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In a companion paper [9] we argued that human economic interactions,
particularly bargaining and trading in market environments, can be
considered as adaptive behaviors, and that the tools and techniques of
adaptive behavior research can be profitably employed in modelling
naturally-occurring markets or constructing artificial market-based
systems. If groups of simple artificial agents interact to exhibit market­
level behaviors that are similar to those of human markets, explanations
of how the behaviors arise in the artificial system may be viewed as
candidate explanations for the same behaviors in human markets. In
this paper, we illustrate these arguments by means of an example. We
present results from experiments where an elementary machine learning
technique endows simple autonomous software agents with the
capability to adapt while interacting via price-bargaining in market
environments. The environments are based on artificial retail markets
used in experimental economics research. We demonstrate that groups
of simple agents can exhibit human-like collective market behaviors. We
note that, while it is often tempting to offer explanations of human
market behavior in terms of the mental states of the agents in the
market, our agents are sufficiently simple that mental states can have
no useful role in explaining their activity. Thus, explanations of the
human-like collective market behavior of our agents cannot be phrased
in terms of mental states; thereby inviting comparisons with
Braitenberg's influential "law of uphill analysis and downhill invention",
with eliminative materialism in the philosophy of cognitive science, and
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Abstract

In a companion paper [9] we argued that human economic inter­

actions, particularly bargaining and trading in market environ­

ments, can be considered as adaptive behaviors, and that the tools

and techniques of adaptive behavior research can be profitably em­

ployed in modeling naturally-occUlTing markets or constructing ar­

tificial market-based systems. H groups of simple artificial agents

interact to exhibit market-level behaviors that are similar to those

of human markets, explanations of how the behaviors arise in the

artificial system may be viewed as candidate explanations for the

same behaviors in human markets. In this paper, we illustrate

these arguments by means of an example. We present results from

experiments where an elementary machine learning technique en­

dows simple autonomous software agents with the capability to

adapt while interacting via price-bargaining in market environ­

ments. The environments are based on artificial retail markets

used in experimental economics research. We demonstrate that

groups of simple agents can exhibit human-like collective market

behaviors. We note that, while it is often tempting to offer expla­

nations of human market behavior in terms of the mental states

of the agents in the market, our agents are sufficiently simple that

mental states can have no useful role in explaining their activity.

Thus, explanations of the human-like collective market behavior of

our agents cannot be phrased in terms of mental states; thereby

inviting comparisons with Braitenberg's influential "law of uphill

analysis and downhill invention", with eliminative materialism in

the philosophy of cognitive science, and with dynamical-systems­

based analyses of adaptive behavior.

1 Introduction

In the companion paper [9] we argued that human trad­
ing interactions in market environments can be consid­
ered as instances of adaptive behavior. To illustrate
this, we gave an overview of Smith's [21] seminal work
in experimental economics, where human traders inter­
act within a given market mechanism under 'laboratory'
conditions. Smith's work was one of the first demon­
strations that the transaction prices of small numbers
of traders, interacting via a continuous double auction
(CDA) market. could raoidlv and reliablv aooroach the
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theoretical equilibrium price, with no need for a central­
ized 'auctioneer'.

We noted that traders in such markets are autonomous
and situated, and that, because adaptive behavior re­
search is fundamentally concerned with autonomous sit­
uated agents - either real (animals) or artificial (animats)
- the problem of creating artificial trading agents should
no longer be ignored by adaptive behavior research. If
successfully developed, 'trader animats' could be used
both in the science of explaining human market activity
and in the engineering of new microeconomic systems
such as for internet-based commerce (e.g., [16, 18]) and
market-based control (e.g., [5]). In all three cases, but
especially in developing scientific models of human eco­
nomic activity, significant amounts of further research
are likely to be necessary before genuinely useful or pro­
ductive systems can be created.

Although it may seem intuitively obvious that some
form of 'intelligence' or adaptation is necessary in bar­
gaining agents, Gode and Sunder [15] presented results
that appear to indicate that their zero-intelligence (ZI)

agents can exhibit human-like behavior in CDA markets.
Gode and Sunder's ZI trading agents simply generated
random prices for bids or offers, subject to the const'raint
that they could not enter into loss-making deals. How­
ever, we demonstrated [6, 8] that Gode and Sunder's
result only holds in very specific circumstances and that,
in general, some 'intelligence' in the form of adaptiv­
ity or sensitivity to previous and current events in the
market is necessary. Hence, we give our trading agents
adaptive capabilities by employing elementary machine­
learning techniques. Because our agents are intended to
have minimal intelligence, but not zero intelligence, they
are referred to as "ZIP" traders: ZIP is an acronym for
"zero-intelligence-plus" .

In other publications [6, 7, 10, 11] we have shown that
our ZIP traders do not suffer from the failings that af­
flict Gode and Sunder's ZI traders. Furthermore, we
have noted that the collective behavior of groups of ZIP

traders is human-like, by: which we mean that ZIP traders
in exoerimental CDA ma~kets e:ive scores on the standard



metrics of market performance (such as the Smith's a
measure of price-convergence [21], allocative efficiency,
and profit dispersion [15]) that are very similar to those
given by human traders in the same markets.

In this paper, we demonstrate that the market behav­
ior of ZIP traders is human-like in another sense: ZIP
traders fail to exhibit rapid equilibration in a particu­
lar style of non-CDA market, and their mode of failure is
very similar to that of human traders in a similar non­
CDA experiment reported by Smith [21].

Smith [21] reported results from an experimental
model of common retail markets, where sellers announce
prices and buyers either purchase at the offer price or
ignore the offer, without giving any indication of what
range of transaction prices they would be willing to bid.
Smith's model was a modification of the CDA, rendered
one-sided by preventing the buyers from quoting bid
prices. Although this is a rather primitive approxima­
tion to retail markets (since superseded by experimental
studies of posted-offer markets: see, e.g., [13, pp.173­
239]), the results from Smith's experiment, and his ex­
planation of those results, are intriguing. Smith's expec­
tation was that transaction prices would settle at levels
higher than the theoretical equilibrium price, indicating
that the structure of retail markets offers advantages to
the sellers. But this did not happen: instead, transac­
tion prices settled at levels significantly below equilib­
rium. Smith explained this as being due to buyers that
never quite recovered from having been 'badly fleeced'
in the early stages of the experiment, where transactions
occurred at high prices before equilibration had driven
them lower.

If groups of simple artificial agents interact to exhibit
market-level phenomena that are similar to those of hu­
man markets, explanations of how the phenomena arise
in the artificial system may be viewed as candidate expla­
nations for the same phenomena in human markets. In
this paper, we illustrate these arguments by means of an
example. We present results from experiments where ZIP
traders adapt and interact via price-bargaining in mar­
ket environments based on the' artificial 'retail' market
that Smith [21] used in his experimental economics re­
search, and we demonstrate that groups of simple agents
can exhibit human-like collective market behaviors. We
note that, while it is often tempting to offer explana­
tions of human market behavior in terms of the mental
states of the agents in the market, our agents are suffi­
ciently simple that mental states can have no useful role
in explaining their activity. Thus, explanations of the
human-like collective market behavior of our agents can­
not be phrased in terms of mental states; thereby inviting
comparisons with Braitenberg's influential "law of uphill
analysis and downhill invention" , with eliminative mate­
rialism in the philosophy of cognitive science, and with
dvnamical-svstems-based analvses of adaotive behavior.
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Section 2 introduces the mechanisms of adaptation in
ZIP traders. In Section 3, we present results showing
that ZIP-trader 'retail' markets exhibit the same failure
qualities as Smith's human-trader 'retail' markets. From
this, we argue that although the collective behavior of
the trading animats is similar to that of the groups of
humans, explanations of the animat markets could have
significant impact on the way in which comparable hu­
man activity is explained. In particular, the simplicity
of the ZIP trading mechanisms means that explanations
of their failures cannot be phrased in terms of mental
states such as not recovering from being fleeced during a
trading day earlier in the experiment. We further discuss
the implications of this in Section 4. In the remainder
of this paper, we assume the reader is familiar with the
basic microeconomics and details of experimental eco­
nomics that we reviewed in the companion paper [9].

2 ZIP Traders

The emphasis in our work is on creating simple au­
tonomous software agents, or animats, for bargaining
in market-based environments. This emphasis on sim­
plicity comes not only from a desire for computational
efficiency (important in engineering applications if hun­
dreds or thousands of animats are active on a network),
but also in a speculative scientific attempt at sketch­
ing the minimum mechanistic complexity necessary and
sufficient for explaining human bargaining behaviors in
specific market environments.

Space restrictions prevent us from presenting a full
discussion of the rationale for the current design of ZIP
trader agents, and from presenting exhaustive results.
The intention here is to briefly summarize key aspects
of the design before presenting illustrative results. Cliff
[6] gives a complete discussion of the design, shows re­
sults from many experiments in different types of market
environment, and includes all the C source-code for the
system. A recent thesis by van Montfort [25] replicated
our CDA results, and explored the use of our ZI traders
in spatially distributed markets where there may be po­
tentially hundreds or thousands of traders.

In common with much work in (human-based) experi­
mental economics, most of our studies to date have con­
sidered markets where each trading agent remains either
a buyer or a seller for the duration of the entire experi­
ment. However, van Montfort [25] demonstrated the use
of our ZIP traders as arbitrage agents capable of buying
units of commodity in one market for subsequent re-sale
into another market, exploiting differences in price be­
tween the two markets.

Each ZIP trader operates by maintaining a profit mar­
gin that it uses for calculating the price it 'quotes' (offers
or bids) in the market: the profit margin determines the
difference between the price the agent quotes and the
limit vrice for the commoditv the ae:ent is tradine:. For



agents designated as sellers, the limit price is the price
below which they may not sell a unit of the commodity.
For agents designated as buyers, the limit price is the
price above which they may not buy a unit of the com­
modity. Hence, when two traders enter into a transac­
tion, the seller's profit is given by subtracting the seller's
limit price from the transaction price, while the buyer's
profit is given by subtracting the transaction price from
the buyer's limit price.

The 'aim' of each ZIP agent is to maximize profit gener­
ated by trading in the market. If an agent's profit margin
is set too low, it will miss out on potential profit when it
makes a transaction with another agent, so all agents are
constantly trying to increase their profit margins. But if
an agent sets its profit margin too high, it may miss the
opportunity to make transactions with other agents, be­
cause the price it offers is less attractive than the prices
offered by competing agents. Clearly, what it means for
the profit margin to be "too high" or "too low" is depen­
dent on the context of the market conditions, and varies
dynamically. Thus, the problem of designing a trading
agent can be considered as a combination of two issues:
the qualitative issue of deciding when to increase or de­
crease the profit margin, and the quantitative issue of
deciding by how much the margin should be altered.

For reasons we discuss in detail in [6, 11], each ZIP

trader makes the qualitative decision of when to alter its
margin on the basis of four factors. The first factor is
whether the agent is active in the market: agents are
active until they have sold or bought their full entitle­
ment of units of the commodity. The remaining three
factors concern the last quote by any agent in the mar­
ket: we refer to this as Q. Each ZIP trader notes whether
Q was an offer or a bid, whether Q was accepted (i.e.,
led to a transaction) or rejected (ignored by the traders
in the market), and whether Q's price, q(t), is greater
than or less than the price the ZIP trader would cur­
rently quote. We refer to the price a ZIP trader i would
quote at time t as that trader's quote-price, pi(t), which
is calculated from i's limit price Ai,j (for i's jth unit of
commodity) and i's current profit coefficient pi(t) using
pi(t) = Ai,j(l + pi(t)). Thus, a seller's profit margin
is raised by increasing Pi and lowered by decreasing Pi,
such that pi(t) E [0,(0); VtVi. The situation is reversed
for buyers: they raise their margin by decreasing Pi and
lower it by increasing Pi, subject to pi(t) E [-1,0]; VtVi

A ZIP seller raises its profit margin whenever Q was
accepted and pi(t) ~ q(t). It lowers its margin only if
it is still active and Q was an offer with pi(t) 2: q(t),
or if Q was a bid that was accepted and pi(t) ~ q(t).
Similarly, a ZIP buyer raises its profit margin whenever
Q was accepted and pi(t) 2: q(t), and it lowers its margin
when it is active and either Q was a rejected bid with
pi(t) ~ q(t) or Q was an accepted offer with pi(t) ~ q(t).

The auantitative issue of bv how much the nrofit/~ar-
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gin should be altered is addressed by using a simple
machine-learning algorithm. Specifically, the learning
rule we use is Widrow-Hoff with momentum, which also
underlies back-propagation learning in neural networks
[20]. Briefly, this adjusts the actual output of a system
toward some target output value, at a speed determined
by a learning rate {3, and with a simple 'memory' or
'momentum' parameter I. In each ZIP trader the target
value Ti(t) is given by a stochastic perturbation of q(t),
and each trader i uses this in combination with Pi and
Ii to adjust its profit-coefficient pi(t). The profit-margin
update rule is:

where

r i ( t) = ,on r i (t - 1) + (1 - '"n),Bi (Ti (t) - Pi (t ))

and ri(O) = 0 : Vi.
The target price Ti(t) is calculated by multiplying q(t)

by a relative coefficient 1li(t) and then adding a small
absolute perturbation Ai(t). The values for 1li(t) and
Ai(t) are stochastically generated from independent and
identical distributions for each trader, every time Ti(t)
is calculated. When the trader's quote-price is being
increased, 1l.; = U(l.O, 1.0 + C'R) and Ai = U(O.O, CA),

where U(CI0' Chi) denotes a uniformly distributed random
real value over the range [Clo, chd. When the trader's
quote-price is being decreased, 1li =U(l - C'R, 1.0) and
Ai =U( -CA, 0.0). For further details of how learning is
implemented in ZIP traders, see Cliff and Bruten [6, 7].

In the experiments reported in this paper the follow­
ing parameter values were used. Each trader's value for
f3i was set randomly from U(f310' 13hi) with 1310=0.1 and
f3hi=0.5. Each trader's value for Ii was set randomly
from U(il0,ihi) with 110=0.0 and Ihi=O.l. In generat­
ing Ti(t), all traders use parameter-values C'R, =0.05 and
CA = 0.05. The initial profit coefficients (i.e., J-ti(O))
of the traders were set randomly from uniform distribu­
tions symmetric about zero, determined by two param­
eters: Plo = 0.05 and Phi = 0.35: each seller's value of
Pi(O) was set randomly from U(Plo, Phi) and each buyer's
value of Pi(O) was set randomly from U( -Phi, -PIa).

All our work to date has involved experiments where
the values of the system parameters have been deter­
mined manually (i.e., by trial and error). Our expe­
rience is that the system is fairly robust in the sense
that it is not particularly sensitive to variations in the
system parameters. Nevertheless, the use of some kind
of automatic tuning or optimization technique such as
a genetic algorithm is an obvious direction for possible
future work: the free parameters in the current ZIP sys­
tem are CA and C'R, and the pairs of upper and lower
bounds (Plo,Phi), (131o, 13hi) , and (ilo,Yhi); any or all of
these could be placed under evolutionary control. De­
snite the documented difficulties of evolvine: situated au-



3 One-Sided Auction 'Retail' Markets
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cepted at prices ranging from $2.69 to $2.80... The
competition of sellers pushed the offer prices lower
and the remaining buyers made contracts at prices [of
$2.35, $2.00, and $2.00]. The early buyers in that first
market period never quite recovered from having sub­
sequently seen exchange prices fall much below the
prices at which they had bought. Having been badly
fleeced, through ignorance, in that first trading pe­
riod, they refrained from accepting any high price of­
fers in the remaining three periods of the test. This
action, together with seller offer price competition,
kept exchange prices at levels persistently below equi­
librium for the remainder of [the experiment]." [21].

Figure 2: Supply and demand curves: 12 buyers and 11 sellers.
Theoretical equilibrium price Po =$2.25; quantity Qo=7.

The ZIP traders can be used in a straightforward copy
of Smith's experimental retail market. The supply and
demand curves for the ZIP market are shown in Figure 2.
For reference, Figure 3 shows the transaction-price time­
series resulting from one experiment where the supply
and demand curves shown in Figure 2 were used in a con­
tinuous double auction (CDA) market. As can be seen,
the transaction prices of ZIP traders operating in a CDA
market rapidly stabilize at values close to the theoreti­
cal equilibrium price of $2.25. Figure 4 then shows the
average results from 50 such experiments.

I
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Figure 1: Left-hand side shows the market supply and demand,
with theoretical equilibrium values Po=$2.25 and Qo=7. Right­
hand side shows time-series of transaction prices from four 'days'
when traders interact via a one-sided (offer-only) 'retail' market.
Numbers on the horizontal axis of theright-hand figure indicate
market volume (quantity of transactions) for each day.

In Smith's 1962 paper [21], all the experiments except
one explored CDA markets. In the one non-CDA market,
Smith examined the dynamics of a one-sided auction,
where only sellers were allowed to quote offers: buyers
were not allowed to quote bids, but passively observed
the prices offered by the sellers. Each buyer therefore had
the privilege of being able to ignore offer-prices that were
too high and accept those that were within their range,
without giving any indication of their limit prices. Smith
proposed this as an approximation to an ordinary retail
market, where sellers bear the responsibility of advertis­
ing their prices and buyers decide whether to buy or not
without entering into any kind of bargaining or haggling
process. Smith's results from this experiment are shown
in Figure 1.

tonomous agents for collective behaviors [17, 26], evo­
lutionary optimization of adaptive trading agents offers
the possibility of specializing generic adaptive traders to
the structure and dynamics of particular markets.

Smith's comments on his expectations and actual re­
sults for this experiment are significant:

"Since sellers desire to sell 1.t the highest prices they

can get, one would expect the offer prices to be high,
and, consequently, one might expect the exchange
[i.e., transaction] prices to show a persistent tendency
to remain above the predicted equilibrium. The result
was in accordance with this crude expectation in the
first market period [Le., day] only.... Since sellers
only were making offers, the prices tended to be very
much above eauilibrium. Five of these offers were ac-

In Figure 5 we show the mean daily transaction prices
from 50 experiments where the ZIP traders operate in
Smith's 'retail market'. The same parameter values are
used as in the experiments for Figures 3 and 4: the only
difference is that the buyers are prevented from quoting
bid-prices. As can be seen, the average transaction prices
are typically less than $2.00 (significantly below the the­
oretical equilibrium price of $2.25). There also appears
to be little or no convergence towards equilibrium, or
reduction in variance as the experiment progresses. The
apparent lack of convergence or reduction in variance can
be better understood bv examinine: individual nrice tra-
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Figure 5: Mean ZIP transaction prices, averaged over 50 experi-:­
ments, for 'retail-market' experiments with the supply and demand
shown in Figure 2 (Po =$2.25). Format as for Figure 4
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Figure 3: One transaction-price time-series from one experiment
where the supply and demand of Figure 2 are used in a COA market
where both buyers and sellers can quote prices, for ten trading
sessions or 'days'. The horizontal axis shows the day number, the
vertical axis indicates the transaction price.
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ment between results from our ZIP traders and Smith's
[21] observations of human subjects in his experimental
'retail markets'.
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Figure 6: Transaction-price
time series for one 'retail mar­
ket' experiment, seed=3453.

Figure 7: Transaction-price
time series for one 'retail mar­
ket' experiment, seed=3522.

Of these four single experiments, the price series in
Figure 6 most closely resembles that of Smith's subjects:
only three transactions occur at transaction price more
than a few cents above the eauilibrium Drice: while manv

3.5 3.5

3.0 3.0

2.5 "F'--;;....... 2.5

2.0 2.0

t+~
",....

1.5 1.5

1.0
0 10 12
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Figure 4: Mean transaction-,price per trading session, averaged
over 50 sets of results such as those shown in Figure 3. The hori­
zontal dashed line shows the Po value. For each trading 'day', the
graph shows the average value (black), and values plus (medium
gray) and minus (light gray) one standard deviation, of the mean
of the transaction prices in that day.

jectories: Figures 6 to 9 show time-series of the trans­
action prices in four individual experiments using ZIP

traders in the 'retail' market with supply and demand
as illustrated in Figure 2. As can be seen, in all four
experiments the market converges to a fairly constant
value for transaction prices by Day 4, but the value that
is converged on varies: in Figures 6 to 8, all trades on
Day 10 are within $0.15 of the theoretical equilibrium,
while in Figure 9 no trade is less than $0.40 off the equi­
librium price. As is clear i~ Figure 5, the price converged
on is, on average, significantly less than the theoretical
eauilibrium. Thus. ,i1thereis a strona: aualitative aa:ree-

Figure 8: Transaction-price
time series for one 'retail mar­
ket' experiment, seed=3553.

Figure 9: Transaction-price
time series for one 'retail mar­
ket' experiment, seed=3591.
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more occur at prices lower than equilibrium, which is ap­
proached very slowly, from below. Smith's explanation
was that this is due to early transactions at high prices
preceding a series of low-price transactions that induce a
resistance to higher prices in 'fleeced' traders. Whether
this explanation can apply to our ZIP traders requires a
more detailed examination of the dynamics of individual
experiments. Figure 10 shows text output from Day 1
of the market experiment shown in Figure 6: in the first
four transactions, sellers announce a price and one or
more buyers are willing to buy at that price (the buyer
who gets the deal is chosen at random from those that
are willing). In the fifth transaction, Seller 10 makes an
offer of $3.52 which is ignored by the buyers: Seller 9
then offers at $3.51; this is also ignored and Seller 9 of­
fers again at $3.50, which is again ignored; Seller 5 then
offers at $2.37, which is a'ccepted by Buyer O. For the
sixth transaction, there is a sequence of 33 ignored of­
fers, which ends when Seller 4 makes an offer of $2.12
(having previously offered $2.40, $2.22, and $2.16). For
the seventh, there are 49 ignored offers before Seller 3
finally drops the offer price to $2.07, and a deal is done.
In the bargaining for the eighth transaction of the day,
100 quotes fail to find a taker, and the first day ends.

The effects this sequence of accepted and ignored of­
fers has on the profit margins of the ZIP buyers and sell­
ers is illustrated in Figure 11, which shows the apparent
supply and demand curves and bid-and-offer arrays at
the start of Day 1 and at the start of Day 2. As can
be seen, the apparent supply and demand curves alter
significantly over the first day. For intra-marginal units,
the traders have increased their profit margins, flattening
the supply and demand curves and bringing them closer
together, thereby reducing the apparent surplus.· For
extra-marginal units, the traders have decreased their
profit margins, again lessening the distance between the
curves.

To better illustrate the alterations in the bid-and-offer
arrays between the two states shown in Figure 11, Fig­
ure 12 shows the temporal progression of the arrays af­
ter each transaction in Day 1. As can be seen from
the graphs labeled E to H, after four transactions the
apparent supply and demand curves do not intersect,
and so there is no theoretical equilibrium price or quan­
tity. This gives rise to the sequences of ignored quotes
illustrated in Figure 10 (5 before Figure 12E, 33 before
Figure 12F, 49 before Figure 12G, and 100 before Fig­
ure 12H), which in turn lead to alteration of the traders'
profit margins, thereby altering the apparent supply and
demand so that eventually an intersection does occur, af­
ter which a transaction can' take place. Typically, as soon
as the apparent supply and demand curves intersect, two
traders make a transaction and leave the market, and in
doing so they alter the apparent supply and demand back
to a state where no eauilibrium is indicated.
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day 1 trade 1
Seller 7 offers at 3.060 1 traders villing to deal
Seller 7 sells to Buyer 1

day 1 trade 2
Seller 2 offers at 1.790 5 traders villing to deal
Seller 2 sells to Buyer 3

day 1 trade 3
Seller 0 offers at 1.320 8 traders villing to deal
Seller 0 sells to Buyer 8

day 1 trade 4
Seller 1 offers at 1.750 6 traders villing to deal
Seller 1 sells to Buyer 6

day 1 trade 5
Seller 10 offers at 3.520 10 villing takers (fails=1)
Seller 9 offers at 3.510 10 villing takers (fails=2)
Seller 9 offers at 3.600 10 villing takers (fails=3)
Seller" 5 offers at 2.370 1 traders villing to deal
Seller 5 sells to Buyer 0

day 1 trade 6
Seller 3 offers at 2.210 10 villing takers (fails=l)
Seller 6 offers at 2.520 10 villing takers (fails=2)
Seller 6 offers at 2.530 10 villing takers (fails=3)
Seller 8 offers at 2.930 10 villing takers (fails=4)
Seller 10 offers at 3.350 10 willing takers (fails=5)
Seller 9 offers at 3.080 10 willing takers (fails=6)
Seller 8 offers at 2.820 10 villing takers (fails=7)
Seller 9 offers at 3.040 10 willing takers (fails=8)
Seller 9 offers at 3.010 10 villing takers (fails=9)
Seller 4 offers at 2.400 10 willing takers (fails=10)

Seller 4 offers at 2.220 10 villing takers (fails=15)

Seller 4 offers at 2.160 10 villing takers (fails=24)

Seller 8 offers at 2.780 10 willing takers (fails=32)
Seller 9 offers at 3.010 10 villing takers (fails=33)
Seller 4 offers at 2.120 1 traders villing to deal
Seller 4 sells to Buyer 4

day 1 trade 7
Seller 10 offers at 3.350 10 villing takers (fails=l)

Seller 8 offers at 2.780 10 willing takers (fails=49)
Seller 3 offers at 2.070 1 traders villing to deal
Seller 3 sells to Buyer 2 1.180)

day 1 trade 8

Seller 8 offers at 2.760 10 villing takers (fails=100)

Figure 10: Text output showing quotes and transactions for
Day 1 in the experiment of Figure 6. Much text has been deleted
to increase clarity.



10 12

10 12

10 12

10 12

Eq.Price=219 Eq.Q1n= 3 SurpkJl= 226

Eq.Price=240 Eq.Q1ant= 1 SurpkJl= S1

Eq.Price=<-> Eq.Q1M1t= 0 Surplup 0

Eq.Price=<-> Eq.Q11Ol= 0 Surplup 0

H

200

ISO

300

2SO

3SO

300

100

300

2SO

SO

o
12

o
10 12

100

SO

o
10 126

Qua.)'

Eq.Price=224 Eq.Qun= 4 Surplul= 349 Price

400

Eq.Price=216 Eq.Qun= 2 Surplul= 108 Price

400

3SO

Eq.Prico=<-> Eq.Q1n= 0 SurpkJs= 0 Price

400

Eq.Prico=<-> Eq.Q11Ol= 0 Surplls= 0 Price

400

3SO

3SO

2:50

Price

400

100

~

ISO

ISO

ISO

3SO

300

2:50

100

200

400

Price

400

200

100

ISO

2:50

Price

400

3SO

200

100

~

Figure 12: Temporal progression of bid-and-offer arrays for
days 1 to 2 in the price series shown in Figure 6. Each graph shows
the bid-and-offer arrays of the active traders after a transaction:
A is after the first transaction; B is after the second transaction;
And so on until H which is after the eighth (end of Day 1).
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Figure 11: Bid-and-offer arrays in the experiment of Figure 6.
Left: at the start of Day 1. Right: at the start of Day 2. Limit
and quote prices are indicated using the format introduced in [9]:
Each buyer's limit and quote prices are illustrated as dark inverted
triangles, while each seller's limit and quote prices are illustrated
by light upright triangles: the base of each triangle indicates the
trader's liInit price, while the apex indicates the trader's quote­
price. The array of bid-prices gives an apparent demand curve D,
and the array of offer-prices gives an apparent supply curve S.

Figure 13 shows the bid-and-offer arrays at the start
of each subsequent day in the experiment. As is clear,
although the rank ordering of the traders varies as they
alter their prices up or down by a few cents, there is very
little change in the overall shape of the bid-and-offer ar­
rays after Day 3. The fact that in this experiment the
market converges on transactions around $2.12 (Le., less
than the theoretical equilibrium price of $2.25) is consis­
tent with Smith's [21] results from his experiment with
human subjects, where transaction prices also converged
to a stable below-equilibrium level.

Thus, in addition to our demonstration in other publi­
cations [6, 7, 10, 11] that ZIP traders can give human-like
collective behavior in CDA markets, the results presented
here show that the dynamics and the modes of failure of
ZIP traders are also similar to those of humans in Smith's
[21] one-sided auction experimental model of retail mar­
kets. The implications of this are discussed further in
the next section.

To demonstrate that the difference in market organiza­
tion (i.e., the difference between the CDA and one-sided
'retail' auction rules) accounts for the differences seen in
the transaction-price data of the two markets, we close
this section with the data' in Figures 14 and 15. Both
of these figures show price data from markets where the
market organization is 'retail' for the first five days and
then switches to CDA for the remaining ten days. As can
be seen, once the market alters from retail to CDA, the
transaction prices of the ZIP traders rapidly approaches
the theoretical competitive equilibrium. Note that the
only change is in the market organization: all other pa­
rameters remain the same" and none of the trader's vari­
ables (e.g. Jli(t) or ri(t)) are altered when the organiza­
tion is changed. Clearly then, the market organization
is a Drimarv cause of the eauilibration failure.
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Figure 15: Mean transaction-price per trading session, averaged
over 50 sets of results such as those shown in Figure 14.

Finally, it is sobering to note that with synthetic adap­
tive agents it is possible to record all manner of signifi­
cant variables, both internal and external to the agent,
and to visualize them in styles such as those shown in
Figures 5 to 13. And this is from just one experiment,
which took less than five seconds to run on a medium­
power workstation (a Sun Sparc20). Clearly, hundreds
or thousands of experiments can be run with artificial
agents in the time it takes one experiment to be con­
ducted with human subjects. Indeed, with one work­
station, in one week it would be possible to run approxi­
mately 100,000 artificial-agent experiments: this is prob­
ably more experiments than have bee~ run with human
subjects in the entire history of experimental economics.
But this is not necessarily an advantasre: each exneri-
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ment has the potential to generate masses of data; man­
aging, visualizing, and analyzing the data to arrive at
meaningful conclusions could present serious problems,
and should be noted as a topic for further work.

4 Discussion

The similarity between olir ZIP results and those from
Smith's human subjects suggests a line of reasoning sim­
ilar to that underlying much adaptive behavior research.
This reasoning relies on noting that there is one key
difference between our results and Smith's. Smith was
working with human subjects, where there is a natu­
ral temptation to offer explanations in terms of men­
tal states. In the passage qu~ted above, Smith talks of
the human buyers "never 9uite recovering" from "having
been badly fleeced". It is not clear from the original text
whether this account is inventive conjecture on Smith's
part, or the result of properly conducted post-experiment
interviews. But even if these comments are the result
of interviewing those subjects who ended up as 'fleeced'
buyers, the danger of introspective a posteriori accounts
of behavior are well known.

The crucial difference then, between Smith's work with
humans and our work with ZIP traders, is that in the
ZIP traders there are no place for such mentalistic de­
scriptions of the behavior of the agents in the market.
There is nothing, not even an evolved neural network,
in which the ZIP agents could hide the mental states of
'never quite recovering' or noticing that they have been
'badly fleeced'. Any explanation of what causes the ZIP­

agent markets to approach equilibrium slowly and from
below is forced to be framed in terms of the interactions
of the simple ZIP adaptation mechanisms, because there
is nothing else in the system that could cause the observ­
able phenomena.! Let us assume that a causal mecha­
nistic explanation for how the collective behavior of ZIP

traders gives rise to some market-level phenomena can
be developed, and call it E. Then E can also be consid­
ered a candidate explanation for the behavior of groups
of human traders. Naturally, if it can be demonstrated
that the ZIP traders are lfsing adaptation mechanisms
that could not be employed or implemented by humans,
then £ is a very weak explanation, or no explanation
at all. But if such counter-arguments to E cannot be
readily advanced, & should properly be considered as a
putative explanation for the human behavior, which can
be subjected to experimental evaluation or falsification.
And, crucially, & cannot be phrased in terms of mental
or emotional states, because the ZIP traders have nothing
that corresponds to such states.

The failure of ZIP traders to converge on a competitive
equilibrium (Le., a steady sequence of transaction prices
at the Po value) in 'retail' markets is due simply to the

1 Assumin2'. of course. that the code for the sYstem has no bu2's.
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fact that although the buyer and seller-profit-margins are
altered symmetrically when in a CDA, the prevention of
bids in the one-sided 'retail' market introduces an asym­
metry: although the traders raise their margins under
symmetric conditions, an active buyer b lowers its margin
only when Q was accepted at a price q(t) ~ Pb(t), while
an active seller s will lower its margin when q(t) ~ P3 (t)
regardless of whether Q was accepted or not. In essence,
this demonstrates that, despite the good equilibration
properties of CDA markets where both buyers and sell­
ers are trading according to the ZIP strategy described
in Section 2, the asymmetry of opportunity sets (i.e.,
the prevention of bids) in the 'retail' market prevents
equilibration by ZIP traders because their trading strate­
gies depend on the bilateral flow of information found in
CDA markets. While it may be possible to alter the ZIP

strategies to give good equilibration in retail markets, or
even in both retail markets and CDA. markets, the key
issue here is that our explanation of ZIP traders' failure
to reach a competitive equilibrium is not reliant on them
having vague and difficult-to-define mental states such
as 'never quite recovering from being badly fleeced'.

By specifying and observing simple synthetic trading
agents, it is possible to demonstrate the same overall
market behavior without relying on abstract or vague
descriptions of the mental states of the participants in
the market. In this sense, the work" described here is
similar to other work in adaptive behavior that is jus­
tified by the principle that it can be more fruitful and
more parsimonious to attempt an understanding of how
some behavior is generated by synthesising an artificial
system that exhibits that behavior, rather than by ana­
lyzing a natural system that exhibits the same behavior:
a principle that Braitenberg [2] named the "law of uphill
analysis and downhill invention". Although it is often
difficult to resist the temptation to describe the cognitive
behaviors of animals (and humans in particular) in terms
of mental states, there is growing support for a counter­
approach, where the intention is to explain observed be­
haviors in terms of the dynamics of causal mechanistic
interactions, rendering the mental-states-based accounts
obsolete. These ideas first gained credence in the philos­
ophy of mind, where they are most strongly associated
with Churchland's eliminative materialism [3, 4], and
their relevance to work in artificial autonomous agents
has been discussed by Smithers [22], van Gelder & Port
[23, 19, 24], and Cliff & Noble [12]. Thus, our work here
can be viewed as a step in the direction of adopting an
eliminative materialism or dynamical systems perspec­
tive on human economic· activity.

So, we have demonstrated here that ZIP traders can
give results qualitatively similar to those of humans in
'retail market' experiments. In doing so, we have demon­
strated a point of more general significance: that tech­
niaues common in adaDtive behavior research can be



used to cast new lines of inquiry on the human experi­
mental economics data. Given that ZIP traders exhibit
human-like behavior and have no mental states, of how
much genuine use are mental states in the explanation
of human market behavior?

5 Conclusion

The development of computational mechanisms that al­
low groups" of software agents to exhibit bargaining be­
haviors in market-based environments satisfies a number
of needs... In market-based control, simple mechanisms
are required to give computationally efficient, robust,
and truly distributed resource allocation and control.
Such mechanisms could also be employed in the grow­
ing field of internet-based commerce. Moreover, such
mechanisms act as mechanistically rigorous statements
of potential models of human bargaining behaviors, al­
though it is likely that more complex mechanisms would
be required to further account for the many subtleties
and nuances of human behavior: empirical work in ex­
perimental economics and human psychology would also
be necessary to validate any models. Once validated,
such model agents could be used in the manner intended
in the work of Arthur [1] or Easley and Ledyard [14], for
conveniently testing theori,es concerning the behavior of
humans in different market structures and conditions.

The arguments we presented in earlier papers [6, 8, 9]
indicate a need for bargaining mechanisms more complex
than the constrained stochastic generation of bid and of­
fer prices used by Gode and Sunder's "zero-intelligence"
(ZI) traders [15]. The work on ZIP traders, reported here
and in other papers [6, 7, 10] should be viewed as a pre­
liminary sketch of what forms such bargaining mecha­
nisms might take. The Z'IP traders are more complex
than Gode and Sunder's ZI traders, but only slightly,
and in any case are manifestly much less complex than
humans. Nevertheless, the results from the ZIP traders,
both in terms of equilibration in CDA markets and fail­
ure to equilibrate in Smith's one-sided auction model of
retail markets, are clearly closer to those from human ex­
perimental markets than are the results from ZI traders.
It is reassuring to see that the ZIP mechanisms can give
such human-like results, but there is much further work
that could be done in exploring behavior of ZIP traders in
more complex market environments, and in attempting
to extend the behavioral sophistication of such traders
without unduly adding.to their complexity.
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