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Abstract

Lossless compression is studied for a countably infinite alphabet source with an
off-centered, two-sided geometric (TSG) distribution, which is a commonly used sta-
tistical model for image prediction residuals. In the first part of this paper, we
demonstrate that arithmetic coding based on a simple strategy of model adaptation,
essentially attains the theoretical lower bound to the universal coding redundancy
associated with this model. In the second part, we focus on more practical codes
for the TSG, that operate on a symbol-by-symbol basis. Specifically, we present a
complete characterization of minimum expected-length prefix codes for TSG sources.
The family of optimal codes introduced here is an extension of the Golomb codes,
which are optimal for one-sided geometric distributions of nonnegative integers. Asin
the one-sided case, the resulting optimum Huffman tree has a structure that enables
simple calculation of the codeword of every given source symbol. Our characteri-
zation avoids the heuristic approximations frequently used when modifying Golomb
codes so0 as to apply to two-sided sources. Finally, we provide adaptation criteria for
a further simplified, sub-optimal family of codes used in practice.
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1 Introduction

A traditional paradigm in data compression is that sequential lossless coding can be viewed
as the following inductive statistical inference problem. At each time instant ¢, after
having observed past source symbols z* = (21,29, -+, x;), but before observing 1, one
assigns a conditional probability mass function (PMF) p(:|2*) to the next symbol x;,1,
and accumulates a loss (i.e., code length) =, —log p(z41|z"), to be minimized in the long
run. In contrast to non-sequential (multi-pass) methods, in the sequential setting, the
instantaneous conditional PMF p(-|2*) is learned solely from the past !, and so, the above
code length can be implemented sequentially by arithmetic coding. The sequential decoder,
which instantaneously has access to the previously decoded data !, can determine p(-|z?)
as well, and hence can also decode ;.

In universal coding for a parametric class of sources, the above probability assignment is
designed to simultaneously best match every possible source within this class. For example,
the context (or finite-memory) model [1, 2] has been successfully applied to lossless image
compression [3, 4, 5, 6], an application which serves as the main motivation for this work.
According to this model, the conditional probability of each symbol, given the entire past,
depends only on a bounded, but possibly varying number of the most recent past symbols,
referred to as “context.” In this case, the conditional symbol probabilities given each
possible context are natural parameters.
A fundamental limit to the performance of universal coding is given by Rissanen’s lower
bound [7, Theorem 1] on the universal coding redundancy for a parametric class of sources.
This lower bound is described as follows. Let {P,;, ¢ € ¥} be a parametric class of
information sources indexed by a K-dimensional parameter vector ¢, which takes on values
in a bounded subset ¥ C IR®. Assume that there exists a y/n-consistent estimator Uy =
t(2™) for ¢ in the sense that lim, ... Py{z™ : /||y, — || > ¢} exists for fixed ¢ and
tends to zero as ¢ — oo uniformly in . Let Q(:) be an arbitrary probability distribution
on the space of source n-tuples, which is independent of the unknown value of ¢). Then,
for every € > 0 and every ), except for a subset of ¥ with vanishing Lebesgue measure as
a function of n, (X
A P, P X" K

DIPIQ) 2 Evlog g = (1= 5 logn. (1)
where Fy denotes expectation w.r.t. Py, X" = (Xj,...,X,) is a random source vector
drawn by P, and logarithms here and throughout the sequel are taken to the base 2.
The left-hand side of (1) represents the unnormalized coding redundancy associated with
lossless coding according to () while the underlying source is Py. The right-hand side
represents the unavoidable cost of universality when the code is not allowed to depend on
1. This inequality tells us that if () is chosen under a pessimistic assumption of an overly
large K, then each unnecessary degree of freedom would cost essentially 0.5logn extra
bits beyond the necessary model cost. Thus, the choice of K plays a fundamental role
in modeling problems. By (1), it is important to keep it at the minimum necessary level
whenever possible, by use of available prior information on the data to be modeled, so as



to avoid overfitting. In the above example of the context model, K is given by the product
of the number of contexts and the number of parameters per context. Thus, reducing
the latter (e.g., by utilizing prior knowledge on the structure of images to be compressed)
allows for a larger number of contexts without penalty in overall model cost.

The discussion thus far applies to general parametric classes of information sources. Mo-
tivated by the application of lossless image compression, in which prediction [8] is a very
useful tool to capture expected relations (e.g., smoothness) between adjacent pixels, our
focus henceforth will be confined to the class of integer-valued sources with a PMF given by
the two-sided geometric (TSG) distribution model. It has been observed [9] that prediction
errors are well-modeled by the TSG distribution centered at zero, henceforth referred to
as centered TSG. According to this distribution, the probability of an integer value x of
the prediction error (z = 0,41, 42, ...), is proportional to 0%/, where # € (0, 1) controls
the two-sided exponential decay rate. When combined with a context model as in [4, 5],
the TSG is attractive also because there is only one parameter (f) per context, although
the alphabet is in principle infinite (and in practice finite but quite large, e.g., 8 bits per
pixel). This allows for a modeling strategy based on a fairly large number of contexts at a
reasonable model cost.

Motivated by the objective of providing a theoretical framework for recently developed
lossless image compression algorithms (e.g., [5])}, we shall study lossless compression for
a model that is somewhat more general than the centered TSG in that it includes also a
shift parameter d for each context. This parameter reflects a DC offset typically present
in the prediction residual signal of context-based schemes, due to integer-value constraints
and possible bias in the estimation part. It is also useful for better capturing the two
adjacent modes often observed in empirical context-dependent histograms of prediction
errors. More precisely, the more general model is described next. First, since the outcomes
of a source are conditionally independent given their contexts, according to the context
model, one can view the subsequence of symbols that follow any given fixed context, as
if it emerged from a memoryless source, whose TSG distribution parameters correspond
to this context. Thus, although the T'SG model in image compression is well-motivated
[4, 5] when combined with the context model, for the sake of simplicity, we shall consider
the parametric class of memoryless sources { P} defined as follows. Let ¢ = (6, d) (hence
K = 2), and let the marginal PMF of a symbol be given by

Py(z) = Pya(x) = C0O,d)0",  x=0,+1,+£2,.., (2)

where

C(0,d) = (1 —0)/(0=% + 6% (3)

is a normalization factor, 0 < 6 < 1 as above, and 0 < d < 1. This limited range of d, which
corresponds to PMF modes at 0 and —1, can be obtained by a suitable error feedback loop
[5, 6]. The centered TSG distribution corresponds to d = 0, and, when d = 1 Py, is a
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1The algorithm in [5] has recently been adopted as the baseline for the lossless image compression standard JPEG-LS [10].



bi-modal distribution with equal peaks at —1 and 0. (The preference of —1 over +1 here
is arbitrary). The case d = —1 is essentially identical to the centered TSG.

This paper consists of three parts. Section 2 focuses on universal probability assignment
for the TSG model (2), for which the bound (1) applies (with K = 2) as discussed in
that section. This assignment is used as a preamble for arithmetic coding. Specifically, it
is demonstrated that arithmetic coding based on a simple strategy of model adaptation,
essentially attains the optimal universal coding redundancy prescribed by the lower bound
(1). This strategy is derived by the method of mixtures. To this end, the parametric family
{P,a} is modified so as to make probability assignments given by mixture integrals have
closed form expressions that are implementable in a sequential manner.

The remaining sections are devoted to Huffman coding on a symbol-by-symbol basis, which
normally incurs larger redundancy, but is more attractive from a practical point of view.
It can be readily verified that the TSG distribution (2) has a finite entropy, given by

h(0)

H(Qad):m+h(/’),

where h(u) £ —ulogu — (1 — u)log(1 — ) is the binary entropy function and

Qd

is the probability that a random variable drawn according to the distribution (2) be non-
negative. By [11], this guarantees that a minimum expected-length prefix code exists and
can be obtained by a sequence of Huffman-like procedures (however, this general result is
non-constructive). Infinite entropy distributions are addressed in [12]. We first develop
(Section 3) a complete characterization of minimum expected-length prefix codes for the
TSG sources in (2) assuming known values of § and d. The family of optimal prefix codes
introduced here is an extension of the Golomb codes [13], which are optimal for one-sided
geometric (OSG) distributions of nonnegative integers [14]. As in the one-sided case, the
structure of the resulting optimum Huffman tree enables simple calculation of the code-
word of every given source symbol, without recourse to the storage of code tables for large
alphabets. The complexity of this calculation is essentially the same as that of Golomb
codes. Previous approaches to the problem have focused mainly on the case d = 0. A
popular approach [15] is to encode an integer by applying a Golomb code to its index in
the sequence 0, —1,+1,—2,+2,—3,43,.... When d < 0.5, this “folding” of the negative
values into the positive ones ranks the integers according to non-increasing probabilities. A
different heuristic approach, based on encoding the absolute value with a Golomb code and
appending a sign bit for nonzero values, was proposed in [16]. As shown in Section 3, these
strategies are sub-optimal for some ranges of the parameters (0, d), even when restricted
to the line d = 0. Some partial answers to the question of optimal codes for d = 0 can also
be found in [17].

Finally, in Section 4, we relax the assumption that 6 and d are known a-priori, in the
framework of symbol-by-symbol coding. Unlike in Section 2, here the set of available



coding strategies for each symbol is discrete, and the adaptation approach is inherently
“plug-in.”  We provide optimal adaptation criteria (in a well-defined sense) for a further
simplified, sub-optimal family of codes used in practice [15, 5]. It should be pointed out
that in the adaptive mode, a structured family of codes relaxes the need of dynamically

updating code tables due to possible variations in the estimated parameter ¢ (see, e.g.,
[18]).

2 Universal Probability Assignment for TSG’s

Consider the class of sources defined in (2), where ¢ = (0, d) is unknown a-priori. Since
Rissanen’s lower bound on the universal coding redundancy (1) applies (as will be shown
in the sequel), and since K = 2, this redundancy essentially cannot fall below logn/n bits
per symbol, simultaneously for most sources in ¥ = (0, 1) x [0, 1].

In view of this, our goal is to devise a universal probability assignment strategy Q that
essentially achieves this lower bound. Moreover, we would like to avoid the dependence of
the per-symbol probability assignment at each time instant ¢ on future data as well as on
the horizon n of the problem, which may not be specified in advance.

It is well known that for certain parametric classes of sources, e.g., finite-alphabet memo-
ryless sources parametrized by the letter probabilities, these objectives can be achieved by
the method of mixtures (see, e.g., [19, 20, 21]). The idea behind this method is to assign
a certain prior w(t)) on the parameter set ¥, and to define the probability assignment as

Q") = | duw(w)Py(a") (5)

where {P,} is the targeted parametric class of sources. Since Q(z!) = PO Q(2*1) and

Q41 |2t) = Q(211)/Q(a?), it is guaranteed that instantaneous probability assignments
do not depend on future outcomes. If, in addition, w does not depend on n, then neither do
the probability assignments Q(mt+1|xt) for ¢ < n. In this respect, the method of mixtures
has a clear advantage over two-pass methods that are based on explicit batch estimation
of 1, where these sequentiality properties do not hold in general. The goal of attaining
Rissanen’s lower bound can be also achieved for certain choices of the prior w. In some
cases (see, e.g., [22]), there is a certain choice of w for which the lower bound is essentially
attained not only on the average, but moreover, pointwise for every x™. In other words,
log pr(x ) < K logn + O(1)
Qam) — 2

for every 2™ and every ¢ € U, where O(1) designates a term that is upper bounded by a
constant uniformly for every sequence.

Unfortunately, in contrast to the well-studied finite-alphabet case, where there is a closed-
form expression for the mixture integral (5) for every 2", and the instantaneous probability
assignments are easy to derive, the TSG distribution model does not directly lend itself
to this technique. The simple reason is that there is no apparent closed-form expression



for mixtures of the parametric family {F,} in (2). Nevertheless, it turns out that after a
slight modification of the TSG distribution model, which gives a somewhat larger class of
PMEF’s, the method of mixtures becomes easily applicable without essentially affecting the
redundancy. Specifically, the idea is the following. Let us re-define the parametric family
as {Q,}, where now ¢ = (0, p) and

(1—0)6° r=0,1,2,..
Qo (@) = { fl —p)(1—=0) " z=—1-2 . ©)

1>

Qy(2)

with 0 € (0,1) as above, and p € [0,1]. Clearly, the new parameter p designates the
probability that a random variable drawn according to the distribution (6) be nonnegative.
By the relations Q,(z + 1) = 0Q,(x), x > 0, and Q,(z — 1) = 0Q,(z), x < 0, every
source in the original definition of the TSG model (2) corresponds to some source in the
modified TSG model (6), with the same value for the parameter § and with the parameter
p given by the relation (4). However, while the original TSG model allows only for p €
[0/(1+40),1/(1 + 0)] for a given 0, the model (6) permits any p € [0,1]. It follows that
the modified TSG model (6) is strictly richer than the original model (2), but without
increasing the dimension K of the parameter space, and hence without extra model cost

penalty. Therefore, it will be sufficient to devise a universal probability assignment Q for
the modified TSG model.

We will also use the modified TSG model to prove the existence of a y/n-consistent es-
timator and hence the applicability of Rissanen’s lower bound. This is valid because of
the following consideration: Since the Lebesgue measure occupied by the set of sources
that correspond to the original TSG model is a fixed fraction (larger than 25%) of the set
of sources in the modified model (6), then a lower bound that holds for “most” sources
(Lebesgue) in the modified class, still holds for “most” sources (Lebesgue) in the original
class. Thus, it will be sufficient to prove y/n-consistency of a certain estimator for the
modified model.

In order to construct a universal probability assignment for the modified TSG model, we
will consider the representation of an arbitrary integer x as a pair (y, z), where

v=sn 2§ 120 ©
and
2= 2(z) 2 |2] — y(z). (8)

Since the relation between x and (y, z) is one-to-one, no information is lost by this rep-
resentation. The key observation now is that if X is a random variable drawn under
distribution (6), then Y = y(X) and Z = z(X) are independent, where Y is binary {0, 1}
with parameter p 2 Q}:(O) 2 Pr{Y = 0}, and Z is OSG with parameter 6, that is,

Pr{Z = 2} 2 Q¥ (2) £ Qu(2) + Qu(—2z — 1) = (1 — 6)¢*, 2=0,1,2,.... (9)



Accordingly, given a memoryless source X7, Xy, ... with marginal PMF given by (6), one
creates, using y(-) and z(-), two independent memoryless processes, Y1, Ys, ... ~ QZ and
Z1, Zg, ... ~ QF, where the former is Bernoulli with parameter p, and the latter is OSG
with parameter 6.

The independence between {Y;} and {Z;} and the fact that each one of these processes
is parametrized by a different component of the parameter vector, significantly facilitate
the universal probability assignment (and hence also universal arithmetic coding) for this
model class, since these processes can be encoded separately without loss of optimality. To
encode y; 1 = y(2¢41), we use the probability assignment [20]

Ny +1/2

t+1 (10)

Q  {yi = 1y'} =
where

t
=1

and for £ = 0, y* = y" is interpreted as the null string with N 2 0. This probability assign-
ment is induced by a mixture of type (5) using the Dirichlet(1/2) prior on p, that is, the
prior which is inversely proportional to {/p(1 — p). Similarly, the probability assignment
for z;1 given 2" is the result of a Dirichlet(1/2) mixture over 6, which gives

. t+1/2 TS+ +1/2
Z t
_ I LS 12
@ (2 l) Sitan+1/2 4 S +t+j+1 (12)

where

t
St - Z Z3 (13)
i=1

and Sy £ 0 (cf. derivation in Equation (22) below). Finally, the sequential probability
assignment associated with 2™ is defined as

A TL—l A
Q(2") = [T Qw12 (14)
t=0
where X X X
Q') = QY (¥ My Q7 (2. (15)

Our main result in this section is summarized in the direct part of the following theorem.

Theorem 1 Let Q) (2") = 1721 Qo,0)(24)-
(a) (Converse part): Let Q(x™) be an arbitrary probability assignment. Then, for every

€ >0,
Qo.0)(X™)
Eg pylog —>—= > (1 —¢)logn
0,0) O(X") (I—¢)
for every (0, p) € (0,1) x [0, 1] except for points in a subset whose Lebesque measure
tends to zero as n — 0.



(b) (Direct part): Let Q(z™) be defined as in equations (10)-(15). Then, for every (0, p) €
(0,1) x [0,1], and for every n-vector of integers z",
Q(f,p) (=")
O

where C' is a constant that does not depend on n or z™.

1 Sh
log §10gn+§log(;+1)+0

Discussion. Several comments regarding Theorem 1 are in order.

Lower bound. To show the applicability of Rissanen’s lower bound [7, Theorem 1] for
the off-centered TSG model, which corresponds to the converse part of the theorem, we
reduce the problem to the well-known Bernoulli case, a special case in, e.g., [23, Theorem
1]. However, since [23, Theorem 1] requires that the parameters range in an interval that
is bounded away from 0 and 1, for the sake of completeness we provide an independent
proof. Furthermore, one can use the same tools to show the applicability of the bound in
[24, Theorem 1], namely

lim inf E(&p) 1Og[Q(9,p) (Xn>/Q(Xn)]

>1
n—oo log n -

for all (0, p) € (0,1) x [0, 1] except in a set of Lebesgue measure zero.

Pointwise redundancy and expected redundancy. Strictly speaking, the minimum point-
wise redundancy is not attained uniformly in 2" since S,/n is arbitrarily large for some
sequences. However, if the data actually has finite alphabet (which is practically the case
in image compression), then .S, /n is uniformly bounded by a constant, and the minimum
pointwise redundancy (w.r.t. the best model in the infinite alphabet class) is essentially
attained. In any case, even if the alphabet is infinite, as assumed by the TSG model, the
minimum expected redundancy is always attained since the expectation with respect to 6
of log(.S,,/n + 1) is bounded by

Sn Sy, 1
Eglog(;Jrl) §10g< 2 +1> —log(m>,

which is a constant.

Maximum likelihood estimation and the plug-in approach. For the class of finite-alphabet
memoryless sources, parametrized by the letter probabilities, it is well-known that the
mixture approach admits a direct “plug-in” implementation, where at each time instant,
the parameter vector is first estimated by (a biased version of) the maximum likelihood
(ML) estimator and then used to assign a probability distribution to the next outcome
(see, e.g., the assignment (10)). It is interesting to observe that this plug-in interpretation
does not exist with the OSG process, where the ML estimator for 6 at time ¢, as well as
for model (6), is given by S

t

é:
LTSt

(16)
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for sequences such that S; # 0 (when S; = 0 there is no ML estimator of 6 in the range
(0,1)). Nonetheless, an indirect plug-in mechanism is valid here: since the expression in (9)
can be interpreted as the probability of a run of z zeros followed by a one under a Bernoulli
process with parameter 0, then encoding an OSG source is equivalent to encoding the
corresponding binary sequence of runs. In universal coding, while the biased ML estimator
of [20] is used to update the estimate of 6 after every bit, a direct, naive plug-in approach
would correspond to updating the estimate of 6 only after occurrences of ones, and hence
may not perform as well.

To summarize, optimal encoding of x;,1 as per Theorem 1 and the ensuing discussion, can
be realized with a sequence of |z, 1| — f(x4y1) + 2 binary encodings. First, we encode v, 1,
which determines whether x;, is negative. Then, we encode |x; ;1| — y;11 by first testing
whether it is zero; in case it is positive, we proceed by inquiring whether it is one, and
so forth. The corresponding probability estimates are based on S; and N;, which serve as
sufficient statistics for the distribution (6).

The remaining part of this section is devoted to the proof of Theorem 1.

Proof of Theorem 1.

We begin with part (a). According to Rissanen’s lower bound [7], it is sufficient to prove
the existence of \/n-consistent estimators p and 6 for p and for 0, respectively, such that the
probabilities of the events {\/n|p — p| > ¢} and {\/n|0 — 6] > ¢} are both upper bounded
by a function o(c) for all n > n., where o(c) and n. do not depend on either € or p, and
o(c) tends to zero as ¢ — oo.

For the parameter p, consider the estimator p = 1 — NV,,/n, calculated from the n observa-
tions of the Bernoulli process 1, ..., y,. Using the fact [25] that for «, 5 € [0, 1],

l—«

1-p

Dy(a||p) 2 aln% +(1—a)ln

the Chernoff bounding technique gives

> 2(0& - 6)27 (17)

Privilp—pl > ¢} < exp{-n  min _Dy(pllp)}

lp'—pl>c/v/n
< exp{—2n min ! — p)?
B p{ Ip/—p\EC/\/ﬁ(p 2 }
= exp(—2c¢%). (18)

As for the parameter 6, consider the estimator 0=1-— M, /n, where M, is the number
of zeros in z1, ..., z, .2 Since the random variable given by the indicator function 1, is
Bernoulli with parameter 0, then similarly to the derivations in (17) and (18), we again
obtain Pr{y/n|0 — 0| > ¢} < exp(—2¢?). Thus, o(c) = exp(—2c?), independently of p and
0, in this case. This completes the proof of part (a).

Turning now to part (b), we shall use the following relation, which confines [20, Equation

2Notice that this is not the ML estimator for .



(2.3)] to the binary alphabet case. For the Dirichlet(1/2) prior given by

el =)t

@)= TFarg-a *<0Y

and for nonnegative integers j and J (j < J) we have:

T(j+ 50 —7+3)

1
I(1—a)’da = : 1
/0 w(a)a? (1 — «) ! — (19)
Applying Stirling’s formula, one obtains
1 , , J 1 C
~log [ w(a)a?(1 — o)’ da < Jh (7) +3log + 5 (20)
0

where (' is a constant that does not depend on j and J.

Consider, first, universal coding of a binary string ™ using the Dirichlet(1/2) mixture over
the class of Bernoulli sources with parameter p. Then, according to Equation (19) the
mixture distribution is given by

N

Qy(yn> = /Olw(p)pn_Nn(l _ p)N"dp _ F<Nn + E)F(n — N, + 5)

mn!

?

which can be written in a product form as [, Qy(ytﬂ\yt), where each term is given as in
Equation (10). According to Equation (20),
A N, 1 C
—log Q¥ (y") < h(—”) =1 —. 21
0g Q" (y") = nh{—= )+ 5logn+ 5 (21)
Consider, next, universal coding of 2" using the Dirichlet(1/2) mixture over the class of
OSG’s with parameter 6, that is,

e = | " w(0)(1 — 0)"05dp — F(”;gii(f:; 2) (22)

~

which can be written in a product form as [[, Q% (z.+1|2!), where each term is given as in
Equation (12). Again, (20) implies

—log Q% (") < (Sn+n)h( S >+110g(5n—i-n)—l—g

Sn+n 2 2
Sn 1 1 Sh C

On the other hand, for every (0, p),
—logQup(a") = —logsupQ,,)(=")
p

= —logmaxQ, (y") —log sup Qi (z")

nh (%) 4 (Sh +n)h ( Snsi n) , (24)




where the last step follows from plugging the ML estimator (16) in the OSG distribution
(9), with the equality holding trivially for S,, = 0. Combining equations (21), (23), and
(24), we get

—log Q") = —log Q" (y") —log @”(z")
1 Sh
< —log Qo) (2™) +logn + 5 log (; + 1) +C.

for any 2™ and (0, p). This completes the proof of Theorem 1. O

3 Optimal prefix codes for TSG’s

In Section 2, we presented an optimal strategy for encoding integers modeled by the modi-
fied TSG distribution (6). This strategy is also optimal for the TSG model (2), and requires
arithmetic coding. In this section, we consider Huffman coding of the distribution (2) on
a symbol-by-symbol basis, which normally incurs larger redundancy but is attractive from
a practical point of view, e.g., in image-coding applications.® Throughout this section the
values of the parameters 6 and d are assumed known. Moreover, the offset parameter d is
assumed to be in the range 0 < d < % Clearly, the case d > % can be reduced to d < %
by means of the reflection/shift transformation x — —(z + 1) on the TSG-distributed
variable x. The parameter 0, in turn, belongs to the open interval (0, 1). Next, we develop
a complete characterization of minimum expected-length prefix codes for the TSG models
(2). To this end, we will partition the parameter space (0,d) into regions, each region
corresponding to a variant of a basic code construction device. In the next few definitions
and lemmas, we define the partition and some of its basic properties.

For a given d, define o 2 min{d,% — d}. Clearly, § < i. For every positive integer £ and
every pair of model parameters (6, d), define the functions

ro(0,0,d) = 0* (1 +6072) + 071 — 1, (25)
r(€,0,d) = 0% (14 6%) + 6" — 1, (26)
ro(€,0,d) = 0°(1 +67%) — 1, (27)
and
r3(€,0,d) = 0°(1 + 6%) — 1. (28)

Lemma 1 (i) Given ¢ > 1 and d, v has a unique root 0y(¢,d) € (0,1). Similarly, for
0> 1, ry, ro, and r3 have unique roots in (0, 1), denoted respectively 0,(¢,d),0:(¢,d), and
05(¢,d).

(i) For 0 € (0,1) and 0 <i <3, 0 <0,(¢,d) if and only if r;(¢,0,d) < 0.

3The use of symbol-by-symbol coding in low-complexity image compression systems is plausible, since contexts with very
skewed prediction error distributions, for which the optimal prefix code could be severely mismatched, are uncommon in
photographic images. For other types of images, the redundancy of pixel-based prefix codes is addressed in [5] by embedding
an alphabet extension into the context conditioning for contexts representing flat regions, which tend to present very skewed
distributions.
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(i1i) For ¢ > 1,
90(57 d) < 91(67 d) S 92(57 d) S 93(67 d) S 90(5 + 17d> )

where we define 0y(1,d) = 0. Moreover, equality between 0,((,d) and 05(¢,d), and between
05(¢,d) and 0y(C + 1,d) occurs only at d = , while equality between 05(¢,d) and 05(¢, d)
occurs only at d € {0,3}. Therefore, 01(¢,d) < 0o(¢ + 1, d).

Proof. (i) The existence and uniqueness of a root 0;(¢,d) € (0,1) of r;, 0 < i < 3, is
established by observing that, for fixed ¢ and d in the appropriate ranges, r; is a continuous
function of € in (0, 1), r;(¢,0,d) — —1 as 6 — 01, r;(¢,0,d) has a positive limit as § — 17,
and Jr;/00 > 0, & € (0,1). The monotonicity of r; also yields part (ii) of the lemma.
Notice that ro(1,0,d) — 0 as 6 — 01, justifying the definition of y(1,d) = 0.

As for part (iii), we first observe that
r1(0,0,d) —ro(L,0,d) = 6*1 (67 —07%) + (0° = 0"") <0,

where the last inequality follows from 6 < 1, 6 > 0, and £ > 1. Thus, due to the strict
monotonicity of ry and 71, we must have 0y(¢,d) < 01(¢,d). We now compare 05(¢, d) with
01(¢,d). For clutter reduction, we omit the arguments (¢, d) of the 6; when they are clear
from the context. It follows from the definition of 65 that

1

0 = ——.
2146,

Substituting 05 for 0 in definition (26), we obtain

(€, 0, d) on (14 03%) + — 01

'S = — _— e —

R (1+ 0,20)? 27T 140, 1+o =

where the last inequality follows from & < 1. Thus, by part (ii), 62(¢,d) > 6;(¢,d), with

equality occurring at d = § = 2

Z-
Next, definitions (27) and (28) imply 79(¢, 0, d) > r3(¢,0,d) for 6 € (0,1). Thus, we must
have 65 < 05 by parts (i) and (ii) of the lemma. Equality occurs at d € {0, 1}, in which
case 0 =0, and (¢, 0,d) = r3(¢,0,d). Also, we have
1

04 = ——.

S140%
Substituting 03 for 0 in the expression for ro(¢ + 1,60, d) derived from definition (25), we
obtain

(C+1,0 d)*L(1+9‘25)+;—1fw<0
T RO ey & 14+6% 1+ 6P —
Thus, 05(¢,d) < 0y(¢ + 1,d), with equality at d =0 = i. L]
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It follows from Lemma 1 that, for a given value of d, the r; define a partition of the interval
(0,1) into sub-intervals, with boundaries given by the values 0;(¢,d) in lexicographically
increasing order of (¢,7). Namely, we have

0="00(1,d) < 01(1,d) < 05(1,d) < 05(1,d)

< <
< Og(l,d) < 0,(¢,d) < 0((,d) < 05(¢,d)

Moreover, it is easy to see from definition (25) that 0y(¢,d) — 1 as { — oo.

The different intervals defined by the boundaries 6; become two-dimensional regions once
the dependence on d is taken into account. FEach pair of model parameters (6, d) falls in a
region characterized by an integer parameter £(0, d), and by a sub-interval corresponding
to £. By Lemma 1, part (ii), the parameter ¢(0, d) is given by

00, d) = max {¢ | ro(¢,0,d) > 0}. (30)

le

Since limy_,o 0p(¢,d) = 1, £(0,d) is well defined for all § and d in the range of interest.
In fact, £(0,d) can be explicitly computed by setting z = ¢ and solving the quadratic
equation

Z2A+07P)+2-0=0,

which has a unique solution zy in the open interval (0, 1). Then,

log z
logh |

00,d) = {

For ease of reference, we label the regions defined by the partition in (29) as follows:
Region I: 0y(¢,d) < 0 < 6,(¢,d),
Region II: 0,((,d) < 0 < 05(¢,d), d < 1,
Region II': 6,((,d) < 0 < 05((,d), d > %,
Region III': 05(¢,d) < 0 < 05(¢,d),
Region IV: 05(¢,d) < 0 < 0y({+1,d), d < 1,
Region IV’: 05(0,d) < 0 < (0 +1,d), d > 7.
We define Region III as the union of regions II’) III" and IV’. The different two-dimensional

regions for ¢ = 1,2 are illustrated in Figure 1. Notice the symmetry around d = i.

We now turn to the basic devices of our code construction. For any integer x, define

2z x>0,
M(””“)_{ 2z —1 z <O. (31)

12
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Figure 1: Parameter regions. Region III is defined as the union of regions II’, III’, and IV’.
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For nonnegative integers ¢, the inverse function pu(z) of M is given by

(i) = i/2 i even,
FUW=Y =@+ 1)/2 i odd.
Since 0 < d < %7 the integers are ranked in decreasing probability order by
Plo,ay(0) = Poay(—1) = Plo,ay(1) = Poay(—2) = Pro,ay(2) = -+ (32)

Thus, M (z) is the index of x in the probability ranking, starting with index 0 and with
ties, if any, broken according to the order given in (32). Conversely, (i) is the symbol
with the ith highest probability.

For any positive integer L, let 7, denote the Golomb code [13] of order L, which encodes a
non-negative integer y in two parts: (a) an adjusted binary representation of ¢’ =y mod L,*
using |log L] bits if ¢’ < 26 L1— [, [log L] bits otherwise, and (b) a unary representation
of ¢=|y/L], using ¢+1 bits.

We are now ready to state the main result of this section.

Theorem 2 Let x denote an integer-valued random variable distributed according to (2)

and (3) for a given pair of model parameters (0,d), 0 < 0 < 1, 0 < d < %, and let

¢ =1(0,d) as defined in (30). Then, an optimal prefix code for x is constructed as follows:

(Region I) If 0y(¢,d) < 0 < 0,(¢,d), encode x using Gap_1(M(z)).

(Region II) Ifd < 1 and 6;(¢,d) < 0 < 65((,d), encode |x| using the code G(x.(|x|)), where the
mapping X¢(|z|) is defined below, and append a sign bit whenever x # 0. Let r be the
integer satisfying 271 < < 2", and let s = 2" — (. Define

s, |z|=0ands#Y,
xe(lz)) =4 0, |z| =5 ands # ¢,
|z|, otherwise.

(Region III) Ifd < ; and 05((,d) < 0 < 05(¢,d), or d > ; and 0,((,d) < 6 < 0o({ + 1,d), encode
x using Gop(M (2)).

(Region IV) Ifd < ; and 03(¢,d) < 6 < 6y(¢ + 1,d), define s as in Region II, encode |x| using
Jo(|z|) defined below, and append a sign bit whenever x # 0.

Go(|lz| = 1), |z| > s,
_ ) Ge(lz]), 1<z <s,
T =1 a0, 2=,
Ge(0)1, x| = s

44 mod b denotes the least nonnegative residue of ¢ modulo b
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Discussion.

Relation to prior work. Theorem 2 includes the main result of [14] as a special case when

d = i. In this case, the distribution (2), after reordering of the integers in decreasing

probability order, is equivalent to an OSG distribution with parameter ¢ = V0. As
shown in [14], the optimality transition for such a distribution between the L-th order
Golomb code and the L + 1st, L > 1, occurs at the (unique) value ¢ € (0, 1) such that
gr(¢) = ¢% + ¢* 1 —1 = 0. Tt can be readily verified that r¢(¢, ¢?, ;) = 0 if and only if
g20-1(¢) = 0, and 1 (£, ¢*, 1) = 0 if and only if go(¢) =0, £ > 1.

Notice that the optimal codes for regions I and III are asymmetric, in that they assign
different code lengths to z and —xz for some values of x. In contrast, the codes for regions
IT and IV are symmetric. The mapping (31) was first employed in [15] to apply Golomb
codes to alphabets that include both positive and negative numbers. Theorem 2 shows
that this strategy (which was also used in [5] and always produces asymmetric codes) is
optimal for values of 6 and d corresponding to regions I and III, but is not so for regions
IT and IV. In fact, both [15] and [5] actually use a sub-family of the Golomb codes, for
which the code parameter is a power of 2, making the encoding and decoding procedures
extremely simple. This sub-family is further investigated in Section 4 in conjunction with
adaptation strategies for the code parameters, in case # and d are unknown a-priori. A
different heuristic approach, based on encoding the absolute value with a Golomb code and
appending a sign bit for nonzero values, was proposed in [16]. Theorem 2 shows that this
heuristic (which always produces symmetric codes) is optimal only in Region II, and then
only when ¢ is a power of two.

Method of the proof. In the proof of Theorem 2, we will borrow from [14] the concept
of a reduced source. This concept is generalized in [11] and shown to be applicable to
all finite entropy distributions of the integers, albeit in a non-constructive fashion. Here,
for each of the regions defined for (0,d), and each integer m > 0, we will define a finite
mth order reduced source Ry ,, as a multiset containing the first 2m — b probabilities in
the ranking (32), where b € {0, 1} depends on the region, and a finite set of super-symbol
probabilities, some of which represent infinite “tails” of the remaining integers. The index
L also expresses region dependence, and it satisfies I = 2¢ — 1 for Region I and L = 2/
otherwise.

We will use Huffman’s algorithm to construct an optimal prefix code for Ry, ,,, and will
then let m tend to infinity, thus obtaining a code for the integers. The code length assigned
by our construction to an arbitrary integer x will be the one assigned by the optimal prefix
code for Ry, for the least m such that 2m—b > M (x). By the nature of the construction,
this code length will remain unchanged for larger values of m. The argument validating
the limiting step, and why it yields an optimal prefix code for the original infinite source,
is given in [14] and it carries to our construction. The exact definition of the reduced
sources used, and the way the Huffman construction on a reduced source proceeds, will
vary according to the region the parameter pair (0, d) falls into, thus leading to different
code structures for the different regions. It turns out that the two-sided nature of the
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distribution adds surprising complexity to the characterization as compared to the one-
sided case (this holds even in the simpler case d = 0). This is evidenced by the variety
of regions and codes in Theorem 2. In addition to the problems solved in the one-sided
case, the characterization of the two-sided case includes finding various types of tails and
reduced sources, the transitions between them, and the fine structure of the codes in
regions II and IV.

We now offer some insight into how the various parameter regions (and hence the above
mentioned complexity) arise. The functions r4(¢,0,d) and r1(¢,0,d) control the positive
integer parameter L characterizing a basic property of Golomb-type codes: Starting from
some codeword length A, the code contains exactly I codewords of length A+ for all z > 0
(for the codes of Theorem 2, A is at most A + 2, where A is the minimal codeword length).
The lines r1(¢,0,d) = 0 mark the transition from regions with L = 2¢ — 1 to regions with
L =20, ¢ > 1, while the lines 7¢(¢, 6, d) = 0 mark the transition from L = 2/ to L = 2¢+ 1.
The lines r9(¢,0,d) = 0 and r3(¢,0,d) = 0, in turn, determine how the optimal code
construction handles “natural pairs” of symbols in regions with . = 2¢. These are pairs
of symbols that are close in probability, i.e., {z, —x} for d < i and {z—1, —x} for d > i,
where x is a positive integer. Focusing on the case d < i, and assuming x is sufficiently
large, we observe that if the optimal code tree construction merges = and —z (i.e., makes
them sibling leaves), then by the constraints imposed by 7y and r; in determining the
value of L, the resulting probability 7 = Py 4)(x) + Fg,q(—r) must fall in the proximity
of the interval [Py qy(z —£), Py,a)(—(z — £))] on the real line. It turns out that the regions
for L = 2¢ are determined by whether 7 is to the left (Region II), inside (Region III"),
or to the right (Region 1V) of the interval. When 7 falls inside the interval, merging
of x and —z in the optimal tree construction would prevent the translated natural pair
{z —{,—(x — £)} from merging. Because of the self-similar character of the distribution,
this condition applies to all x, and it results, in general, in a construction that does not
merge natural pairs (e.g., the asymmetric codes of Region III'). On the other hand, when
nothing stands in the way of a natural pair, they tend to merge, resulting in the symmetric
codes of regions II and IV. A similar situation exists for d > j but with a twist. There,
again, the optimal construction will not merge natural pairs in Region III’, and it will in
regions II" and IV’. Nevertheless, regardless of whether they are merged or not, symbols in
a natural pair end up with equal code lengths in the three sub-regions of Region III. This
is due to the fact that the optimal code is a Golomb code of even parameter, and that
every integer has a natural pair when d > i.

Terminology. We will often loosely refer to the “code length assigned to probability p”
rather than the more cumbersome “code length assigned to the symbol whose probability
is p.” Also, we will characterize prefix codes in terms of their codeword length distributions,
rather than the actual binary patterns they assign to the symbols. Thus, the actual code
described will not always match the underlying tree induced by the iterative construction.
For example, while the three sub-regions comprising Region III for a given ¢ (regions
I, TIT’, and IV’) admit the same optimal prefix code, the constructions leading to the
optimal length distribution and their underlying trees are quite different. A discussion of
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the number of different coding trees that can be optimal for a given distribution, including
some infinite alphabet cases, can be found in [26].

Additional definitions. The following definitions will aid in the proof of Theorem 2.
For all integers j, we define

C(0,d)017/21=2 j odd,
n = el s )

C(0,d)0u/D+ 5 even.

Notice that when j > 0, we have p; = P4 (1(j)), i.e., p; is the j-th probability in the
ranking (32). Let m > 0, L > 0, and ¢ be integers. We define a single tail f7;(m) as
follows:

frim) = pamiivji. (34)
=0
For all integers 7, let

N; = P2j—1+t P2yj- (35)
Notice that, for 7 > 1, we have 1, = Pr(|z| = j). For even values of L, we define a

symmetric double tail Fy, ;(m) as
Fri(m) = fraici(m) + fraim) =Y 1L (36)

5=0

The claims of the following lemma follow immediately from the definitions (2), (33), (34),
and (36), and from straightforward geometric sum calculations.

Lemma 2 Let L >0, m > 0, and @ be integers.
(i) For any integer k > i, we have

fri(m) > frr(m),

and, for even L,
Fri(m) > Frp(m).

(i1) For integers k and h > —m, we have

Jrivee(m +h) = QH’LJCL,i(m)a

and, for even L,

FL7i+k(m + h) == 9k+hFL7i (m) (37)

(1i1) We have R
fua(m) = C(0,d)0™ fr, (38)

and X
Fri(m) = C(0,d)0™ Fi, (39)
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where

gi—1+d
(L0 L=2-10=12j
Qj*d (—1+42d . .
. T (10T L=20-1 i =2+,
Tri = gi—1+d (40)
-0 L=20,i=2j,
pi~
1_ ot L =20 1=2j+1.
and S g
Fr; = ( + ) L =2/ (41)

S

Let 6 = % — 6. We define the auxiliary functions 7;(¢, 0, d), i = 0, 1, by substituting 0 for &
in 7;(¢,0,d) as defined in (25)-(26). Since 6 > 1 > 4, the following inequalities hold:

TO(& Qa d) 2 T0<€,9,d), (42)

Tl(f, 87 d) S T1(£707d)7 (43)
with equalities holding only for d = i.
Proof of Theorem 2.

Region I. Let L = 2¢ — 1. We recall that Region I is characterized by the conditions
Oo(0,d) < 0 < 0,(4,d) or, equivalently r¢(¢,0,d) > 0 and r,(¢,0,d) < 0. We refer to
the latter two conditions as Cj, and Cy;, respectively. By the inequalities (42) and (43),
Cia and Cyy, imply the weaker conditions 7(¢,0,d) > 0 and 71 (¢,0,d) < 0, which will be
referred to, respectively, as C;, and Cp.

We define an mth order reduced source Ay, ,,, m > 0, as the multiset of probabilities

Apm = {po; p1, -+ 5 Pam-1, fL,O<m>7 fLJ(m): fL7L71<m)}'

(When m = 0, the source includes tails only.)

We build an optimal prefix code for Ay, ,,, m > 0. For real numbers a, b, ¢, d, we use the
notation {a,b} < {c¢,d} to denote max{a,b} < min{c,d}. This notation is extended in
the natural way to relations of the form a < {¢,d} and a > {¢,d}. We claim that the
probabilities in Ay, ,,, are ordered as follows:

Pom-2, fL.n—2(m)} < {pom-—s, fr,o-3(m)} < ---
Pom—r, fLo(m)} < pom-r—1 < -0 <po. (44)

{pom-1, Jr—1 (m)}

A= A

<
<
To prove the claim, it suffices to prove the two leftmost inequalities, since the remaining

inequalities are scaled versions of the first two. For L. = 1 or m = 1, some of the symbols
involved in the two leftmost inequalities are not part of Ay ,,, but the inequalities still
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apply (with some negative-indexed p; and f7 ;). To prove the leftmost inequality in (44),
after applying (38), it suffices to show 0~ 1°¢ < f; ; 5 and f, ;1 < 07279 Using the
expression for fr, ;o from (40), the former inequality is equivalent to the condition

X1+ 012 Lo —1 >0,

which in turn is equivalent to Cy, if d < j or to Cy, otherwise. Similarly, fL7 Lo < 9
is equivalent to either Cqy, or Cyy,.

For the second leftmost inequality in the chain (44), it suffices to prove =27¢ < fL7 13 and
JEL, -2 < 07274 As before, the first inequality is equivalent to, or dominated by Ci,, while
the second one is in the same situation with respect to Cyy.

It follows that the first merge of the Huffman algorithm on Ay, ,,, produces the probability

Pom—1 + fr,o-1(Mm) = pam—1 + zp2m+L—1+jL = ZPQm—1+jL = fri(m—1).
j§=0 Jj=0

Notice that fr,1(m—1) = fr_1(m), so after scaling by 0=*=!, the second leftmost inequality
in (44) implies that the newly created probability satisfies f1,1(m —1) > {pom—1, fro(m)}.
Hence, the next merge in the Huffman algorithm produces the probability

Pam—2 + [1,0-2(M) = Pam—a + Zp2m+L—2+jL = Zme—QJer = fro(m —1). (45)
=0 =0

If L =1, (45) still applies, since the second step uses the probability f;, _1(m) = fL1(m—1)
produced in the first step.

Also, by (34), we have f1,;(m) = frii2(m —1), 0 <i < L—3. Thus, after two steps (one
round) of the Huffman algorithm, Ay, ,, is transformed into Ay, ,,,_1. The process continues
for a total of m rounds, building up the tails f,, until Ay is reached. This reduced
source is given, in ascending probability order, by

Ao =1{/1,0-1(0), fr,0-2(0), ---, fr,0(0) }.

We say that a finite source with probabilities 7y < m; < -+ < 7wy_1 is quasi-uniform if
either N < 2 or my +m > mn_ 1. As noted in [14], an optimal prefix code for a quasi-
uniform source of N probabilities admits at most two distinct codeword lengths, and it
consists of 2196 N1 — N codewords of length |log N |, and 2N — 2| codewords of length
[log N'|, the shorter codewords being assigned to the larger probabilities.

We claim that Ay, ¢ is quasi-uniform. For L = 1, there is nothing to prove. Otherwise, we
need to show f1 1 1(0) + fL-2(0) — fLo(0) > 0. By Lemma 2(iii), after straightforward
manipulations, the latter inequality is equivalent to

P (7L 4 07 0 — 14 020 — 1) > 0, (46)
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By definition (25), since 0! > 1 and d > ¢, the left-hand side of (46) is larger than
ro(¢,0,d), which is positive by Cy,. Therefore, AL is quasi-uniform, and its optimal
prefix code is constructed as described above, with N = L.

Tracing the way Ay o “unfolds” into Ay, it is apparent that the code length assigned to
p;, for m such that 2m — 1 > j,is |j/L| + 1+ Aa(f1 ), where A4(f) is the code length
assigned by the optimal prefix code for Ao to f, and j' = j mod L. This is precisely
the code length assigned by the Lth order Golomb code to j, as claimed by Theorem 2 for
Region 1.

Region II. Let L = 2¢. In Region II we have d < %, 1(£,0,d) > 0 and ro(¢,0,d) < 0.
The latter two inequalities are referred to, respectively, as conditions Csy, and Cgy.

We use a reduced source Sy, ,,, defined by

SLJ’VL - {pO; P1, 0 5 P2my i+l Mma2, 0 5 Tlmti—1,
FL71(m+€— 1), FL72(m+€— 1), et FM(m—i—f— 1) }

(For ¢ =1, S;,,,, contains no 7;’s.)
We claim that the probabilities in Sy, ,, are ordered as follows (listed in ascending order,
with inequality signs omitted):

Pam, Pem—1, Fre(m +0—1), Noye—1, Pom—2, Dom—3, Fro—1(m+0—1), ---
*y N1y P2(m—t41) P2(m—e+1)—1, FL,1(m +4— 1), Po(m—e), -, P1, Po -

When m < £, the sequence of original probabilities p; stops at py “in the middle” of the
chain (i.e., just before one of the FJ,;’s), but the order relations between all remaining
symbols are still claimed to hold.

To prove the claim, it suffices to show that (&) pom—1 < Fp(m—+£—1), (b) Fr(m+{—1) <
NDimte—1, and (¢) Nmie—1 < Pom_2. The rest of the chain follows by virtue of scaling. We
use the expression for F, from (39) and (41). Inequality (a) is equivalent to Ca,. By
definition (35), and after eliminating common factors, inequality (b) is equivalent to

20° —1 < 0. (47)

Clearly, (47) is implied by
0'(1+607%) -1 <0,

the latter inequality being Cyp,. Inequality (c), in turn, is also equivalent to Cs,, as d = 9.

The first step of the Huffman algorithm on Sz, ,, merges ps,, and po,,—1, creating 7,,. By
inequality (b) above, suitably scaled by 0=, we have n,, > Fy(m) = Fri(m +{—1).
Hence, the second Huffman step joins F, ¢(m+ ¢ — 1) with 7,,1¢_1. Recalling the definition
of F,, in (36), we obtain

From+0—=1)+Npre1 =Y Mmy2e—14j¢ + Mmoo = Y Dne145¢ = Fri(m+ € —2).
=0 =0
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When ¢ = 1, the probability 7, created in the first step is used in the second one. Notice
that, by (36), we can also write [ ;(m+{ —1) = Fpj;u(m+£—2) for 1 < j < (—1.
Hence, after two steps (one round) of the Huffman algorithm, Sy, ,, is transformed into
Si.m—1. After m rounds, we obtain Sz, given in ascending probability order by

Sro = {po, Froy(l —1),m1, Fre1({—=1), -+, Fro(l—=1),m, Fpa({ =1)}.  (48)

When ¢ = 1, (48) translates to So 9 = { po, F21(0) }.
We claim that Sy ¢ is quasi-uniform, i.e., pg+ Fr ¢(¢ —1) — Fp, ;1 (¢ —1) > 0 whenever ¢ > 1.
By (37), (39) and (41), the required condition is equivalent to

(0 —1)0' 0+ 0%

Qd
+ 1—0¢

Multiplying by (1 — #), and rearranging terms, the above inequality is equivalent to
0%(1 — 20°) + 0" r3(¢—1,0,d) > 0.

By (47), and since r3(¢ — 1,60,d) > 0, as in Region II we have 6 > 0,(¢,d) > 6y(¢,d) >
05(¢ — 1,0, d), it follows that Sy is quasi-uniform.

We now construct an optimal prefix code for Sz, and show how it translates into an
optimal code for Sy, ,, and, thus, for the integers under the distribution (2). Let r be the
integer satisfying 27! < ¢ < 2", and s = 2" — (. Assume first that s < £. Since S ¢
has 2¢ probabilities, an optimal prefix code for it assigns code length r to the 2s largest
probabilities, namely,

Ns, FL7S(€ - 1)7 Tty T2, FL,2<€ - 1)7 m, FL,1<€ - 1) . (49)

The code assigns length r + 1 to the 2¢ — 2s remaining probabilities, namely,
Pos Fre(l=1), mev, -+, Noy1s Fren (€ —1). (50)

Notice that in the iterative construction of the Huffman code for Sy, ,,,, m > 1, pairs py;_1,
p2j, 7 = 1, which correspond to integers of opposite signs, merge to form ;. Thus, it
suffices to characterize the code length assigned by the construction to the 7;, j > 0, and
po. Similarly to Region I, tracing this time the way Sy “unfolds” into Sr,,,, we observe
that 7,450, 0 <7< ¢, 1 < j<m,is aleaf in a subtree rooted at Iy, ;1({—1), j levels down
from the root of the subtree. Thus, the code length assigned to 7, when m is sufficiently
large is j + As(Fr,41(¢ — 1)), 7 > 1. Here, Ag(+) is the code length assignment of the
Huffman code for Sy, i.e., Ag(m) = r for probabilities 7 in the list (49), and Ag(m) =7 +1
for probabilities 7 in the list (50). Code lengths for py and 7;, 0 < i < ¢, are assigned
directly by As. The foregoing discussion is summarized in the following lemma.
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Lemma 3 If s < {, the code lengths assigned by our construction for Region II are as
follows:
Probability : Code Length
po T+l
nje = r+g, g1,
Merje = r+3j, 1<k<s—1 j7>0,
Ns = T,
Neyje = r+1+7, j=>1,
Mhaje @ 7+1+7 s+1<h</l-1, 72>0.

For ease of comparison, the following lemma explicitly lists the code length assignment of
an (th order Golomb code (in a purposely redundant manner), with r and s defined as in
Theorem 2.

Lemma 4 The code lengths assigned by an (th order Golomb code on the monnegative
integers are as follows:

Symbol : Code Length

0 :
gt = r+g, j=1,
E+gl « r+j3, 1<k<s—1, j>0,
s or+1,
s+l - r+147 72>1,
h+30 @ r+1+3 s+t1<h<l-1 72>0.

Comparing the length assignment in Lemma 3 with that of Lemma 4, we observe that our
construction assigns to py and 7;, ¢ > 0, the same code length that an /th order Golomb
code assigns to ¢ = 0 and ¢ > 0, respectively, except that the code lengths for ¢ = 0 and
1 = s have been exchanged. This is due to the fact that 7, and py have “swapped places”
in the lists (49) and (50) with respect to their “natural” places in a Golomb code. When
s = {, i.e., [ is a power of two, all the probabilities in Sy are assigned the same code length
r, and the swapping has no effect, even though py is still the lowest probability in Sy, .
To complete the proof of Theorem 2 for Region II, the code for the original probabilities

D2j—1, D2j, J > 1, is obtained by appending a sign bit to the code for the corresponding 7;.

Region IV. Let L. = 2¢. Region IV is characterized by d < j and the conditions

r3(¢,0,d) > 0 and ro({ + 1,0, d) < 0, referred to, respectively, as conditions Cy, and Cyy,.
The construction in Region IV follows along similar lines as that of Region II, and it will
only be outlined here.

We use a reduced source 77, ,,,, defined by

ﬂ,m - {p07 P, 0y P2ms M1y Mim+2y 20 5 Nimetds
FL71(m+€), FL72(m+€), ey FL7g(m+€> }
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It follows from Cy, and Cy;, that the probabilities in 77, ,,, are sorted in ascending order as
follows:

p2m7 me—la 7]m+£7 FL,K(m + g)a p2m—27 me—37 77m+£—17 FL7£—1(m + 5)7 tt
“ty P2im—t+41)y P2(m—0+41)-15 Nmt1, FLJ(m + 5), P2(m—e)s * -5 P2, P1, Po -

Similarly to Region II, a round consisting of two steps of the Huffman algorithm on 7,
leads to 7p,,,—1, with the pair poy,, pam—1 merging to form 7,,, and 7,, merging with
Fro(m 4+ £) to form Fr (m + ¢ —1). After m rounds, we obtain the reduced source 77,
which consists of the following 2¢ + 1 probabilities, in ascending order:

Pos Moy Fre(l), ne—1, Fre1(0), -+, m, Fri(l).

It follows from Cy, and Cy, that 7, o is quasi-uniform. Now, if r is the integer satisfying
2r—1 < ¢ < 2", then r also satisfies 2" < 2/ + 1 < 2"t Thus, an optimal prefix code for
710 contains 2"t — 2¢ — 1 = 2s — 1 codewords of length 7, and 2¢ — 2s + 2 codewords of
length » + 1. The list of probabilities corresponding to codewords of length r is given by

Frs(0), ns—1, Frs1(€), --+, m2, Fpa(l), m, Fr1(¢),

while the list of probabilities corresponding to codewords of length r + 1 is given by

Po, Ne, FL,£(£)7 Tty sty FL7S+1(£)7 Ns -

(If ¢ =1, the first list consists just of F1(1), while the second list consists of py and 7;.)

From this code length distribution for 77, we derive a code length distribution for p, and
n;, J > 0, described in the following lemma.

Lemma 5 The code lengths assigned by our construction for Region IV are as follows:

Probability : Code Length
po : r+1,
nie vty g2l
Meyje = T7+7, 1<k<s—1, 7>0,
ns  r+1,
Nstje = T+J, 321
Mhije @ r+1+7 s+1<h<l—1, j>0.

We observe that our construction assigns to pg and 7;, ¢ > 0, the same code length that an
(th order Golomb code assigns to ¢« = 0 and ¢ > 0, respectively, except that pg is assigned
a code one bit longer, and all 7,5, 7 > 1, are assigned a code one bit shorter. Since
length transitions in an /th order Golomb code occur precisely at integers congruent to s
modulo /¢ (in that the Golomb code length for s + j¢ is one more than the code length for
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s — 1+ j/), this shortening is equivalent to assigning to 7;, ¢ > s, the code length that a
Golomb code would assign to ¢ — 1. The codewords for py (that needs to grow by one bit
relative to G(0) of length r) and 7, (that retains the length r+1 of Gy(s) but just lost
that codeword to 7,.1) are obtained by appending a bit to G,(0). As in the case of Region
I, the proof is completed by observing that the 7;, j > 0, split into original probabilities,
amounting to the appendage of a sign bit to the code for 7;.

Regions II’ and IV’. These regions satisfy the same conditions as regions II and IV
(resp.), but are defined for d > j i.e., we have § = % — d. Consider the distribution
P, (+), and let p; = Py (p(j)) for j > 0, extending in analogy with p; for j < 0. We
can write

C(0,d)0720" 110 = APy g(—x —1) 2 >0,

P — (0. )0 = A
(9@)(1’) ( ) ) 0(97d>9—%97x+0 — ’YP(G,ﬁ)(_x> T < 0,

for a constant 7. Therefore, we have p; = ~p,;, for all integers j, which means that
once the probabilities are ordered, and ignoring scaling factors, the distribution Py q)(-),
d > i, “looks” exactly like the distribution Pgs)(-), with py removed. Noting that in
the constructions for reduced sources in regions II and IV, py was involved only in the
final stage, when an optimal code for the “core” sources Sz or 77 was determined, we
conclude that the same constructions can be used for regions II' and IV’ except for that

final stage. We now formalize this idea.
Let L = 2¢. For all integers j, let
Vj = P2j—2 T P2j—1,

and, for all integers ¢ define the asymmetric double tail
Kpi(n) = Z Vntitje-
=0

It follows from the discussion above that we can write
Vj - Vﬁju j € Z,
and
Kri(n) =~Fr;(n), i €Z,

where 77, and F',; are analogous to 1; and FY, ;, respectively, but defined for the distribution
Ps). Assume (0, d) falls in Region II’, and define the reduced source

SL,m = {p()uplu oy Pem—1 Vmt1ly Vm+2, 0 5 Vme—1,
KL71(m+€— 1),KL72(m+€— 1), ,KL7g(m+€— 1) }

This source is equivalent to a scaled version of Sr,,, — {po}, but for the distribution P s).
Therefore, the iteration leading from Sy, ,,, to Sz o applies, and after 2m steps of the Huffman
algorithm, we have

Spo={Kre(l—1), v 1, Ko 1({ =1), vp 9, , Kpo(t—=1), v1, Kp1({ = 1)},
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where the probabilities are listed in ascending order. The construction now departs from
that of Region II. We observe that, without an analog of py in the way, we can carry out
¢ — 1 additional merges, which, by the definition of K7, ;, yield

Kri(t—1)+viy = Kp;-1(0), 2<i< /.

In addition, we have K ;(¢ — 1) = K, ,(0). Thus, we obtain a further reduced source

Sp1={Kr(0), Kpe1(0), -+, K1(0) }.
It can be readily verified that S; ; is quasi-uniform. Thus, the construction yields an
(th order Golomb code for vy,15,v3, -+, where v;, 7 > 1, gets assigned a code length

corresponding to that of G(j — 1). This translates into an Lth order Golomb code for
Po, P1, P2, - - -, as claimed by Theorem 2 for Region I’ (as part of Region III).

Similar considerations apply to Region IV’, where we define a reduced source T@m analo-
gous to 77, — {po}. This leads to a core source

Tro={ve, Kpoll), vier, Kpga(0), -+, 12, Kpa(0), 11, Kpa(0) },
which can be further reduced to obtain
T ={Kw0), Kpe1(0), -+, K11(0) }.

This source, again, leads to an Lth order Golomb code for the original sorted probabilities.

Region III’. Let L = 2¢. Region 11" is characterized by the conditions 75(¢, 0, d) > 0 and
r3(¢,0,d) < 0, referred to, respectively, as conditions Cg, and Csgy,.

Here, we define a reduced source Uy, ,, given by

Urm = {po, P15 -+, Pam—1, Jro(m), fi(m), -+, foo-1(m)}.

This reduced source appears to be formally identical to Ay, ,, used in Region I. However,
inspecting (38) and (40), we note that the expressions for f7 ;(m) when L is even are quite
different from those applying when L is odd. Nevertheless, after appropriate reinterpreta-
tion of fr,;, the order relations claimed in (44) hold for Region III’, being implied this time
by Cs, and Cg;, rather than C;, and Cyp,. Similarly, the evolution from Uy, ,,, to Upo by
way of the Huffman procedure is formally identical to that from Ay, ,,, to Az . Finally, the
quasi-uniformity of Uz, ¢ follows from Cs,, and thus, the construction in Region III" yields
a code whose length assignment for p;, © > 0, is identical to that of an Lth order Golomb
code for ¢ > 0.

Optimality. The optimality of the codes prescribed by Theorem 2 follows from the same
argument presented in [14], applied separately to each region. The main formal requirement
is the convergence of the average code length, which is established in Lemma 6 below. This
completes the proof of Theorem 2. L]

We refer to the prefix codes defined in Theorem 2 for regions I, II, III, and IV as codes
of Type I, II, 111, and IV, respectively. The expected code lengths for these codes when
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applied to the TSG distribution (2) are obtained from their definitions in Theorem 2 by
applying straightforward geometric sums, and derived sums of the general form ¥, iz’. The
resulting code lengths are given in the following lemma. Notice that the expected code
lengths apply to all allowable parameter values (0, d), and not just to the region for which
a code is optimal.

Lemma 6 Let ¢ be an arbitrary positive integer, and let XX7E(9, d) denote the average code
length for a code of type X (X=LILIIIIV), for the given value of ¢, when applied to
a TSG source with parameters (0,d). Let r and s be defined as in Theorem 2, and let
s’ = s mod 27!, Then, we have

s’'+1

Ap(0,d) =1+ [log(2¢ — 1)] + 1 — Plpa)(0) + ).

1— 92[—1 (

- : 0!
Nj1o(0,d) = 1+ Tlog €] + (1 — Pg.0)(0))0° <1+ 1_9£> .

S

1—0¢

Xrr7(60,d) = 1+ [log(20)] +

_ g+l
Apy,(0,d) =2+ [log (] + (1 = Poa)(0))0°" (1 Tz 9f> '

4 Low complexity adaptive codes

In this section, we consider the case where the values of the parameters 6 and d are
unknown a-priori, in the framework of symbol-by-symbol coding. Even though in general
adaptive strategies are easier to implement with arithmetic codes, the structured family of
codes introduced in Section 3 provides a reasonable alternative for low complexity adaptive
coding of TSG models: Based on z, select a code in the family sequentially, and use this
code to encode x;;;. Unlike in Section 2, here the set of available coding strategies for
each symbol is discrete, and the approach is inherently “plug-in.” The performance of
this on-line algorithm is measured by its average code length (under the unknown model
parameters), and the objective is to perform essentially as well as the best fixed strategy
in the family, namely the Huffman code for the unknown parameter values.

Let C = {CM, C® ... (€U ...} denote a countable family of codes, and let C;, € C
denote the code chosen by an on-line algorithm to encode z;;1. For a fixed code C* € C,
let AX(j) denote the expected code length difference between C'0) and C*. Then, it can be
readily verified that the expectation of the code length difference AA(z™) over the entire
sequence x" is given by

E[AA(X™)] = f:M(j) f:Pr{Ct = CWY. (51)



Equation (51) motivates the following on-line strategy for adaptive coding of a TSG dis-
tribution: Given an estimate of 6 and d based on the sufficient statistics S; and N; (as
defined in equations (11) and (13), Section 2), use the corresponding optimal prefix code
prescribed by Theorem 2 to encode ;1. If the probability Pr{C; = C9} decays rapidly
enough for CVU) #£ C* as the estimates converge to the true parameter values, and the
average code length differences AX(j) are suitably bounded, then the per-symbol expected
code length loss will be O(1/n). An advantage of this strategy is that it depends only on S;
and Vg, as opposed to the popular plug-in approach of choosing the code that would have
performed best on z‘. The latter approach was used in [27] to encode OSG distributions.

Yet, both the region determination in order to find the optimal code for the estimated pair
(0,d), and the encoding procedure, may be too complex in some applications. For that
reason, the sub-family of codes used in practical schemes such as [15] and [5] is based on
Golomb codes for which the code parameter is a power of 2. Given an integer parameter
r > 0, the code GGor encodes a nonnegative integer z in two parts: the r least significant
bits of z, followed by the number formed by the remaining higher order bits of z, in unary
representation (the simplicity of the power-of-2 case was already noted in [13]). The code
length is r + 1 4+ |2/2"| bits. Furthermore, following [15] and [5], we will consider only
the asymmetric codes of types I and III. The codeword assigned to an integer x is denoted
I'y(x) = Gor(M(z)). Given the nature of the mapping (31), which privileges 0 over —1,
1 over —2, etc., we consider an additional code Iy, which corresponds to » = 0 but with
the mapping (31) modified so that negative and nonnegative values are interleaved in the
sequence —1,0, —2, 1, .... This code accounts for values of d larger than %, for which —1 is
more frequent than 0, and small 0. For r > 0 (larger values of ) this re-mapping (which
actually realizes the transformation + — —(x+ 1) mentioned in the beginning of Section 3)
is irrelevant, as the values in the pairs (0, —1), (1, —2), ..., are given the same code length.

Thus, this final section presents a further practical compromise, according to which we
consider adaptive coding for the above reduced family of codes. This reduced family
represents a specific optimality-complexity trade-off, and similar derivations are possible
with other sub-families. For example, the symmetric codes of Type II are included in 28],
leading to a more complex analysis for region determination. The specific trade-off in this
section is motivated by the success of the lossless image compression algorithm LOCO-I
[5], in which only the asymmetric sub-family C = {T,}UT"; is employed.® Based on a
sequential estimate of § and p (rather than d), LOCO-I chooses a code from the above
sub-family. Lemma 7 below presents optimal decision regions to choose among these codes
for given values of # and p under the modified TSG distribution (6).

Lemma 7 Let S 2 0/(1—0) and ¢ 2 (V5 +1)/2. Given S and p, the following decision

rules minimize the expected codeword length over the sub-family of codes C.

a. If S < ¢, compare S, p, and 1 — p. If S is largest, choose code I'y. Otherwise, if p is

5Despite the sub-optimality of this sub-family of codes, tests performed over a broad set of images used to develop the
new ISO/IEC standard JPEG-LS [10] reveal that LOCO-I is within about 4% of the best available compression ratios (given
by [6]) at a running time complexity close to an order of magnitude lower.
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largest, choose T'y. Otherwise, choose I'y.

b. If S > ¢, choose code ', 1, r > 1 provided that

1
¢(27r+1) _ 1 < S S ¢(27r) _ 1 N (52)
Proof. Let \.(S,p) denote the average code length for code 'y, » > 0, and let No(S, p)
denote the average code length for code I"y. Since M(z) = 2z + y, with z defined in
Equation (8) and distributed OSG with parameter 6, and y defined in Equation (7) and
Bernoulli with Pr{Y = 0} = p (see Section 2), F ,)[M ()] = 2S5 + 1 — p. Thus,

The other codes in the sub-family under consideration (r > 0) are of Type III, so we apply
Lemma 6 with £ = 2"! to obtain

14

XT(S, p) = XHLE(g’ d) =r+1+

1—0t
Thus, the code selection for » > 0 is done according to the sign of
— — ot
Ary1 (S, 0) = A5 p) = 1 — 75 . (54)

By (54), the maximum value of 6 for which I',,r > 0, can be optimal, is such that
0¥ =1 —6?", namely,

0=(p—1)"". (55)
Thus, the maximum value of S for which I', ,» > 0, can be optimal, is
S = g (56)
P -1
The decision rule of Lemma 7 follows from equations (53) and (56). O

Lemma 7 extends results in [15] and [27]. The golden ratio is mentioned in connection
with Golomb codes in [26], and also in [27].

Theorem 3 below states that, in a probabilistic setting, an on-line strategy based on ML
estimation and the decision regions of Lemma 7 performs essentially as well as the best

code in the sub-family C. The code selection for x;,; is based on the sufficient statistics S;
and V.

Theorem 3 FEncode 441 using the code prescribed by Lemma 7 after substituting S;/t for
S and N/t for 1 —p, 0 < t < n, and let A(z") denote the code length resulting from
applying this adaptation strategy to the sequence x™. Let A* denote the minimum expected
codeword length over codes in C for the (unknown) parameters 0 and p. Then,

%Ewm AXM] <A +O <l> :

n
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Discussion.

Relation to prior work. A result analogous to Theorem 3 is proved in [27] for the alternative
plug-in strategy of encoding z;,1; with the code that would have performed best on 2,
under an OSG distribution. There, the deviation from optimality is bounded as O(1//n).
In fact, this alternative approach was also analyzed (for general loss functions) in the
individual sequence setting in [29], where it was shown that by introducing randomization
it is possible to match the performance on every sequence up to O(1/4/n). It should be
pointed out that, in our case, these two plug-in strategies indeed differ. For example, for
the sequence 25 = 022222, S;/t = 5/3 > ¢, so the approach based on ML estimation
encodes z7; with the code I';. On the other hand, direct inspection reveals that the best
code for 28 is I'y.

Low complexily approzimation. The decision region boundaries (56) admit a low complexity
approximation, for which it is useful to define the functions S(r) and ~(r), r > 0, by
1 a2t 1

S(’I”) é ¢(2—r+1) —1 - 1Il§23 - 5 + 7(r>' (57)

It can be shown that ~(r) is a decreasing function of r, that ranges between ¢ + % -
(1/Ing) =~ 0.04 (r=1), and 0 (r — o0). Since ¢ ~ 1.618 and 1/In ¢ ~ 2.078, (57) implies
that S(r) is within 4% of 2" — % + % for every r > 0. Thus, using approximate values of
S(r) and S(r+ 1) in lieu of the bounds in (52), a good approximation to the decision rule
of Theorem 3 for encoding x;1 is:

Let S} = Sy + (t/2) — (t/8).

a. If S] < 2t, compare S;, Ny, and t — N;. If S, is larger, choose code I';. Otherwise, if
t — N, is larger, choose I'g. Otherwise, choose I".

b. If S} > 2t, choose code I',;1, r > 1 provided that

12" < S < t2r

This simplified rule is used in LOCO-I [5] and it can be implemented with a few shift and
add operations.

Proof of Theorem 3.

It suffices to prove that the right-hand side of (51) is upper-bounded by a constant as
n — oo for the family C of codes under consideration. Let 7 denote the largest value of
r for which I'; is optimum or, in case no such r exists (hence Iy is optimum), let 7 = 0.
Similarly, let r* denote the smallest value of r for which I', is optimum or, in case Iy is
optimum, let r* = 0. Notice that, in general, ™ = r*, except when S is on one of the code
selection boundaries defined in Lemma 7. We divide the outer sum in the right-hand side
of (51) in two parts, one corresponding to codes I', such that » > 7, which yields a sum
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Ay, and one for the other codes in C which are not optimum (codes I', such that r < r*,
and, if not optimum, I''y), which yields a sum Ay. Thus, (51) takes the form

Eipp[A@")] = nA™ + Ay + A, (58)

Clearly, if r > 7" then the code length difference between I', and I'z+ can be at most r —7*
bits per encoding, due to a longer binary part using I, (r > 7 cannot increase the unary
part). Thus,

A < Z r—7" ZPr{Ct I} = i iPr{r(t) >} (59)

r=r*+1 r=r* t=1

where I, 2 (,. Now, with S(r) defined as in Equation (57), r > 0, and 5(0) £ max{p, 1—
p}, the proposed on-line selection rule is such that

Pr{r(t) > r} = Pr{S; > tS(r)}. (60)

Define 6(r) £ S(r)/(1 + S(r)), which is an increasing function of r. By Lemma 7 and the
definition of 7*, we have 1 > 0(r) > 0 for all » > 7. In addition, the process {z;} defining
Sy in Equation (13), Section 2, is distributed OSG (Equation (8)). It can be then seen that
the Chernoff bounding technique gives

Pr{S, > tS(r)} < 27PEOIO) (61)

where D(0(r)||0) denotes the informational divergence between OSG sources with param-
eters (r) and 0, respectively, which is positive for r > 7. It follows from (59), (60), and

(61), that

A1<22D+ Zar. (62)

To prove the convergence of the series in the right-hand side of (62) we upper-bound the
ratios a,1/a,. Since D(0(r)||0) is an increasing function of r for r > 7*, we have

D(6(r)|0
ari1 _ 2D0mI0) — 1 < 9DOm)10)=DO(+1)]10) (63)
a, 2DOr+110) — 1 —
It can be readily verified that
Dg(6,]]60
D(0:][05) = —Ji( 12 2
-0

where the informational divergence Dg(:||-) for Bernoulli processes is defined in Equa-
tion (17), Section 2. Thus, by (63),

a _Dp@+1)|16)—Dg(8(r)l6)
rtl <2 1—6(r+1) . (64)

Q-
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Now,

Dp(0(r + 1)|10) = Dp(0(r)[|0) = [0(r +1) =0(r)] | =log S —

h(0(r +1)) = h(0(r))
O(r+1)—06(r)
> [0(r+1) = 6(r)][-log S = n'(6(r))]

= [0(r+1) — 0(r)] log sg)

where the inequality follows from 6(r+1) > 6(r) and the concavity of the entropy function.
By (55), we have 0(r) = [0(r +1)]? for all » > 1, which together with (64) and (65) implies

(65)

S(r

Gril  9-6(r+1)log ) (66)
a

Define $* £ § (7*), which is the smallest value of S(r) larger than S and depends only on
the actual parameter value. Since 0(r + 1) > (1) > 3, (66) yields for all 7 > max{7*, 1}

Art1 S
<it/=—<1.
a, — \S*

As for the sum As, we consider two cases: r* > 0 and r* = 0. In the first case, a code
that contributes to the sum Aj is selected to encode z;;; whenever S; < tS(r* —1). In
addition, for codes I';, 0 < r < r*, or Iy, the code length increase with respect to I'y-
for an integer x can be at most M (x) bits per encoding, due to a longer unary part (the
binary part decreases at least by one). Thus, the expected code length increase in (51) is
uniformly upper-bounded for all codes that contribute to Ay, implying

Thus,

As < Bap[M(@)] 3" Pr{S: < 150" ~ 1)} (69

t=1

Substituting for F ,[M(x)] in (68) as in Equation (53), and using the Chernoff bounding
technique as we have 6 > 0(r* — 1), we obtain

140 N~ o tDE Do) _ |10 !
Ay < [ﬂ - P] ; . “|1—0 |20 1 (69)

Finally, in the case r* = 0, the magnitude of the average code length discrepancy between

Ty and [V is p/ 2 2 max{p,1 — p} — 1. In addition, the decision between the two codes is
governed by NV, which are statistics for a Bernoulli process with parameter p. Consequently,

oo /
< /SN o-tDs@lle) — P
R2=p ;2 oD5(Ele) _ | (70)
Theorem 3 follows from equations (58), (67), (69), and (70). O
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