
Security in the Large:
Is Java's Sandbox Scalable?

Qun Zhong, Nigel Edwards
Networked Systems Department
HP Laboratories Bristol
HPL-98-79
April, 1998

E-mail: [qz,nje]@hplb.hpl.hp.com

Java security,
sandbox,
large scale
application,
mandatory access
control

Using Java security as an example, this paper tries
to draw attention to the various issues of security in
large scale distributed systems, some of which are
often ignored when the security mechanisms are
designed. Even though a lot of work has been done
on Java security, we argue in this paper that due to
weaknesses inherent in the Java approach to
building sandboxes, Java security is not suitable
when applied to large-scale distributed systems.

In addition, the paper also explains the impact of
these issues on the security mechanisms and
introduces some of our efforts to find the security
mechanisms that address the issues of building
large scale secure systems.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

- 1 -

Security in the Large: Is Java’s Sandbox Scalable?

Qun Zhong, Nigel Edwards
Extended Enterprise Lab

Hewlett Packard Laboratories, Bristol
Filton Road, Stoke Gifford

Bristol BS34 8QZ
<qz@hplb.hpl.hp.com, nje@hplb.hpl.hp.com>

Abstract

Using Java security as an example, this paper tries to draw attention to the
various issues of security in large scale distributed systems, some of which
are often ignored when the security mechanisms are designed. Even
though a lot of work has been done on Java security, we argue in this
paper that due to weaknesses inherent in the Java approach to building
sandboxes, Java security is not suitable when applied to large-scale
distributed systems.

In addition, the paper also explains the impact of these issues on the
security mechanisms and introduces some of our efforts to find the
security mechanisms that address the issues of building large scale secure
systems.

1 Introduction
Java is proposed as the most promising platform to develop large-scale distributed
systems on the Internet. One of its main advantages over its rival technology ActiveX is
the security. It adopts the sandbox model to encapsulate untrusted applets downloaded
from the Internet. However, even though the security functionality offered by Java is
acceptable at the current stage, its approach to building a sandbox is unlikely to keep pace
with the development of Java based large-scale applications.

The security problems presented here are not associated with a particular version of
HotJava/Netscape/Explorer implementation. Instead, the problems are classified into
several categories. This helps us discover the cause of these problems and predict what
problems could arise when application systems scale up. We believe without the
understanding of the origin of the problem, trying to cure symptom phenomena is always
exhausting and costly.

In the paper, we first present the Sandbox security model and explain why it is suitable to
deploy in large-scale distributed systems. Then we discuss how Java’s security
mechanisms support this model. The weaknesses of this approach to building sandboxes
are analyzed from three aspects of large-scale distributed systems. Finally, we briefly
outline our approach to building sandboxes and demonstrate how our approach addresses
these weaknesses.

- 2 -

2 Sandbox Model and Java’s Mechanisms to support it

2.1 Sandbox Model

The sandbox concept was originally developed for fault tolerance [1]. The basic idea is to
provide a restricted environment to confine the behavior of a process instead of
eliminating process execution failures; therefore, mitigating the damage caused by the
accidental or malicious process misbehavior to an acceptable degree.

The sandbox model provides a unified conceptual model to address two security issues in
large scale distributed systems. Since it is almost impossible to eliminate bugs from any
non-trivial engineering projects, a sandbox provides a restricted environment needed to
confine the behavior of a potential buggy process. In addition, in the development of
large-scale distributed systems, there is often the need to use Commercial-Off-The-Shelf
(COTS) components or outsource parts of system development to third parties. A
sandbox can be deployed to provide security even when parts of the system are in black-
box form[2].

However, how the security mechanisms to support the sandbox model are designed and
implemented can also determine whether the security solution provided is suitable to
deploy in large-scale systems. As we will discuss in the paper, how the “top-down”
approach employed by Java is not likely to scale up.

2.2 How Java’s security mechanisms provide support for the sandbox

 Java’s security mechanism consists of three interlocking ‘prongs’ to guarantee that the
security policies are enforced [3]. The byte-code verifier checks the untrusted code to
make sure that the downloaded code has not violated the properties it is supposed to have.
Most importantly, it should guarantee the type safety imposed by the language semantics.
The purpose is to make sure that the code does not attempt to access memory it should
not access, so that all the resource accesses is requested by the code itself. The Applet
Class Loader makes sure that the Java classes are separated into correct name spaces and
tagged properly with the security information such as its origin and digital signature. The
security manager will use this information to authenticate the mobile code and decide
whether to accept or reject an access request based on this authentication information. In
addition, it must guarantee that the local trusted classes that access the system resources
are not spoofed. Finally, the Security Manager, which the local trusted classes consult
before actually performing the resource access, acts as the security reference monitor to
enforce run time security policy.

In addition to the requirement of a perfectly built JVM, to achieve an overall system
security also requires that an application using Java has to be security sound enough to
fend off malicious mobile code which JVM thinks behaves perfectly. Figure 1. is a
typical mobile code paradigm[4]that is employed by Java enabled browsers. It highlights
the interactions between various parts of a system. As we can see from the figure, JVM
protects system resources by asking every applet go through its security check. However,
JVM doesn’t protect the application such as a browser from being attacked by malicious
mobile code as the applet can directly interact with the application. The situation of the
application is quite similar to a network service that can be directly accessed by untrusted

- 3 -

users. This means that if a malicious applet exploits bugs in the application, it can
actually by-pass the security check, or sandbox mechanisms that are built into the JVM to
gain access to system resources. It can even replace the original trusted JVM with a rogue
copy. Once this is done, all the following mobile code can access system resources
without the restriction of sandbox. Examples show that some attacks are through the bugs
in the browser instead of Java Virtual Machine. In a more formal terminology, this means
that the security reference monitor built into the Virtue Machine is by passable if the
application is not bug free.

Figure 1. A Mobile Code Paradigm

From previous discussion, it is obvious that the methodology employed in implementing
Java security is a top-down method:

1 The application (browser) has to be error-free so that it is immutable to all attacks.

2 The language (Java) has to be type-safe to guarantee that programs running on VM
will provide exactly the original security information and only access their own
resources.

3 The byte code verifier has to prove that the byte code is type safe before allowing it to
pass.

4 The class loader has to put the untrusted code into the proper name spaces so that they
will not interfere with each other and they have to use the local trusted class to access
system resources.

5 The local trusted classes always consult the security manager, who applies the
sandbox policies to decide whether to accept or reject a resource request, before
accessing resources.

- 4 -

3. Weaknesses of Java’s security mechanisms in large scale
distributed systems

The approach of building security from top-down is not likely to scale up to large
distributed systems. In addition, the security policy model supported by Java and
conventional operating system is not likely to scale up either. In this section we look at
these weaknesses from three points of view, i.e. from developing, managing and using
the system security in the context of large-scale application.

3.1 Weakness in the development of Large-Scale Distributed Applications

Java’s methodology of building sandbox suffers exactly the same problem as the top-
down methodology in software engineering. The overall system security depends on
perfect functioning of the application, the language, the three ‘prongs’ of JVM security
mechanisms and the underlying operating system. It also depends on the proper
interaction of these elements. Therefore, this kind of system security becomes very
complicated and unstable if the system is large. The experience of Java security has
shown that most of the security problems reported come from bugs in the implementation
of the security mechanism and malicious applets attacking bugs in the application that
uses the Java Virtual Machine [3].

3.1.1 Complex JVM security mechanisms

As we discussed, Java’s security mechanisms are built by three “prongs”. It is not an easy
task to guarantee that these three prongs are bug-free. Since the three ‘prongs’ are tightly
coupled, any bugs in one of them could render all the security effort useless. As the above
model implies, the byte code verifier and class loader together should guarantee that all
the resource access has to go through local trusted classes, which consult the security
manager with un-tampered security information. Even if Java is type safe, which is in
dispute [5], examples already show that an error in a particular implementation could
have bugs that could result in the byte code verifier allowing non-type-safe bytecode
through.

Even if the implementations of these three prongs are bug-free, the security inconsistency
between various parts of JVM can also create a backdoor for attackers. For example, an
attack named “slash and burn” used the cache to get the untrusted code into the local
disk. Since code loaded from the local disk is trusted, allowing class names to start with
backslashes (or slashes) can activate the impostor code and therefore, proceed to illegally
access the local system. When the system is small, and the interactions between various
parts are simple, it is possible to find all the delicate inconsistencies. However, when the
system grows large and complex, it is very difficult, even if possible, to discover all the
security inconsistencies. If one of them is unidentified, it can be deployed to compromise
the whole system security.

In addition, the local classes that perform various system functions are likely to grow;
therefore, the chances of containing bugs grow as well. As these classes are local trusted
classes and not subject to the restriction of the sandbox, bugs in them can bring down the
whole Java subsystem security as bugs in an operating system can bring down the whole
system security.

- 5 -

3.1.2 By-passable Security

The most serious weakness of this top-down approach in developing large scale
distributed applications lies in that the security it provides can be by-passed if the
application contains bugs. Therefore, even if we can build perfect secure JVM, which is
possible since JVM is relatively stable and simple compared with the actual application
systems, the final application system’s security cannot be assured as the mobile code can
attack the application from inside. Once the application is compromised, the applet can
do whatever the application is allowed to do, including replace a trusted JVM with a
rogue copy and allow subsequent malicious mobile code to freely access system
resources.

As we have already indicated, it is simply not practical to eliminate bugs from any non-
trivial engineering applications. Most existing application systems are already big and
complex, not to mention how complex they will become when we want to develop
systems that operate at the Internet scale. The context where Java’s security can be
effective is simply impossible to maintain.

3.2 Inflexible security policy and complex security administration

Different organizations need different security policies to satisfy their own security
requirements. Java’s security policy is hard-wired into the JVM. This introduces two
problems when the application it supports becomes large. One is that it can only offer
very limited flexibility. For example, the original Java sandbox only allows an applet to
open network connections to its original host and applets are prohibited from accessing
local resources. Whether or not this policy can actually provide security is another
question. The fact is that this policy actually limits applet functionality. Another problem
is the introduction of new security policy would need substantial change to the JVM since
the security policy is built into JVM; therefore, the chances of implementation faults are
increased . A newer JVM from Javasoft allows some trusted applets to access some of the
local resources, but to achieve this, the JVM has had to be modified. This could make
Java’s security mechanism prone to the problems discussed in the previous section.

Even when JVM provides the necessary support to specify various security policies such
as in JDK 1.2, it is difficult to enforce a consistent system wide security policy since the
system wide security policy has to be configured into each JVM and this policy is likely
to change quite often. The security policy of using shared system resources has to be
configured into and enforced by each JVM since the owners of system wide resources,
such as network servers, can not distinguish whether a request comes from a trusted user
or from a untrusted applet running under the user’s name. This means any system wide
security policy change will result in the change of every JVM’s security configuration. It
is not a difficult task when the system is small and the policy is simple. However, when
Java is popularly used in large network applications as it is intended, this task is not easy
to accomplish. In addition, the system wide security policy is likely to change quite often
in a large distributed system as Java’s security policy model is still the conventional
Discretionary Access Control (DAC) model. This model defines the security policy of
who can use the resource in which way directly, as opposed to the not so widely used
Mandatory Access Control (MAC) model [6] which introduce an indirection between the
users and the resources through security labels. When the shared resources and user pools

- 6 -

are relatively small and static, the security policy based on the DAC model does not need
to change often. However, this security policy is likely to be frequently changed when the
application system is to operate at the global network scale where the users and the
shared resources are dynamically added to or removed from the system. It is very
difficult to maintain the policy consistency given the large amount of work that has to be
done for each change and the frequency of the changes.

3.3 Cost of using the security in large-scale distributed systems

As we discussed in the previous section, the end-user has to be responsible for correctly
configuring the security policies for the system wide resources. The cost of achieving this
is very high in large complicated systems. One reason is that these end-users are normally
not security experts and not aware of many subtle security implications of a particular
operation. Therefore, they are more likely to be subject to so-called social engineering
attacks and are more likely to hand out critical security privileges than experienced and
well informed security experts. The cost of bringing them to an acceptable security
qualification through education etc. cannot be ignored. Another cost is associated with
the using of the security. As we said, the Java security policy model is based on the DAC
model, which directly maps user’s operation scope to the shared resources by employing
some forms of access matrix. Therefore, the end-user who configures the JVM security
policy has to be aware of every system wide policy change. For example, the code signed
by CompanyX is no longer regarded trustable anymore or certain resources are now made
available to an applet coming from a new partner’s site. Obviously, the end-user has to
spend a lot of time and effort configuring and maintaining the security policy when the
system is large and there are so many shared resources and business partners.

4. Where and How should the Sandbox be Built
In contrast to the method adopted by Java, we seek support to build sandboxes from the
operating system rather than from a particular language. As we can see in Figure 1, native
operating system is the best place to provide some support to build non-by-passable
security mechanisms since all the resource access has to go through it. In addition,
operating system is normally more stable than application and protected by hardware,
making it very hard to tamper with. Therefore, the sandbox model can be supported from
bottom-up, i.e. from the lowest layer of the system that actually manage various system
resources --- the operating system. Consequently, it is possible to reduce the system
security dependencies between JVM, application and operating system that exist in top-
down security approach deployed by Java to operating system only. Without this support,
we would have to secure every application to achieve the overall system security.

Conventional operating systems do not provide the necessary facilities to confine the
behavior of a process. Instead of building a set of new security mechanisms totally from
scratch, we have found that we can reuse and refine some B-level operating system [7]
security features, particularly Mandatory Access Control and privilege management
mechanism to serve this purpose.

The initial stage of our work has yielded exciting results. MAC and related privilege
management mechanism has been successfully deployed to sandbox COTS

- 7 -

components[2] as well as mobile code[8]. The results have proved that these security
mechanisms provide the support for the development of secure large applications through
the ability of confining the behaviour of processes. The only things that the overall
system security depends on are several very small and simple trusted programs, which
can be thoroughly studied and act as reference monitors to the shared resources, and the
operating system, which is much more tamper-proof and stable than most non-trivial
application systems.

Additionally, our work on mobile code demonstrates that the cost of the using operating
system security is significantly lower than using the security built by Java’s approach
since the MAC model is developed to provide administrative security. The task of
security administration and management of shared resources is pushed to the system
security administrator. Therefore, the end-user is liberated from complex security
maintenance and can concentrate on his own work.

Finally, the MAC model also looks promising in solving the scalability and flexibility
problem in security management as MAC introduce an indirection, i.e. the security label,
that allows us to classify users and resources and make the security policy according to
the classification of objects in the system. This ability has two advantages. One is that the
relationships between the classifications of objects are much more static than the
relationships between dynamic objects as objects in a system tend to have shorter
lifetime. Therefore, a stable system wide security policy could be defined and enforced
consistently. Another advantage is that depending on the classification of the users and
the resources, different policies can be produced to satisfy different business security
requirements. For example, the same mechanism proposed in our work[8] could be
deployed by Internet Service Provider(ISP) to help parents filter out unwanted WWW
site as well as used by a company to create different views of their IT system for different
users. We are currently investigating this area.

Acknowledgements
The author would like to thank Dirk Kuhlmann and Liqun Chen for the very valuable
comments about the paper. Thanks also go to Chris R. Dalton, Andy Norman, Owen
Rees for discussions on the ideas presented in this paper.

1 Robert Wahbe, Steven Lucco, Thomas E. Anderson and Susan L. Graham, “ Efficient Software-based
fault isolation”, Proceedings of the Sym. On Operating System Principles, 1993
2 Qun Zhong, Nigel Edwards, “Security Risk Control of COTS-based Applications”, to appear in IEEE
Computer, special issue on COTS, June, 1998
3 Gary Mcgraw and Edward W. Felten, Java Security: Hostile applets, Holes, and antidotes, Wiley
Computer Publishing, 1997
4 Marvin Schaefer, Sylban Pinsky etc. “Ensuring Assurance in Mobile Computing”, proceedings of 1997
IEEE Symposium on Security and privacy”, May 1997, Oakland
5 S. Drossopoulou and S. Eisenbach, “ Is the Java type system sound?”, Proceedings of the fourth
International Workshop on Foundations of Object-Oriented Languages, Paris, Jan. 1997
6 Ravi S. Sandhu, “Lattice-Based Access Control Models”, IEEE Computer, Nov. 1993
7 TCSEC, Department of Defence, “Trusted Computer System Evaluation Criteria”, DoD 5200.29-STD,
Dec., 1985

- 8 -

8 Qun Zhong, Nigel Edwards, Owen Rees, “Operating system Support for the Sandbox Methods and its
Application on Mobile Code Security”, HP Laboratories Technical Report HPL-97-153

