
Semantic Mapping of Events

Fabio Casati*, Weimin Du, Ming-Chien Shan
Software Technology Laboratory
HPL-98-74
April, 1998

E-mail: [du,shan]@hpl.hp.com

interoperability
issues and
information
modeling,
event processing,
semantic mapping
business events,
Petri nets

This paper addresses the problem of efficient
management of events, in particular in those
environments where events carry information useful
to multiple applications, possibly operating in
different domains and at different levels of
abstraction. We investigate the problems and
opportunities offered by such environments, and
define a framework that enables a semantic
mapping of events, i.e., enables the processing and
successive refinement of events at different levels of
abstraction, so that they can be understood and
efficiently consumed by business applications.

We identify the requirements of an event mapping
system and present a specification language,
integrating high-level Petri nets and database query
languages, which provides the required expressive
power to specify complex event processing functions
and includes a set of constructs that support the
design process and allows efficient implementations.

*Dipartimento di Elttronica Informazione Politecnico di Milano, Milano, Italy
© Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

Semantic Mapping of Events

Fabio Casati

Dipartimento di Elttronica Informazione

Politecnico di Milano

Milano, Italy

Weimin Du and Ming-Chien Shan

Hewlett-Packard Laboratories

Palo Alto, CA 94304, USA

fdu, shang@hpl.hp.com

Abstract

This paper addresses the problem of e�cient management of events, in particular

in those environments where events carry information useful to multiple applications,

possibly operating in di�erent domains and at di�erent levels of abstraction. We

investigate the problems and opportunities o�ered by such environments, and de�ne a

framework that enables a semantic mapping of events, i.e., enables the processing and

successive re�nement of events at di�erent levels of abstraction, so that they can be

understood and e�ciently consumed by business applications.

We identify the requirements of an event mapping system and present a speci�cation

language, integrating high-level Petri nets and database query languages, which

provides the required expressive power to specify complex event processing functions

and includes a set of constructs that support the design process and allows e�cient

implementations.

Keywords: Interoperability issues and information modeling, event processing,

semantic mapping, business events, Petri nets.

1 Introduction

In a number of environments and application domains there is the need of handling a huge

number of events. Such environments typically include management and control platforms,

1

such as telecommunication network management or automated driving systems, where both

the software and the hardware components (called event sources or event producers) generate

events in order to enable the ordinary and exceptional control of the system. A peculiarity of

such systems, which complicates their management, is that events often arrive in storm, as a

result of some failure or exceptional condition. For instance, a broken wire in a network may

cause a storm of thousands of events notifying failure of every node on the wire, messages

for tra�c re-routing, noti�cations of undelivered packets, and so on. When the problem is

�xed, a restoration storm of similar size occurs. Event management in such environments has

been traditionally performed \by hand": human operators, like doctors, look at the events

(symptoms) and try to extract useful information (such as the problem that caused the

symptoms). While this approach can be acceptable for simple or small systems, it does not

scale to complex systems, where the number of events is unmanageable without automated

support.

Such events may be of interest to many applications (called event sinks or event consumers),

possibly in di�erent domains. For instance, a storm of events notifying node failures carries

information which can be used by a diagnostic tool, by an application that monitors network

performance, or by a customer care business process that checks whether service level

agreements with the customers can be satis�ed or not. Thus, multiple applications, possibly

operating at di�erent levels of abstraction, may be interested in the same events.

In this paper we present a service that enables semantic mapping of events, i.e., the

processing of events noti�ed by one or more event sources, in order to generate semantically

meaningful events at di�erent levels of abstraction for the di�erent applications interested in

the information that can be extracted from the noti�ed events. The use of an event mapping

facility raises applications from the task of performing event processing by themselves.

A sophisticated event processing capability is in fact missing in most applications, and

in particular in high-level, business applications, since these have not been designed for

e�cient event handling. For instance, a customer care work
ow process would have to

extract the knowledge relating the impact of the detected node failures on the customers

by using the constructs and mechanisms o�ered by the Work
ow Management System

(WFMS) itself. This means that event processing can not be e�ciently modeled or

implemented. Furthermore, the use of specialized event processing components enables

both the factorization of event processing, since di�erent applications may share some event

processing requirements, and its distribution, since event processing components can be

structured in arbitrary architectures according to the physical locations of event producers

and consumers and to the characteristics of the required mappings.

In this paper we �rst analyze the requirements of an event mapping system and present

them by means of a simple example taken from the telecommunications domain, which is

one of the environments with stronger need for e�cient event processing. We then show

how
exible event mapping can be performed by a set of distributed, independent event

processing components, each capable of performing complex processing functions involving

2

event correlation and access to external databases.

The complexity of the mapping needed by some applications requires a rich model for

the speci�cation of event processing. Traditional event processing models, such as those

o�ered by active databases or event correlators, are not suited for this purpose, either

because they lack the adequate expressive power or do not allow event processing based

on the state of external databases. In order to overcome these limitations, we propose a

formalism, integrating high-level Petri nets and database query languages, which provides

the required expressive power to specify complex event processing functions and includes a

set of constructs that support the design process and allows e�cient implementations.

The paper is structured into two main sections: Section 2 details the requirements for event

mapping, starting from the telecommunications network management case study, and shows

the inadequateness of current approaches with respect to these requirements, while Section 3

introduces the formalism we propose for the speci�cation of event mapping and discusses

its main features. Section 4 concludes the paper with some remarks and details our future

agenda.

2 Requirements for Semantic Mapping of Events

This section details the requirements for an event mapping service. We �rst introduce an

example, taken from the domain of telecommunication management network (TMN). This

simple example, serves the purpose of showing the requirements for developing an event

mapping service1. We then analyze the requirements and discuss related work in this area,

showing why we believe that current approaches to event processing do not meet these

requirements.

2.1 The Network Management Case Study

In the case study we assume that a network is composed of interconnected nodes; nodes can

be recursively grouped into subnetworks, thereby originating a tree of subnetworks, whose

root is the entire network. Analogously, physical components in the network (e.g., routers,

wires, adapters, etc.) are also organized into tree structures, so that a component may be

made of multiple sub-components. We assume that the network structure and topology are

stored in a database.

Many events can be generated by the network components; typical noti�cations include loss

or restoration of network signals, loss of packets, protocol errors, or equipment malfunctions.

We will refer to these events as raw events. Raw events are detected and noti�ed by network

1The case study is based on the TMN international standards SNMP/CMIP [21] and NMF - Business Agreements [18]

3

monitoring components, and may carry several parameters denoting for instance the a�ected

component or the timestamp of the event occurrence.

Such events may be of interest to many applications. In our example we consider three of

them.

� A Network diagnostic application that needs to detect failures in the network,

such as equipment malfunctions or broken wires. We refer to the events of interest to

the network maintenance application as network physical events, since this application

wants to know what physically happened in the network, i.e., what is the problem that

caused the event noti�cations.

� A Network performance monitor that keeps track of the performance and quality

of service provided by the network. We refer to the events of interest to the network

performance monitor as network impact events, since the application is interested in

understanding the impact on the network performance caused by network failures

� A Customer care application (e.g., a work
ow process) that is interested in

determining the impact of performance degradation on each customer, for instance

to open trouble reports or o�er discounts to damaged customers. We refer to the event

of interest to this business process as service events, since the application is interested

in understanding how the service (for speci�c customers) is a�ected.

Our aim is to develop a mechanism enabling the mapping of raw events into network physical,

network impact, and service events, in order to provide each application with events at the

appropriate level of abstraction. In the following we characterize the four categories of events

and show what kind of processing is needed in order to generate high-level events starting

from raw events.

� Raw events are those raised by the network equipment or by low-level monitoring ap-

plications. Examples of raw events and parameters are LossOfSignal(NodeId), Adapter-

Error(ComponentId), ComponentMalfunction(ComponentId),MessageDelivered(Message)

or CommunicationsProtocolError (PairOfNodes).

� Network physical events are the result of a processing over raw events that aims at

determining the causes that actually generated an event storm. Examples of network

physical events are netFailure(networkId) or ComponentMalfunction(ComponentId).

Event netFailure(N) is raised as node failures are noti�ed from every node in a network

N within a speci�ed time interval, and if the same event can not be raised for an

ancestor of N. An analogous process is followed for determining the occurrence of

the ComponentMalfunction event. The detection of these events involves correlating

raw events and/or previously detected network physical events. In this example the

4

correlation is particularly complex since the number of events to be correlated is

not �xed but depends on the considered subnetwork and on its topology (we thus

refer to it as dynamic correlation). Note that knowledge of the network structure,

stored in a database, is also required. The detection of network physical events also

requires �ltering capabilities: for instance, a diagnostic tool might only be interested

in noti�cations coming from a given subnetwork, so that events involving other

subnetworks are disregarded, or it might want to discard false alarm, so that when

a node failure event is immediately followed by a node restoration event, it is not

processed further.

� Network impact events describe the impact of a failure on the network performance.

Examples of such events are PerformanceLevelChange(networkId, oldLevel, newLevel)

or BandwidthChange(PairOfNode, oldBw, newBw). The semantics of these events can

be de�ned in terms of network physical events, rather than referring directly to raw

events. The performance level is changed on the basis of some functions over the

message delivery times with respect to the expected ones, of the frequency of failure

of critical components, and so on. The event BandwidthChange is raised whenever the

bandwidth between two nodes changes. Note that this could be deduced by failures in

nodes or system components, but could also be caused by new node connections or more

powerful equipment. These latter changes can be described by database modi�cations.

� Service events de�ne how network impact events a�ect the Service Level Agreements

(SLAs) and the customers. Examples are create(TroubleReport) or SLAviolation(SLA,

Trouble). A trouble ticket, for instance, is created whenever a problem that a�ects a

user of the network is detected. This requires knowledge of which user is a�ected by

which failures, and again this can be deduced by analyzing network impact events and

the database describing the service level agreements stipulated with the customers.

2.2 Requirements Analysis

The case study shows that mapping events to higher levels of abstraction can be obtained

by a sequence of event mappers, organized as shown in Figure 1: mapping from raw to

service events can be achieved in multiple steps, where intermediate results represent events

at the appropriate semantic level for an event consuming application. Each event mapper

receives events from other (lower level) mappers or from generic event sources, processes the

events on the basis of the event parameters, the state of the application's database, and the

occurred event history, and feeds the output events to event consuming applications or to

other (higher level) mappers.

Mappers at di�erent levels typically have di�erent focuses: mappers closer to event sources

have a greater event load and their processing mainly consists in �ltering and correlating

events. On the other hand higher lever mappers must usually handle a reduced number

5

Net

Monitor

Raw

Event Mapper

Netw.Phys.

Event Mapper

Netw Impact

Event Mapper

Customer

Care WF

Raw

events

Network

physical

events

Network

impact

events

Service

events

Netw ork

Description

SLA

Network

Maintein.

Perf.

Monitor

Figure 1: An architecture for event mapping in the telecommunication environment

of events and their processing involves interaction with the applications' data bases. In

the following section we de�ne the requirements for a generic mapper, suitable for both

low-level and high-level event mapping, so that the mapping of events from the producers

to the consumers can be achieved by a set of distributed, independent mappers, that can

be combined in a
exible way, according to the characteristics of the environment and of

the applications (e.g. distribution of producers, consumers, and data required in order to

perform the mapping), as shown in Figure 2.

1. advanced �ltering/correlation capabilities: the event processing service should

be capable of performing complex �ltering and correlating functions. The language

for specifying �ltering and correlation functions should o�er \traditional" correlation

constructs such as conjunction, disjunction, sequence, and repetition, and should

enable correlation based on event attributes. Furthermore, it should allow the

speci�cation of:

(a) domain-speci�c correlation, i.e., correlation based on domain speci�c knowledge.

For instance, the network topology is typically needed in order to determine the

impact of node failures on network performance, and knowledge of service level

agreements is required in order to determine when these cannot be met.

(b) dynamic correlation, i.e., a correlation in which the number and type of events

involved can only be determined at run-time (as it is, for instance, in the

6

Event

Source

Event Mapper

Application

DB

Event

Source

Event

Source

Event Mapper

Event Mapper

Event

Source

Event

Source
Event Mapper

Event

Sink

Event

Sink

Application

DB

Figure 2: An architecture for semantic mapping of events

correlation that determines the occurrence of the netFailure event).

(c) raise unless behavior: the formalism must allow the de�nition of events to be

raised unless a summarizing event can be raised. For instance, we might want to

notify that a component is malfunctioning unless we detect that the containing

component is malfunctioning, in which case only the latter event is raised. Note

that the raise unless behavior also implies a sophisticated event consumption

mechanism.

2. detection of data and temporal events: meaningful events include modi�cations

of external application's database (e.g., changes in the service level agreements) as

well as temporal events, raised as a speci�ed temporal instant is reached. It should be

possible to capture these events and de�ne reactions to these events.

3. transparent event base management: in order to perform event correlation,

occurred events must be stored in a suitable event base, and retrieved when needed

for correlation. The mapping system should take care of managing the event base

according to the de�ned correlation functions, without requiring explicit maintenance

by the user.

4. performance: some applications may have stringent performance requirements. This

typically happens when dealing with events at the lower levels of abstraction, where

event storms may be composed of thousands of events, all generated within a very

narrow time window (usually a few seconds).

7

In the remainder of this section we describe current approaches to event processing and show

why they do not meet these requirements.

2.3 Current Approaches to Event Processing

Two signi�cant research areas in which event management has been studied are active

databases and network event correlation engines. In active databases (see [22] for a review)

event processing is speci�ed by means of Event-Condition-Action (ECA) rules: as the

speci�ed event occurs, the condition (usually a query over the DB) is tested, and if it is

satis�ed the action part is executed. Active database languages are well-suited for de�ning

data events and their processing based on the database state. Some of these (e.g., Ode

[12, 13], HiPAC [6], Snoop [5], Samos [11], and Chimera [17]) allow to correlate events by

providing an event algebra that enables the composition of elementary events in order to

de�ne composite events. Typical composition operators include conjunction, disjunction,

sequence, and repetition.

Drawbacks of the Active Database Approach: The constructs and functionality provided by

active databases are well suited for processing business, high-level events typical of database

applications, but do not meet basic requirements for event mapping, such as the capability

of performing dynamic correlation and the raise-unless behavior. In fact, event composition

operators do not allow the de�nition of correlations whose exact form can only be determined

dynamically, having arbitrary dependencies on factors such as event history, current database

state, or timing constraints. With active database languages, dynamic correlation can only

be \simulated" by the designer, who has to de�ne dummy rules, events, and data structures in

order to specify the required semantics. Analogously, no constructs are provided for de�ning

the raise-unless behavior, which must also be simulated with a considerable modeling e�ort,

required in order to specify when a detected composite event should or should not actually be

raised. These drawbacks are also due to the limited
exibility which is o�ered by the event

consumption mechanism. Finally, active databases do not provide the required performance,

particularly for processing storms of events in real time. Similar drawbacks can be found in

other rule-based event processing systems such as the WIDE exception handler [2] and the

YEAST general purpose event processing system [16].

On the opposite side, network event correlators (such as ECS developed by HP [8, 20] or

InCharge by Smarts [23]) have been designed in order to e�ciently process low-level events.

The formalisms for the de�nition of event processing re
ect this need, by requiring detailed

and low-level speci�cations, resulting in products capable of performing very fast event

correlation. For instance, the ECS model provides the user with a set of event processing

nodes, each performing a speci�c processing function. The nodes can be combined in a

graph, and events
ow through the graph, being transformed at every node. Special nodes

are provided in order to store events to be used for future event correlations. Insertion and

deletion of events in these nodes must be explicitly speci�ed.

8

Drawbacks of the Event Correlator Approach: The main drawbacks of network event

correlators are the lack of integration with database systems and the complexity of event

processing. These systems do not allow the speci�cation of domain based correlations, i.e.,

of event processing based on the content of a database, but only consider event attributes

and event history; this is mainly due to the fact that they have been designed to achieve

�ltering/correlation over event storms. The complexity of event speci�cation is instead due

to the need for very e�cient processing, which causes the speci�cation language to be closer

to an assembly language rather than to a high level language, although graphical interfaces

are provided to the designer. Furthermore, the event base needs to be explicitly maintained

by specifying when events can be discarded and are not needed for future correlations.

3 Event Processing Nets

This section introduces a formalism for specifying event mapping, called Event Processing

Net (EPN), which aims at satisfying the requirements and at overcoming the limitations of

current speci�cation formalisms. We �rst describe EPN and show its functionality by means

of a few examples, then we introduce design support constructs, and �nally we discuss the

main features of the model, relating them to the current approaches. A complete description

of the formalism can be found in [3].

3.1 The EPN Model

The EPN model is based on a modi�cation of Coloured Petri Nets (CPN) [14], and reuses

concepts de�ned in [10], where Petri nets are used in order to detect the occurrence

of composite events. EPN combines the integration with database systems o�ered by

active databases languages with the powerful correlation mechanisms o�ered by graph-

based formalisms typical of network events processors. The basic idea is to represent events

occurrences with typed tokens, and to specify the event processing by means of a high level

Petri Net, where the event correlation is de�ned by the net structure and the interaction

with the database is captured by transition guards, corresponding to queries over the data

and event base state that (1) determine if the transition can indeed be activated, (2) de�ne

the events (tokens) that must be removed from the input places, and (3) allow the extraction

of data from the DB to be used for enriching the semantics of the output token.

Every event type biunivocally corresponds to a place in the net, and the occurrence of an

event of a given type corresponds to the insertion of a token into the associated place. Event

types are distinguished by their names, and may have several atomic attributes. Using the

CPN terminology, the event type determines the colour set of the corresponding place, while

the attribute values of the occurred event determine the colour of the token. Event types,

along with their attributes, are de�ned in a declaration section associated to each net. A

9

distinguished attribute implicitly de�ned for each token and assigned by the system is the

timestamp of the event detection.

We assume that events are noti�ed to the mapper by external applications, and we do not

discuss the issue of their detection here, which depends on the context in which the mapper

is embedded. We further assume that events are delivered in the required format and to the

appropriate mapper by means of suitable event dispatchers (such as, for instance, Ambrosia

[1]). The only exception is represented by temporal events, whose occurrence is detected by

the mapper itself: tokens in the corresponding place are inserted by the system as a speci�c

or periodic temporal instant is reached, according to the event de�nition provided in the

declaration section (e.g., at Christmas 1998 - speci�ed as \1998-12-25 0:00:00" - or \every

3 days" - speci�ed as \every 3 0:00:00").

Formally, an EPN is a tuple EPN = (�; P; T; A; C;G;E) where:

� is a �nite set of event types.

P = PI [PO [PM is a �nite set of places; the set of places is divided into three subsets:

PI represents input places of the net, and tokens in these places are inserted as a result of

events noti�cations or temporal event occurrences. PO denotes the set of output places, from

which tokens are immediately removed, meaning that they are dispatched to other mappers

or to event consumers. PM denotes mapping places, and are introduced in order to ease the

speci�cation of event mapping (otherwise, a one-step mapping would require very complex

transition guards).

T = TI [TO [TM is a �nite set of transitions. TI represents input transitions, which �re

on event noti�cation or detection of event occurrences. They have no input place and one

output place, belonging to the PI set. TO denotes the set of output transitions: they have

exactly one input place, belonging to the PO set, and no output place. They remove the

tokens from the output place, thereby forwarding the corresponding event to the dispatcher.

TM denotes the set of mapping transitions: they may have one or more input places and

zero or more output places, and are those that actually perform the mapping. If a mapping

transition has no output places, its �ring causes tokens to be removed from the input places

but no token to be generated.

A = IA [OA is a �nite set of arcs; IA is the set (p; t) of arcs in input to transitions, where

p 2 P and t 2 TM [TO. OA denotes instead the set (t; p) of arcs in output from transitions,

where p 2 P and t 2 TI [TM .

C : P $ � is a colour function, associating an event type (colour set) to each place.

G is a (biunivocal) transition guard function, associating a query to every mapping transition

TM .

E is an arc expression function. Input arcs (IA) are associated to couples hV; ti, where V is

10

an object variable that will de�ne tokens to be removed from the input place and t is time

interval de�ning how long tokens must stay in the place before they become active, i.e., they

can be considered by the transition (default is that tokens can be immediately considered).

Arcs in output to transitions (OA) are instead associated to a list of variables (V1; V2; ::::; Vn)

de�ning the colour of the generated output tokens.

The token game has rules analogous to high-level Petri nets: a transition is enabled as each

input place contains at least one active token and as the transition guard evaluates to true

(i.e., the result of the associated query is non-empty). Token colours may be inspected by

the transition guard, in order to determine if the transition is enabled, and the colours of

the input token concur in determining the colour of the output tokens. Transitions guards

in EPN are expressed in the declarative object-oriented database language Chimera. The

language is not described in the following, and self-explanatory examples will be used. The

interested reader is referred to [4] for a detailed description of the language. The Chimera

query may access both the state of an external database and the colour of the tokens in the

input places. In order to provide an uniform way to access data, each place is associated to

an object class and tokens in the input places are referred by the query language as objects

of the corresponding class. Thus, transition guards access the database state and the event

attributes with the same formalism. For instance, if a transition has netFailure as input

place, the query may refer to tokens of the place as objects of a netFailure class, implicitly

de�ned.

Arc expressions de�ne event consumption and generation, i.e., de�ne tokens that must be

removed from the input places and inserted in the output ones. Each input arc is associated

with an object variable, ranging over the objects (tokens) in the input place. Conditions over

these variables may be imposed within the transition query, that will possibly restrict their

range. Tokens which remain bound to the variable after the condition evaluation will be

removed from the input place. Output arcs are instead associated to a sequence of variables

(V1; V2; ::::; Vn), whose value is again de�ned by the evaluation of the guard. The semantics

is that a token is inserted for each di�erent element of the cartesian product of the bindings

determined for variables V1 � V2 � :::� Vn. The values of the variables for each binding are

assigned to the attributes of the generated token, with a positional notation. The use of

these constructs is exempli�ed in the next subsection.

3.2 Examples of EPN Speci�cations

A simple transition guard implementing a �lter is shown Figure 3(a). Tokens in the input

places denote noti�cations of network failures. The purpose of the mapping is to �lter failures

of low-priority networks, focusing on high priority ones. The transition guard of Figure 3(a)

determines the relevant network object in the topology database (F.netId=N.netId), and

checks if it is a high priority network (N.priority="high"). The query thus restricts variable

11

F to range over tokens denoting noti�cations of failed high priority networks, which are then

removed from the input place. For every token removed from the input place, a token

whose value will be determined by variable F.netId is inserted in the output one. In the

Figure, the netFailure place is an input place, meaning that tokens are inserted due to

event noti�cations from external applications, while criticalFailure is an output place,

meaning that tokens are dispatched to other mappers or to event sinks.

Figure 3(b) shows a more complex EPN, de�ning a part of the raw to network physical

event mapping. The only events in input to the mapper are netDown and netOK. Transition

T1 �lters erroneous or temporary network failures, i.e., those followed within 5 seconds by

a network restoration noti�cation (note the time interval speci�cation included in the arc

expression, meaning that tokens becomes active for that transition after 5 seconds). This

is achieved by removing tokens from the netDown place if a token with the same netId

attribute value is inserted in netOK (the guard expression of T1 performs the matching).

Notice that T1 has no output place, meaning that no token is generated due to the

consumption of tokens in input places. Transition T2 removes tokens that remained in

netDown for more than 5 seconds, so that they cannot be any more accessed by transition

T1. Thus, actual net failures (actualNetFailure) are determined. Transition T3 provides

a summarized view of net failures: if all subnetworks N of a parent network P notify a

failure within a 10 second window, then transition T3 causes the noti�cation of failure of P

rather than notifying the many subnetworks failures (a token notifying the failure of P is

generated, while tokens relating failures of subnetworks N are removed). Finally, transition

T4 produces the output events de�ning which are the relevant component that possibly

caused failures (affectingComponent) and the failed networks (summarizedFailure). The

EPN speci�cation therefore allows mapping network failure noti�cations, by �ltering false

alarms and providing a summarized, high level view of failed networks and of the relevant

component.

3.3 EPN Design Support Constructs

Analogously to hierarchical CPNs [14], the EPN model o�er modularization features

that allow constructing a complex net by composing simpler nets. A hierarchical EPN

speci�cation is composed of a several diagrams, organized in a tree structure. Transitions

in higher level diagrams can be expanded in lower level diagrams which precisely de�ne the

activity performed by the transition. Thus, the top-level diagram gives an overall view of the

event processing speci�cation, while the details are hidden in low-level diagrams. Diagrams

can also be organized into a library and reused for di�erent EPN speci�cations.

Another feature that simpli�es the EPN design and allows e�cient implementations involves

the identi�cation of widely used event processing patterns. In particular, we recognize the

need of frequently occurring �ltering structures, such as the one of Figure 3(a), or unless

structures, forwarding an event A unless an event B is raised within a de�ned time window.

12

(NF.netId)(P.netId)

T1

T2

T3

rNetFailurenetFailure

netOk

NF

NO

Transition Guards:

T1: NF.netId=NO.netId,

 NF.timestamp<NO.timestamp;

T2 : -

T3: network(N), network(P), N.parent=P, N.netId=NF.netId,

 card(N)=card(A where network(A), A.parent=P);

T4: Equipment(E), NF in E.affectedNetworks;

NF, 5 sec

ND

T4

AffectingEquipment

networkFailure

T1

T1: network(N), F.netId=N.netId,

 N.priority=''high"

criticalFailure

F F.netId

Declarations

Events:
networkFailures

 attributes netId: integer

 end;

criticalFailures

 attributes netId: integer

 end;

(a)

Declarations

Events:
netOk

 attributes netId: integer

 end;

netFailure

 attributes netId: integer

 end;

NF, 10sec (E.equipId)

rNetFailure

 attributes netId: integer

 end;

summarizedFailures

 attributes netId: integer

 end;

affectingEquipment

 attributes eqiupId:integer

 end;

(b)

summarizedFailure

(NF.netId)

Figure 3: Examples of EPNs. (a) A simple �ltering net, and (b) a more complex EPN describing

the mapping from raw to network physical events

13

The EPN model o�ers a number of special-purpose, prede�ned transitions that allow a

simple speci�cation of the most common mapping functions. For instance, the distinguished

unless transition is a transition having two input places A and B and one output place C:

when a token is inserted in place A, it is forwarded to place C unless a token is inserted

in place B in the next x seconds. Prede�ned transitions considerably reduce the modeling

e�ort and represent a basic mechanism for achieving the required performance, by allowing

ad-hoc implementations. This is particularly important in low-level mappers, where event

processing usually involves the use of a small set of processing patterns, and where the need

for fast event processing is stronger. A similar approach is in fact followed by network event

correlators, that o�er a number of prede�ned and ad-hoc implemented event processing nodes

that must be composed to specify the overall event processing.

3.4 Discussion of EPN Features

In the following we summarize the main strengths of the model. EPN overcomes the

limitations of current approaches to event processing, and satis�es the requirements stated

in section 2.2: in fact, the integration of the net structure with a query language provides

the required expressive power for de�ning complex correlation functions, including dynamic

and domain-based correlations. Event processing can be based on event attributes, occurred

event history, and state of an external database, and knowledge can be extracted from the

database in order to enrich the semantics and informative content of the mapped events.

Furthermore, temporal constraints can be easily intregrated into an EPN speci�cation, as

well as de�nition of reactions to temporal events.

EPN also allows a
exible event base management, implicitly speci�ed in the de�nition of

the net: events that must be kept in the event base are speci�ed by tokens in the net; when

a token is removed from a place, the corresponding event can be discarded from the event

base, since it cannot be used any more for future event correlations. No explicit insertion or

deletion from the event base must be speci�ed, but still di�erent consumption policies can be

de�ned for each event. The raise unless behavior is guaranteed by the net structure, where

only tokens in the output places are in fact forwarded to the event dispatcher. In the example

of Figure 3(b) the raise unless behavior appears in two cases of di�erent nature: transitions

T1 and T2 cause net failures to be propagated unless a noti�cation of a restoration occurs

shortly after. Transition T3 causes a net failure event to be raised unless a failure of its

containing network can be determined.

This EPN speci�cation would be practically unmanageable with active database languages,

since it would require the creation of dummy classes and the design of a complex, interacting

set of rules whose cooperation must be carefully designed, in particular in order to simulate

the dynamic correlations and raise-unless behaviors required by this mapping. Analogously,

these semantics (and also that of Figure 3(a)) can not in general be speci�ed by means

of network event correlation engines, due to their inability of performing domain-based

14

correlations.

EPN also enables the speci�cation of
exible and complex mapping functions with

a reduced design e�ort: in fact, the graph-based nature of the formalism helps in

structuring event processing speci�cation (mapping performed only by guards becomes

extremely complex and practically unmanageable); furthermore, the design is supported

by modularization constructs and by prede�ned, special purpose transitions that implement

frequently occurring event mapping patterns, besides allowing the realization of e�cient

implementations.

4 Concluding Remarks

In this paper we have introduced the notion of semantic mapping of events, in order to

bridge the semantic gap between events at di�erent levels of abstraction, and we have shown

that this corresponds to a need of many applications aiming at extracting information from

the same set of events. Appropriate events suited for the (di�erent) levels of abstraction of

the applications can be generated by a set of independent, general purpose event processing

components, which we have called event mappers. Event mappers enable the processing of

events and feed mapped events to event consuming applications or to other event mappers. A

wide range of applications can bene�t by such components, since they do not need to perform

complex event processing that can in turn be delegated to specialized components. Based

on a case study relating the telecommunication network environment, we have analyzed the

requirements that must be satis�ed by the event mappers. In particular, we have identi�ed

that mappers need to process events according to event parameters, previously occurred

events, and possibly according to the state of an external database. We found that the

formalism for specifying event processing must allow the de�nition of complex correlation

functions, allowing in particular the speci�cation of dynamic and domain-based correlations

and of the raise unless behavior. Also, we showed that a
exible mechanism for de�ning

event consumption and event base maintenance is needed in order to a de�ne a variety of

mapping functions which are needed in practice. Finally, we have introduced a formalism,

called EPN, which integrates high level Petri nets and database query languages in order

to enable a
exible and powerful event processing speci�cation, which meets the speci�ed

requirements and provides a set of constructs for supporting the design process, such as net

hierarchies and prede�ned transitions.

Our future agenda includes the development of static and dynamic EPN analysis criteria that

helps the event processing designer in understanding the properties of the mapping net, and

we plan to translate other event processing speci�cation formalisms into EPN, in order to

enable the analysis and implementation of di�erent formalisms within the same framework.

15

5 References

[1] Ambrosia. Ambrosia Event Management System, Version 1.1: Concepts and User Guide.

Open Horizon Inc, 1996.

[2] F. Casati, S. Ceri, B. Pernici, G. Pozzi. Speci�cation of the Rule Language and Active

Engine of Foro V.1, WIDE Technical Report 3008-6, 1997

[3] F. Casati, W. Du, M.C. Shan. Semantic Mapping of Events, Hewlett Packard Labs.,

HPL-97-69, Palo Alto, CA, 1997

[4] S. Ceri, R. Manthey. Consolidated Speci�cations of Chimera, Technical Report IDEA

DE.2P.006.01, 1993

[5] S. Chakravarthy, V. Krishnaprasad, E. Anwar, S-K. Kim. Composite Events for Active

Databases: Semantics, Contexts, and Detection, Procs. of the 20th Int'l Conf. on Very

Large Databases, Santiago, Chile, Sept. 1994.

[6] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin, D.

McCarthy, A. Rosenthal, S. Sarin, M. Carey, M. Livny, and R. Jauhari. The HiPAC

Project: Combining Active Databases and Timing Constraints, SIGMOD Record 17(1):

51-70 (1988)

[7] O. Diaz, N.Paton, P. Gray. Rule Management in Object Oriented Databases: A Uniform

Approach. Procs. of the Int'l. Conf. On Very Large Data Bases (VLDB), Barcelona,

Spain, 1991

[8] HP. HP OpenView Event Correlation Services: Technical Evaluation Guide. Hewlett-

Packard Document, 1996

[9] S. Gatziu, K. Dittrich. Events in an Active Object-Oriented Database System. Procs.

of the Workshop on Rules in Database Systems, Edinburgh, 1993

[10] S. Gatziu, K. Dittrich. Detecting Composite Events in Active Database Systems Using

Petri Nets. Proc. of the Int'l Workshop on Research Issue in Data Engineering, Houston,

Texas, 1994

[11] S. Gatziu, H Fritschi, A. Vaduva. SAMOS an active Object-Oriented Database System:

Manual. University of Zurich, Internal Report 96.02, 1996

[12] N. Gehani, H. Jagadish, O. Shmueli. Event Speci�cation in an Active Object-Oriented

Database. Procs. of the Int'l Conf. On Management of Data (SIGMOD), 1992

[13] N. Gehani, H. Jagadish, O. Shmueli. Composite Event Speci�cation in an Active

Databases: Model and Implementation. Proc. of the Int'l Conf. On Very Large Data

Bases (VLDB), Vancouver, Canada, 1992

16

[14] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.

Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1992

[15] G. Kappel, S. Rausch-Schott, W. Retschitzegger, S. Vieweg. TriGS - Making a Passive

Object-Oriented Database System Active, Journal of Object-Oriented Programming

(JOOP), 1994

[16] B. Krishnamurthy, D. Rosenblum. Yeast: A general Purpose Event-Action System IEEE

Transactions on Software Engineering Oct. 1995

[17] R. Meo, G. Psaila, S. Ceri. Composite Events in Chimera. Procs. of the Int'l Conf. On

Extending Database Technology (EDBT), Avignon, France, 1996

[18] The Network Management Foundation. Service Provider to Customer Performance

Reporting Business Agreement, NMF document 503, Issue 1.0, March 1997.

[19] N. Paton, O. Diaz, M. L. Barja. Combining active rules and metaclasses for enhanced

extensibility in object-oriented systems. Data and Knowledge Engineering 10, North-

Holland, 1993

[20] K. Sheers. HP OpenView Event Correlation Service, Hewlett-Packard Journal, 1996

[21] W. Stallings. SNMP, SNMPv2, and CMIP: The practical Guide to Network-

Management Standards. Addison Wesley, 1993

[22] J. Widom, S. Ceri. Active Database Systems, Morgan-Kaufmann, 1996

[23] S. Yemini, S. Kliger, E. Mozes, Y. Yemini, D. Ohsie. High Speed and Robust Event

Correlation, http://www.smarts.com/products.html

17

