
FfI-.. HEWLETT
a:~ PACKARD

Policy Based Monitoring of a
Web-Based Service

Adrian Baldwin, Marco Casassa Mont
Internet Business Management Department
HP Laboratories Bristol
HPL-98-76
April, 1998

E-mail: [ajb.mcm]@hplb.hpl.hp.com

service
management,
system
management,
policies,
monitoring

The Internet provides an infrastructure for deploying and delivering business
critical services either within a corporate Intranet as out sourced services or even
end user seIVices such as shops selling consumer products. For such services to
be successful it is essential that they have a user focused management system to
ensure that the end user experiences a reliable and secure seIVice. This paper
addresses issues associated with seIVice level monitoring and diagnosis of a
potentially complex web site and a tool is described that allows for the generation
of service level events as well as periodic analysis.

The service administrator needs to focus on the requirements and functioning of
the seIVice so that the effect on seIVice provision of any changes or faults in the
computer system are clear. A graphical representation of a service based on a
hierarchical graph structure has been used so that the administrator can present
their model of the seIVice, navigate through the seIVice and have significant
events mapped onto their seIVice model. The graph hierarchy allows the service
to be successively decomposed into a number of sub-selVices or user interactions
until a desired level of granularity has been reached. The graph structure is then
used to represent the links between various parts of a selVice.

'Policies' are associated to the graphical service components in order to describe
contexts and constraints regarding the correct functioning of that part of the
service. For examples policies may describe the system configuration necessary
for a particular part of a seIVice; or may describe performance requirements; or
even describe potential security violations. Policies are validated against data
provided by an underlying information system within the management tool. This
information system supports retrieval, and logging of system information and its
association to a particular part of the service. An event notification mechanism
allows the policy monitoring system to re-evaluate a particular policy when the
information it depends on changes: failure to comply with a policy is detected and
displayed on the seIVice graph. In such a context, the seIVice administrator can
run a diagnosis script to find out details of the failure and the same mechanism
can analyse system information, for example, performing security checks or
driving performance trends.

© Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

Policy based monitoring of a web-based service

Adrian Baldwin and Marco Casassa Mont

Hewlett Packard Laboratories
Internet Business Management Department

Filton Road, Stoke Gifford,
Bristol BS12 6QZ

UK
ajb@hplb.hpl.hp.com, mcm@hplb.hpl.hp.com

Abstract

The Internet provides an infrastructure for deploying and delivering business critical services either
within a corporate Intranet as out sourced services or even end user services such as shops selling
consumer products. For such services to be successful it is essential that they have a user focused
management system to ensure that the end user experiences a reliable and secure service. This paper
addresses issues associated with service level monitoring and diagnosis of a potentially complex web
site and a tool is described that allows for the generation of service level events as well as periodic
analysis.

The service administrator needs to focus on the requirements and functioning of the service so that the
effect on service provision of any changes or faults in the computer system are clear. A graphical
representation of a service based on a hierarchical graph structure has been used so that the
administrator can represent their model of the service, navigate through the service and have significant
events mapped onto their service model. ,The graph hierarchy allows the service to be successively
decomposed into a number of sub-services or user interactions until a desired level of granularity has
been reached. The graph structure is then used to represent the links between various parts of a service.

'Policies' are associated to the graphical service components in order to describe contexts and
constraints regarding the correct functioning of that part of the service. For examples policies may
describe the system configuration necessary for a particular part of a service; or may describe
perfonnance requirements; or even describe potential security violations. Policies are validated against
data provided by an underlying information system within the management tool. This information
system supports retrieval, and logging of system idformation and its association to a particular part of
the service. An event notification mechanism allows the policy monitoring system to re-evaluate a
particular policy when the information it depends on changes: failure to comply with a policy is
detected and displayed on the service graph. In such a context, the service administrator can run a
diagnosis script to fmd out details of the failure and the same mechanism can analyse system
information, for example, performing security checks or deriving performance trends.

1 Intrqduetion

The Internet or Intranet provides a powerful mechanism for the delivery of distributed
services; but if the mechanism is to be successfully used to support business level
services it is essential that they can be effectively secured and managed. This paper
describes a tool designed to support a system administrator in ensuring the server side
of the application runs in a reliable fashion. The Internet is a highly service orientated
system in that the user sees the information or the transactions they are performing
and very little of the underlying systems (particularly at the server side). It is therefore
essential that the administrator can.manage the systems and view system events and
problems in terms of the service being provided. This paper concentrates on this
paradigm switch by providing a visual tool to link an abstract service view to the
underlying system.

1

A prototype management tool, see Figure 1-1 for a general architecture, allowing the
administrator to decompose and represent the structure of a service in terms of a
hierarchical graph has been developed. Logic based policy constraints are used to
describe the correct functioning of each part of the service by describing relationships
that must exist between bits of system data to ensure that the service is maintained. A
management provider system is used to obtain detailed system information or link to a
management system such as Open View. An event system exists such that when a
piece of system information changes the policy constraint can be re-evaluated and an
error flagged if the data change leads to a problem with service delivery. Further
pieces of system information can be associated with each piece of a service and an
analysis tool can be used to walk through the policies and data performing analysis
tasks such as service diagnosis. The paper describes the ideas behind the service
model and system information provision before going on to discuss how policy
concepts can be used to link the underlying systems to the service description.

Administrator

Service Policies

Service Model

Policy
Evaluator/
Analyser

Management
Information
System

Management
Providers

Computer Systems, Applicati _~, System management systems

Figure 1-1
The overall architechture of the service management system

2. Service Model

To manage a service it is necessary to have a model of the service from the users
point of view thereby allowing the users expectations to be understood; a necessary
precursor to effective service management. A simple web service could be viewed as
a single entity that delivers web pages to the user and the users expectations are based
on their ability to access the pages within certain time limits. As the service becomes
more complex from either the user or providers point of view it is useful to start
decomposing it into a number of sub-services each of which can have specific
management aims.

Take the example of a web based electronic shop selling and supporting a wide range
of products. The service could be sub-divided just like a large store into areas
containing different types of products; equally there is a split between product
information and advice, purchasing of products and the support of products sold.
Initially the administrator may choose to model the different product areas of the shop

2

indicating that these pieces are run in a separable way. The administrator could then
further subdivide the service into pieces associated with the way the products are sold;
such as product information, advice, support and purchasing. There is a clear
navigation path through the service at this point from product information to advice
and tlrrough to purchasing. The level of detail to which the decomposition occurs is
also a factor for the administrator to control and will depend on the granularity of the
management requirements.

The service model is represented as a hierarchical graph structure where the service or
sub-services are represented by graph nodes and the navigation between the pieces of
the service are represented by the graph arcs. The hierarchical aspects of the graph
allow different decomposition depths to be visualised and even allowing different
parts of the service to be viewed at different levels of detail. Take the example of the
Internet shop, say selling computers, software and printers. At the highest level a
single node graph would represent the shop as a whole. This top Internet shop node
can be expanded and replaced with nodes representing each type of product being
sold. In tum one of these nodes can be expanded to reveal the services within that
department, see Figure 2-1. This type of graph structure provides a visual image of the
service on which management information can be projected such that the
administrator can focus on some areas whilst only seeing a more abstract management
view from others

Figure 2-1
An example of the hierarchical graph structure used

in representing service structure.

3. Managing the service

The service graph provides a visualisation of the service model as defined by the
administrator allowing pieces of the graph to be associated with relevant management
information. Each sub-service can be associated with various data sources containing

. management information relating to the provision of that portion of the service. Such
a system provides a service-orientated way of organising management data allowing
the administrator to browse through'information related to each part of a service.

The next stage in producing an effective management tool is to allow the
administrator to state their expectations for each portion of the service in terms of the
associated management data or the status of the component sub services. These

3

management expectations are described as detailed constraints on the state of system
information and can therefore be viewed as functional policies. The prototype only
perfonns policy based monitoring and does not attempt to enforce the policies
(Barruffi et al 97). Instead when a policy is found to be broken an event is flagged to
the administrator via the service graph structure and the administrator is expected to
perfonn any necessary action. Details about the policy representation and monitoring
are discussed in a later section.

4. Information Provision

The service model along with the policies can be viewed as a management description
of a service and to monitor the extent to which the management requirements are
being met it is necessary to have an infonnation system. A complex service will be
constructed using many different system resources such as applications, databases and
servers. The service management tool aims to allow the administrator to pull together
infonnation from each individual component or from an underlying management
system into a standard fonnat. A management provider interface provides a standard
way to plug in interfaces to each available source of management infonnation.

The management provider is a thin layer sitting between a system providing
management infonnation and the service management console. The management
provider should provide a VI into the infonnation source thus ensuring flexibility by
keeping system specific functionality outside of the core management console. The
management provider should provide its data in one of two standard fonns, a table or
a table generator (allowing references to dynamic sets of tables). These tables can be
updated by the management provider as the contained infonnation changes. Each
service node interested in the infonnation contained in a table registers with that table
and it will be notified whenever the management provider changes the table's
contents. Ideally it would be possible to log the contents of selected tables in a
database to allow for historical analysis. ~.

Consider the web shop manager who is running their service on an NT infrastructure
and wants to use WBEM to access application and system data. The administrator
would choose an appropriate service node and start to associate infonnation from the
WBEM system. This would call the WBEM management provider which uses its own
VI to allow the user to select the data. The management provider is responsible for
passing the infonnation to the service management system and generating events
when ever the infonnation changes. They may also use SNMP and DMI management
providers or even a specific provider written to interface with a their particular web
server.

5. Policy

The term policy is used here as a description of the desired functioning of the system.
More accurately the tenn functional policy may be used to refer to the low level
policies being monitored in contrast to much of the policy work (Wies 94, Sloman 93,
Goh 97] concentrating on specifYing policies derived from business goals and
strategy. Ideally the policy based management system would support the overall
policy transfonnation cycle deriving highly specific policies from top-level business

4

goals. This full policy refinement cycle is considered beyond the scope of this paper
with the focus here being on low level functional policies grounded on system
information. Even at this level the policy specification should have a number of
features describing the policy such as its motivation, production processes and
peoples' responsibilities. The work described here focuses on the very narrow
computational aspects of policy relating to monitoring; that of the context for
activating a policy and a policy constraint (compliant condition) describing a set of
valid system states.

The work here takes a slightly different overall slant in that the service is considered
in isolation from a global enterprise strategy. This paper assumes that a number of the
IT functions can be separately specified as individual services which may can be
managed separately or outsourced. Or that the service, such as the Internet shop will
be an integral part of the business but again the IT management could be outsourced.
This emphasis on service management is aimed at ensuring that the requirements,
aims and costs of the IT systems can be matched to the business processes they are
supporting. The service policies may then be derived from the overall business aims
and goals; however, the service layer adds an extra layer in the policy transformation
cycle.

5.1 Policy Template

With this in mind these computational elements of the policy are described using a
logic (Prolog like) language allowing policies to be written in a declarative style such
that the policy writer need not consider how the policies are used in management. A
policy template has been used to add some structure to the information within the
policy both to increase clarity and to aid the policy evaluation. This template is
defined as a logic predicate allowing hierarchical policies to be defined in a recursive
manner. The first element in the template generates a domain of subjects to which the
policy applies; this takes the form of a logic goal that binds a domain variable with a
list of subjects. The remainder of the policy forms a list of policy blocks each
containing a context, policy constraint ag,d action. Each policy element contains a
language description along with a logical goal allowing an easier view or human
explanation of the policy to be presented to the user rather that the logic goal.

The domain definition can simply generate a list of single entities to which the policy
should apply but can also generate tuples containing entity references whose
relationships must be checked by t~e policy constraint. In most cases the policies are
related purely to system specific entities, however, if policies want to talk about users
or 'types of users' then role concepts can be included into the domain specification.

The context controls when the policy is activated according to some set of system
features. As such the contexts provide a mechanism for policy selection and can aid
the implementation of time and usage dependent service level agreements. For
example a context may state that the policy is active between 9 and 5 o'clock Monday
to Friday; alternate policies may be' applicable at different times; or allow a policy to
specify a response time when there are less than 10 users.

Typically the policy constraint would be applied to each subject defined in the
domain; but a series ofpredicates are provided to support various expressions over the
domains components such as at "least n must be working". It is also possible to gather

5

data from each subject in the domain and test the accumulation of the data allowing
expressions such as the 'total access time for all components must be less than 10
seconds'. The information system 'described in the previous section should ideally
present a comprehensive description of the system state. The policy constraint is built
on top of this system state description allowing various bits of information to be
constrained such that the management requirements are described.

An action field is included in the template so that simple scripts can be run when a
policy failure occurs. Such scripts may perform some basic repair actions but the
required repair can be too complex and a script could summon assistance or in the
case a breach of security policy perhaps shut the system down.

A simple example of this type of performance policy for accessing a set of static
pages on a web server would look like:

Policy (
domain (fmdfiles ("docroot/pages", "html", _domain))
[Policy Block (

context (between (9am , 5pm)),
constraint (forall (_domain, _uri,

[totalAccessTime (_urI, _accessTime) ,
less (_accessTime, 10)])

action ()
....]) .

Here the domain constraint finds all the web files that are being constrained. The first
policy block has a context specifying it is active between 9am and 5pm and the
constraint specifies that the total access time for each urI obtainable from the domain
must be less than 10 milliseconds.

A general language has been provided to allow the administrator to be able to express
the widest possible range of policies allowing complex management requirements to
be specified. Obviously the administrator should not be expected to program and as
such there is a need for policy compositibn tools which are discussed later. Along
with a flexible language it is also necessary to provide a wide range of functions or
predicates that express the highlevel concepts an administrator may need to express.

5.2 Policy and Service

The service model describes a way in which a service can be decomposed into various
sub-services and visualised using a hierarchical graph. The policies provide a
mechanism for describing the management aims for specific to part of a service by
describing constraints on the values system data can hold. Each part of the service can
have its own management requirements both from the service point of view as well as
from the way in which the service is delivered. As such, a policy, or list of policies, is
associated with each node in the service graph describing the desired service
functionality. This means that policies associated with each service node can cover a
wide variety of management objectives such as performance, security and reliability.
The classification of policies could lead to different views on the service according to
the role of a particular administrator; for example, a security administrator may only
see violations of security policies.

In the example of the Internet shop discussed earlier the service model has a number
of levels. At the top level of the Internet shop policies could specify a minimum time

6

for the delivery of a page of information using a policy similar to that shown in the
previous section. At the leaves of the hierarchy there may be policies that describe the
configuration of the systems used to form part of the service. For example, a policy
could check that the web server providing the product purchasing system could access
databases showing product prices and availability. If this service is further
decomposed such that there is a 'get customer details' service then policies may check
for events generated by the customer database server. Other policies may check event
logs or interpret events collated through an event management system such as
ManageX.

The service graph allows different levels of service description providing the ability to
set different policy requirements. Take the example of the a simple printer service
which consists of a number of printers and spoolers. Each individual printer can be
thought of as an individual service and can be given constraints describing the correct
working of that printer. At this level the administrator can see if each of their printers
and spoolers is working. The administrator can group these printers into more abstract
services and set different management policies that relate better to the objectives of
their service. In this printer example the administrator may group together all their
LaserJet printers and the appropriate spooling services and set management goals that
at least half must be working. This means that the detailed service decomposition can
show faults but higher level polices refering to these sub-services may filter these
failures because they do not lead to an overall service failure.

5.3 Policy Writing

This system would require a great deal of expert knowledge to configure the
monitoring for each individual service or even to change to service policies or deal
with changes to the service. It is b~lieved that this is a fundamental difficulty when
trying to apply policy at any level of computation. Whilst it may be relatively easy to
give a general description of the management aims for a service it will always be
difficult to convert this description into a formal description mapping down to the
system level. As such, it is believed that a;Iumber of tools should be provided to ease
the specification process and try to hide as much of the language from the user as
possible.

Much of the research on policy writing suggests that the process should be top down
starting from the high level corporate objectives and gradually refining them into
detailed low level functional policies. Whilst this is useful in deriving the objectives
or policy specifications it is often useful to build the detailed functional description in
a bottom up manner by looking at how to combine available data with supporting
predicates. The original system data comes in the form of tables with the logical
predicates performing selections, joining data sources and processing data to form
new tables. In this way it is envis~ged that a policy definition tool could allow the
policy writer to select from the basic information tables and select from a set of
operations that either generate new tables or act as binary predicates for the table as a
whole. In such a way it is believed a simple low level policy writing tool very similar
to database querying wizards could be created.

It is inevitably the case that although many services differ in detail and content they
are often formed from common components and have very similar functionality. This
should allow mechanisms to be created that lead an administrator through the service

7

creation process suggesting various service components and default policies. For
example, in the web domain the structure of the web pages and easily be derived as
well as the point where links are made to backend systems (such as databases and
transaction servers). If these backend interfaces are done using standard methods (eg
WebDB) it may be possible to derive more about the service structure. For a
particular domain it should be possible to provide specialised predicates providing
information useful in setting service policies as well as adaptable default policy
examples to ease the authoring process.

5.4 Policy Evaluation

The policy evaluation mechanism is based on a Prolog system which is tightly
coupled with the service model and information systems. Initially when a policy is set
it is easy to prove the associated goal to ensure it is maintained. The policy evaluator
will first find the elements in the domain, then follow through each of the pieces in
the policy block checking the context is valid before proving each policy constraint.
When there is a failure in proving one of these policy constraints then the service
node to which it is associated is turned red showing that for that portion of the service
there is a failure to meet the policy. Alternately if the service is working the node is
turned green. The system could be extended to show levels of failures for certain
types ofpolicies.

The structure of the service graph .means that a service's policies can be written in
terms of the correct working of each of the decomposed sub-services as well as
further system level policy constraints. This means that changes in the status of a
service node must be passed up the service hierarchy and each policy should be re
evaluated until the status of the service remains unchanged.

The information system has an associated event system which is used to refresh
system information thereby allowing the re-evaluation of policies as the state of the
system .changes. As information is associated with a service node the node registers its
interest with the information system. The Ipanagement provider is expected to handle
all the relevant events, or if no event mechanism exists pole the source, and update the
data table representation. In turn the data table tells all interested service nodes that
their data has changed. These service nodes can then re-evaluate their policies; or just
those pieces of the policies reliant on the changed data.

6. Analysis

The policy based monitoring system provides a mechanism for alerting the
administrator to service failures and allowing them to examine data associated with
various parts of the service. The system also allows an analysis script to walk over the
service model, policies and information allowing more complex management
questions to be addressed. It is a simple step to extend the policy evaluator so that
other analysis programs can be executed allowing a wide range of functionalities to be
plugged in to the management systein.

This type of analysis mechanism could, for example, be used to support diagnosis
tasks. The administrator is presented with a graphical view of the service and they can
see when problems occur due to a colour change in a particular service node. This
only indicates that there is a problem in delivering the service at that level and the

8

administrator needs further tools to identify the way in which service delivery is
failing. A graphical tool can allow the administrator browse through the policies
associated with that service. Alternately a diagnosis algorithm can be used to walk
through the policies and find report on the policy failures and even initiate system
level diagnosis (Baldwin et al 97) to pin-point the fault.

7. Discussion

Many system management tools provide mechanisms for collecting and filtering data
and alerts but the infonnation remains at the detailed level of the systems. With an
increasing need to reduce management costs it is essential that management is related
to the delivery of services which have real value. The management console described
here aims to support service management by projecting infonnation from the system
view to an abstract user orientated view of the service. Ideally the management
infonnation should be derived from service design tools and available to a variety of
management and support tools.

The work presented here starts by considering a users view of a service and how the
overall structure of the service can be modelled using a simple hierarchical graph
structure. This graph provides a skeleton onto which various pieces of management
infonnation can be associated. The use of ideas from policy based management
allows each part of the service to be associated with simple statements describing the
management requirements. These are implemented as logic statements describing
valid states that the system can exhibit and still deliver that portion of the service. It is
believed that the combination of policy and the service model provide a powerful
abstraction for service level monitoring which could be expanded to other
management tasks.

The downside of any flexible management system which aims to provide an abstract
view of detailed system data is that considerable effort needs to be applied to
developing the mapping between these wews. The work described here has been
based on ideas of using graphical structures to model a service and consideration has
been given to easing the process of implementing low-level policies by abstracting
basic data structures. Further work needs to be carried out both to develop ideas of
policy authoring and to demonstrate that the trade off between configuring the
management system and easing the longer-tenn usage.

The discussion has presented the tool as a management console providing a single
view of a service. With a highly complex service or an organisation providing a large
number of services it would be interesting to provide different limited views of the
service to different administrators. This could be done along service lines so that each
administrator is responsible for pieces of the service (ie nodes in the graph) and this
could be expanded to a more federated system where pieces of a large service are
provide by different organisations. An alternate breakdown could be based on
management issues so that the policies are classified (eg security, perfonnance,
function) and each administrator would manage a speciality for a number of services.

9

9. Summary
A service management console has been described which projects system
management data onto an abstract service view. This has been achieved using the idea
of policy which at a high level should specify the management aims of individual or
composite components of a service. The prototype uses a detailed policy constraint to
allow detailed system information to be linked to the service view allowing the
administrator to have simple visual cues showing service failures. An analysis
mechanism also allows the administrator to carry out a detailed diagnosis, or other
analysis as a first step to fixing the problem and maintaining service quality. It is
believed that such a system provides the administrator with information highly related
to the management requirements of the service they are running thereby emphasising
service delivery whilst easing the routine monitoring tasks.

10. References

A. Baldwin, C. Bartolini, G. Di Vitantonio, K. Eshghi., (1997) "A Novel Algorithm
for Fault Diagnosis in Internet-Based Services". 4th Workshop of the HP OVUA.
Madrid Spain.

R. Barruffi, E. Lamma, P. Mello, M. Milano, (1997) "Application of planning
techniques for system configuration tasks". 4th Workshop of the HP OVUA. Madrid
Spain.

C. Goh. (1997) "A Generic approach to policy description in system management" in
Proceedings of the 8th IFIPIIEEE International workshop on distributed systems:
Operations and Management.

M. Sloman (1993) Specifying Policy. for Management of Distributed Systems" in
Proceedings of the IFIP International workshop on distributed systems: Operations
and Management. ~.

R. Wies (1994) Policies in Network and System Management - Formal Definition
and Architecture-. Journal ofNetwork and System Management. 2(1).

10

