unit is now back to

full strength. The whole procedure preserves the unit messaging properties.

Note that the secondary can be rebuilt in the background i.e. the primary will continue

to provide service.
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3 SOMERSAULT FROM THE OUTSIDE

3.1 Programming Model

To use Somersault, the system must be analysed to identify which units need to be

fault-tolerant, and designed as a set of communicating units. Somersault takes care of

replication and failure recovery if the following programming rules are followed for

recovery units (e.g. a fault-tolerant server):

1. Use Somersault messaging for communication.

2. Use the Somersault mechanism for making non-deterministic choices explicit.

3. Provide a state transfer procedure for initialisation of a new process (at failover

time).

When programming a simple unit (e.g. a non-fault-tolerant client), only programming

rule 1 applies:

1. Use Somersault messaging to communicate with recovery units.

Using Somersault messaging is a simple programming task: remember that the

replication is transparent to the programmer. In our experience, programming non-

deterministic choices has also been easy, and programming state transfer has been the

greatest burden on the programmer (although a much lesser burden than building a

replication system !).

3.2 Application Experience

Non-deterministic choices tend to relate to the use of time or physical resources, e.g.

timestamps and dynamically allocated memory. Many simple applications don’t have

non-determinism, especially if they use statically allocated resources.

State transfer can be an issue if the state is (a) large e.g. a 500Mb main memory

database will take time to transfer; or (b) not neatly stored in data structures or objects

that can be easily traversed. However such applications are intrinsically difficult to

make fault-tolerant.

Examples where we have found a good fit to Somersault include main memory data

stores, lock managers, message queues, stock feeds, name servers etc. At the time of

writing, Somersault is  undergoing industrial trials.
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In some of our application experiments, the solution features a gateway between the

Somersault world, within which communications must use the Somersault protocol,

and the non-replicated world. The next section will explain how CORBA can be used

to provide a transparent solution which does not require a gateway.

4 INTEGRATING CORBA WITH SOMERSAULT

4.1 Somersault as a Fault-Tolerant ORB Transport

CORBA provides a communication abstraction that insulates the programmer from

details of distribution – including the transport protocol. Somersault is implemented

as a communication protocol and can be integrated under an ORB as a fault-tolerant

transport protocol. The programmer then programs to the ORB interface.

Figure 9 Method invocation on Replicated and non-Replicated Server

We have verified this approach using ORBLite, an experimental ORB developed at

Hewlett-Packard Laboratories [10]. ORBLite is able to dynamically select transport

protocols at runtime. We used this facility to dynamically select Somersault if the

communication involves a replicated object. The client shown in Figure 9 can invoke

methods on replicated and non-replicated objects. For the replicated objects

Somersault is selected, for the non-replicated objects the default transport, IIOP, is

selected. The object is not aware of transport selection.

O R B

S o m ersau ltIIO P

R eco v e ry  U n it

R ep lica ted
S erv e r O b je c tC lien t

O b jec t
N o n -R ep lica ted

S e rv e r O b je c t
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4.2 Replication Transparency

Programming rule 1 from section 3.1 (Somersault communications) is handled

transparently by the ORB. Programming rules 2 and 3 (non-deterministic choices,

state transfer) still have to be followed for recovery units, but simple units have

complete replication transparency. An existing server which uses CORBA can be

replaced by a fault-tolerant version with no change to the client code at all.

Somersault also protects the programmer from as many of the replication details as

possible in programming a fault-tolerant CORBA server.

4.3 Server Example

We will use a simplified example to illustrate the usage of Somersault. The example

is a password server which has two functions: it can assign a randomly generated

password to a user, and it can validate passwords. The server maintains a mapping of

user identifiers to passwords in a Map data structure. A replicated password server

will have to keep the map data consistent and generate consistent random numbers.

We choose the password example because it contains non-determinism (the random

number function) and vital state (the password map). A C++ definition of the

password server class may look like the following:

class Password

{

public:

int generate( int user_id );

int validate( int user_id, int pw );

private:

Map password_map;

}

int Password::generate( int user_id ) {

int pw = rand();

password_map[user] = pw;

return pw;

}

int Password::validate( int user_id, int pw ) {

return ( password_map[user] == pw );

}
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4.3.1 Non-Deterministic Choice

The programmer creates an object for performing non-deterministic choices on behalf

of the replicated object. The choice object is present at both the primary and

secondary replica and uses a special non-deterministic choice object adapter provided

by Somersault. Our password example uses a random number generator called rand().

We could define the following implementation for the non-deterministic choice

object.

class GenerateChoiceImpl:

public virtual _BOA_GenerateChoice, // created from idl

public NonDet // special object adapter

{

public:

int generate();

};

int GenerateChoiceImpl::generate() { return rand(); }

The primary and secondary make the same distributed call to the generate() method of

GenerateChoiceImpl using its object handle. The NonDet object adapter at the

primary will call the method, return the result and send the result to the NonDet object

adapter at the secondary (via the Somersault logging channel). The NonDet object

adapter thus returns the same result to both replicas.

4.3.2 State Transfer

State transfer is handled similarly to non-deterministic choices. The programmer

creates an object for performing state transfer. The state transfer object is present at

both the primary and secondary replica and uses a special state transfer object adapter

provided by Somersault. The object must have a do_transfer() method which will be

invoked by the Somersault transport when it is time to do the transfer. The

programmer can then define methods for building state from parameters.
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In the password server example, the state is held in a map structure. We could define

the following implementation for the state transfer object.

class Password

{

friend class PasswordStateXferImpl;

…

}

class PasswordStateXferImpl:

public virtual _BOA_PasswordStateXfer,// created from idl
public StateXfer // special object adapter

{
public:

PasswordStateXferImpl( Password& password_object );
void do_transfer();

void build_map( Map pw_map );

private:

Password& password;

};

void PasswordStateXferImpl::build_map( Map pw_map ) {
password.password_map = pw_map;

}

void PasswordStateXferImpl::do_transfer() {

PasswordStateXfer remote_handle = _self();
remote_handle.build_map( password.password_map );

}

In this code, password is the local copy of the password. We have defined

PasswordStateXferImpl as a friend of Password so it can access all its data members.

When do_transfer() is executed at the primary it does a distributed call to its own

build_map() method. Instead of invoking the call locally, the modified object adapter

invokes the call on the corresponding object at the secondary. So invoking

do_transfer() at the primary calls build_map() at the secondary, passing the state as a

parameter.
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5 PERFORMANCE AND SCALABILITY

5.1 Failover Time

An important measurement is the time that a recovery unit is out of action when one

of its replicas fails i.e. the time until the unit resumes  application processing. We

have measured failover times of less than one second. As discussed in [4] the failover

figure is limited by a realistic heartbeat interval. If the heartbeat is set too small,

unnecessary failovers will occur because the processes or network are not timely

enough to stick to the deadline.

5.2 Message Throughput

We have measured performance up to 3000 requests per second at a replicated server

in fail-free operation. The figures were obtained using HP9000 C class 160Mhz

workstations running HP-UX 10.20, with a dedicated 100Mbit Ethernet network. This

was using vanilla Somersault without the ORB.

The secondary sender protocol establishes a pipeline in the recovery unit, allowing the

primary and the secondary to process method invocations in parallel. Theoretical

analysis shows that we can expect the replicated server to achieve 2/3 the throughput

of the non-replicated server when network bound. This is due to the increase in

messages. This was confirmed in our work with ORBlite, where the performance was

approximately 2/3 that of the ORB. When not network bound, we have achieved even

better throughput.

5.3 Configuration and Scalability

Fault-tolerant systems survive failures by means of redundancy, which implies an

additional cost. The main cost of using the Somersault approach is a doubling of the

number of CPU cycles for those critical processes that are replicated. In any one

system using the Somersault platform, there will be a number of critical components

(these will typically require double the number of machines that would be used

otherwise) and a number of non-critical components.

The Somersault infrastructure facilities are themselves distributed, indeed designed to

allow the system to scale to a large number of recovery units distributed over a wide

area network. Somersault can be used in systems where some components are not

replicated, where some components are replicated in local clusters of machines, where

some components are replicated across geographically distributed machines.
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Configuration is a design issue for fault-tolerant systems, and the designer has

complete flexibility in choosing how to distribute replicas. At any one instant, any

machine can be running any number of primary and secondary processes from

different recovery units, although it would be a poor design to have both primary and

secondary from any one recovery unit running on the same machine. The Somersault

infrastructure will make sensible default choices from a list of machines to launch a

secondary.

Somersault recovery units can survive network partitions to the optimal degree (it is

not possible to continue communications across a network partition). Recovery units

in which the primary and secondary were on opposite sides of the network partition

will handle this situation in the same way as a hardware or software failure.

6 RELATED WORK

Maffeis and Schmidt [9] identify alternative HA approaches in distributed systems,

viz. Message Queues, Transaction Processing Monitors and Virtual Synchrony. Some

ORB vendors provide Transaction Processing Monitors e.g. [7].

Somersault falls into the Virtual Synchrony category, of which a well-known example

is the Isis toolkit [2], which has been a major influence on Somersault. Isis is a

general-purpose group communication toolkit from which fault-tolerant applications

can be built. A selection of protocols provide the primitive properties along with

failure detection and group membership, but it is up to the programmer to use those

protocols to build a fault-tolerant system. Somersault is designed and optimised to

offer the programmer a library which supports process replication, and enables the

programmer to compose fault-tolerant units.

Some ORB and middleware vendors support replication of object services and client

rebinding on failure e.g. [13]. These approaches typically do not provide the strong

guarantees offered by Somersault, but are well-suited to applications where

maintaining consistent state is not an issue.

Somersault makes a contribution to the study of replication transparency in distributed

systems which was identified as an architectural goal by ANSA [1] and ODP [8], and

is also a goal of an OMG Request for Proposals for Fault-Tolerant CORBA [11].
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7 CONCLUSIONS

High Availability is very much an application-dependent issue. We have described

one approach which is a candidate for distributed message-based systems with very

demanding requirements, typically encountered in telecommunications, banking,

electronic business, and air traffic control.

Somersault automates process replication, failure detection and failure recovery. It

can be plugged into an ORB to realise the goal of replication transparency, at least on

the client side. Somersault enables programmers to realise the promised high

availability benefit of distributed systems.

Somersault has been through two major iterations of algorithm design,

implementation and optimisation. Throughput has been measured up to several

thousand messages per second in fail-free operation, and in test applications service

interruption times on failure of less than one second have been achieved. More

detailed performance results will be available in the middle of 1998.
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