
FfI-.. HEWLETT
a:~ PACKARD

Distributed Workflow Managelllent:
The TEAM Model

Giacomo Piccinelli*
Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-98-56
March, 1998

E-mail: giapicC®hplb.hpl.hp.com

workflow,
process management,
distributed systems

In recent years, workflow systems have been the basis
for business-process re-engineering (BPR) but the
characteristics of processes are changing and new
types of problems need to be addressed. Different
organizations dynamically group together to support
complex projects requiring different competencies:
coordination is fundamental.

Focusing on the interaction among distinct
distributed PCEs (process-centered environments), we
present a network-based system for the definition and
enactment of federated (distributed) processes. The
distribution and multi-organization problems are
transparent to the process designer, who is provided
with a CSP-like process-definition language, while the
enactment infrastructure exploits the interconnection
capability offered by network technology in order to
support the cooperation among possibly-distributed
execution engines (workflow servers). The interface
between a local PCE (workflow client) and the related
execution engine depends on both the characteristics
of the PCE itself and the autonomy requirements of
each organization: fault tolerance and privacy are
some of the main issues we tackle.

*Contributions to this work came from F. Marcello and G. Zugliani (University of Pisa) and many
colleagues at Hewlett-Packard Laboratories Bristol.
© Copyright Hewlett-Packard Company 1998

Internal Accession Date Only



1 Introduction

The evolution of distributed objects technology [14,16,18] is having a big impact on both
the definition and enactment of processes in modem organizations. Software tools
become more complex and specialized but there is also a lot of emphasis on the
integration of different components into global environments [18,20], and then into
global processes [6,11,17,21]. Network technology, Internet in particular, offers an
unprecedented interconnection capability [12] and network-oriented object architectures
allows the creation of location-independent environments [4,19].
The resources needed to enact a single project (process) may come from different parts of
an organization and/or from different organizations: in any case cooperation and
coordination are crucial [1,2,3]. We refer to this multi-organization scenario asfederation
[3,5] and in this context we locate our work. Focusing on the coordination and
information exchange aspects, we present a system for the definition and enactment of
federated processes. After a brief overview of the more popular distributed objects
architectures we present and discuss both the abstract cooperation model (TEAM) at the
base of our system and its implementation. The process-definition language and the
different components of the overall enactment infrastructure are described and problems
related to integration with local environments and architecture deployment are discussed.

2 Distributed Object Architectures

Object model is having a huge impact on the engineering of software systems. The
component paradigm enforced by object abstraction is fundamental for the
modularization of applications but its impact on software architectures goes beyond the
boundaries of a single application. Object models like COM (Component Object Model)
by Microsoft [18], the OMA (Object Management Architecture) by OMG (Object
Management Group) [14] and Java RMI (Remote Methods Invocation) [16] enforce two
major aspects of an application: strong modularization (components) and location
transparency.
Although location transparency is quite important for application components, the big
impact of distributed object technologies on process-centered environments depends on
the "automation" [18] features they introduce. The mechanisms may be slightly different
but the result is the same: applications may "talk" with other applications. Meta
information is available to one application in order to understand dynamically how to
interact with other applications in terms of the services that can be requested and the type
of data to exchange. Extra layers are built on top of basic architectures (like OLE - object
linking and embedding - for COM or Common Facilities in the OMA [15]) and the
image an application offer of itself is more solution-oriented than technology-oriented.
In terms of the actual infrastructure we build to support the federation process, we focus
on Java: RMI basic services are then a natural choice. CORBA (OMA basic layer) and
OLE interaction is investigated and the actual situations in which integration is needed
are discussed.

2



3 Cooperation Model

The purpose of a cooperation process is to organize resources and know-how of different
organizations 1 in order to reach a common achievement. We use the term federation to
indicate both the set of entities involved in the process and the process itself [3,5]. The
term federation may suggest geographical distribution and/or low degree of homogeneity
among the members but these elements are not essential. The peculiar aspect of a
federation is that a pool of independent and autonomous organizations agrees on a
common process and the members share part of their resources and expertise in order to
enact such a process.
We propose a solution based on the paradigm of a common workspace. "Every
organization is associated with a part of this space called workspace component (Fig. 1)
representing its interface to the federation: the union of the workspace components
represents the federation workspace (Fig.2).
The main elements of the workspace component (W) are the task space, the object space
and the message space. The names give an indication on the kind of information we
expect to find in each part of a W but we need to think in terms of both federation
workspace and federated process in order to understand the dynamics of the system.
In its own object space, an organization puts data it needs to share with its partners and it

Task Space

Objects SpaceIMesSIlKe
Splice

Fig.1: Workspace component

can retrieve data produced by its partners and which are relevant for the tasks it has to
perform. Data are moved, replicated or deleted from the object space depending on the
federated process definition and following specific rules automatically enforced by the
federation infrastructure. An organization has immediate access only to the data inside its
own object space and these are the only data exposed to the federated process:
organization autonomy is preserved. Each organization shares all and only the data it
agreed to release and under the circumstances defined in the federated process. At the
same time each organization receives all and only the data it is entitled (requested) to
work on.
Both the content and the dynamics of the message space follow the schema of the object
space but the intended meaning of a message is different from the meaning of a piece of
data. While data (objects) are the result of an activity or row material to work on
("artifact" or "work item" in the common workflow terminology [10]), messages
represent information on the state of either the system or the process. They are intended
to be mainly a reference for the decisions concerning the flow of control during the
enactment of a process. As for the data in the object space, each organization has a view
of the federation state tightly dependent on the role it plays in the execution of the

IWe refer to a generic interpretation of the tenn organization indicating an autonomous and independent
entity [5,10].

3



federated process. It gives all and only the information on its own internal state that were
specified during the definition of the process and the same happens for the information
about other members of the federation.
The tasks an organization is requested to perform are related to atomic operations like the
execution of an activity or the manipulation (insert, withdraw, process) of data and
messages. All the tasks in W can be executed either in parallel or in any order the
organization prefers. When a task has been accomplished, the organization can mark it as
finished. The flow (control) logic within the overall process is transparent to the
federation members during the enactment phase, unless explicitly provided.

.. -_ ...........

......... ...,,
I,,
I
I,
I
I,
I
I,
I
I

-...... ......... ... -. ...

Organisation D

Organisation C

IFederation I

Organisation C

Organisation A

:----------------------------
I

I
I

I
J

I
I

I
\
\
\
\
\

" Organisation B
\
\
\
\
\
\
\
I
I
I

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
L

............ -. ...... _--------------------------

Fig. 2: Federation workspace

The purpose of a federation infrastructure is to manage the federation workspace in a way
that, at any time, each organization knows exactly what to do and has available the
resources it needs. The peculiar aspects of the cooperation model we propose are the
presence of a management entity and a structured common working space.
The management entity (ME) is independent from any single organization but it
cooperates with each member of the federation in order both to support the work of the
single member and to make sure each member does what it agreed to do in the process
definition phase. The management entity is trusted by all the components of the
federation and manages the entire federation workspace (FW) but it cannot interfere with
the internal mechanisms of any organization: autonomy is preserved. These choices are
reflected in the actual implementation of the federation infrastructure but an organization

4



is allowed to partially relax these constraints using proxy wrappers for its workspace
component with direct access to its resources.

3 Process Definition Language

The basic operations in a cooperative process are related to the exchange of artifacts, the
exchange of synchronization (control) information and the execution of activities related
to internal tasks or supporting the work of other members of the federation. The value
added by a process-based organization depends on the fact that atomic components may
be organized into complex activities (under the control of automatic systems) and the
organic execution of many basic steps produces global high-value results. The aspects of
a process related to the complexity of the s~ngle step need to be considered on a case-by
case base therefore we keep our system open to different options.

Push (OrgA, OrgB, Obj)

Pull (OrgA, OrgB, Obj)

Message (OrgA, OrgB, Msg)

Service (OrgA, OrgB, Srv, Obj)

Task (OrgX, Act)

Tab. 1: Basic Operations

In Tab.1 we present the basic operations that our PSL (process specification language)
provides for the definition of the federated process while in Tab.2-3 we list the
composition operators. The influence on the formalism coming from languages like
Hoare's CSP [9] and Milner's CCS [13] is quite strong but we explicitly target the
peculiarities of a federated process instead of working with generic distributed processes.
The actual semantic of the language has been formalized following an approach
(operational style) similar to the C-FAM (concurrent functional abstract machine) used
for FACILE [7]: the result is TEAM (teamwork enabler abstract machine). We first give
an intuitive description of the various elements in the formalism and then we present their
formalization in the TEAM framework.

5



3.1 Language Description

The point of view taken during the design of a process is the one of an impartial
coordinator that looks at the members of the federation as resources to organize in order
to achieve a specific result. An organization may supply (push) data to other
organizations and send them control information (messages) as well as asking (pull) for
data. An organization may be asked to perform a specific task related to an aspect of the
process it is immediately responsible for but, in order to support the central role of
cooperation in the federation, it may also be asked to help one of its partners (service).
The general semantic for a "service" implies that (1) an organization A receives some
data from the organization B, (2) A processes the data and then (3) it sends back the
result to B.

PI; P2 Sequential Composition

< PI & ... & Pn > Parallel Composition

(expr) [PI + ... + Pn] Choice Operator

Tab. 2: Composition Operators

Concerning the definition of complex processes out of the basic operations, the balance is
between expressiveness and complexity. In order to preserve expressiveness without
being redundant we focus on the three operators listed in Tab. 2 plus the possibility to'
encapsulate sub-processes into procedures (Tab. 3). Pi are generic ·processes and nil
represents a null process.

Label(Var! :T! ,.. ,VarN:Tn) { P} Procedure definition

Label(Vall,.. ,VaIN) Procedure call

Tab. 3: Procedures

All the definitions are recursive but we notice that they do not introduce loops. The
sequential operator ";" indicates that all the tasks in the process PI need to be completed
before starting any task indicated in P2: the overall process ends when P2 ends. The
parallel composition operator allows multiple execution threads within the process and
the resulting process ends when all Pi processes are completed. The purpose of the choice
operator is to choose one and only one process among the Pi depending on the state of the
federation. An expression is evaluated and we expect an integer result k in the range
[1 ,n]: only Pk is executed and when it ends, the overall process ends. If the condition is
not specified the choice is random. The scope of the conditional expression is the entire

6



federation workspace but only simple operations (like test of presence) are supported in
the present version of the system.
Procedures (Tab.3) are introduced mainly for modularization purposes but they also offer
the possibility to specify recursive process definitions (thus loops). All the procedure
definitions became part of a single execution environment and they may be accessed at
every point in the process: the environment is flat and at the moment we don't support
nested definitions. There is the possibility to define collections of procedures (libraries)
and the process designer may reuse these definitions during the specification of any
process. We enforce a "late" evaluation policy concerning procedure-call evaluation and
it is therefore possible to have simple as well as mutual recursion in the definitions.
Procedure mechanisms allow the definition of module skeletons focused on specific
aspects of the cooperation process.

3.2 Formal Specification

The fonnal semantic of the process-specification language is given (operational style) in
tenns of the state evolution of a TEAM (teamwork enabler abstract machine). A TEAM
represents the abstraction of a federation infrastructure in which the cooperation
paradigm is the federation workspace (Fig. 2) and the actual federated process is
managed putting specific data and control information in the workspace component
associated to each organization. The order in which infonnation flows in the workspace
components depends on the synchronization constraints specified in the process.
A (T, 0, M) triple models a workspace component and the state of the abstract machine is
composed by a set of these triples, one for each organization. The expected actions
associated to the tasks posted in the T field are quire intuitive while some explanations
are necessary to clarify the modeling of user (peE) interaction.

Task accomplished:

{ ... (T u {-r}, 0, M) ... }:: ~

{ ... (T u {-r*}., 0, M) ... }:: ~

{ ... (T u {t*}, 0, M) ... }:: ~

{ ... (T u {-rl\}, 0, M) ... } :: ~

The fact that the user notify the system about the accomplishment of a task is modelled
through the (non-deterministic) possibility to mark it (*) in the task space. In the same
way, the system may want to perform some actions (ex. controls) before actually
considering the task completed and when the revision process ends the mark on the task
is changed into (I'').

Push:

{(TA u {putObj (d)}, OA, MA) ••• (TB, OB, MB)}:: Push (A, B, d)

7



{(TA, OA, MA) ... (TB u {getObj (d)}, OB U {d}, MB)}:: Push (A, B, d)

Pull:

{(TA , OA, MA) ... (TB, OB, MB)}:: Pull (A, B, d)

{(TA , OA, MA) ••• (Tau {putObj (d)}, OB, MB)}:: Pull (A, B, d)

{(TA, OA, MA) ... (TB u {putObj (d)"'} , OB u {d}, MB)}:: Pull (A, B, d)

{(TAu {getObj (d)}, OA u {d}, MA) ... (TB, OB, MB)}:: Pull (A, B, d)

Push and pull semantics is quite immediate. We ask the owner of the object to put
(putObj) it into the object space of its workspace component (W), we move the object
into the W of the receiver organisation and we then ask this organisation to collect it. For
the message exchange the procedure is similar but we use the message space in W.

Message:

{(TA, OA, MA) ••• (TB, OB, MB)}:: Message (A, B, m)

{(TA u {putMsg (m)}, OA, MA) ... (TB, OB, MB)}:: Message (A, B, m)

{(TAU {putMsg(m)"}, OA, MAU {m}) ... (TB, OB, MB)}:: Message (A, B, m)

{(TA, OA, MA) ..• (TBu {getMsg(m)}, OB, MBU {m})}:: Message (A, B, m)

{(TA, OA, MA) ••. (TBu {getMsg (m)'"'} , OB, MB u {m})}:: Message (A, B, m)

8



Task:

{ ... (TAu {exec (t)}, OA, MA) ... }:: Task (A, t)

{... (TA u {exec (ty'} , OA, MA) ..• }:: Task (A, t)

Tasks are also quite immediate while services need more attention. The crucial point is
that we use the same object to carry both the data to be processed (if any) and the result
of the processing activity (if any). When an organisation is requested to offer a service, it
can find the data to work on in its W while the organisation that asked for the service can
find the result in the same container in which it putted the original data.

Service:

{(TA, OA, MA) •.• (TB, OB, MB)}:: Service (A, B, s, d)

Concerning the procedure call, the set of typed variable {Vi}. may be empty and P is a
generic process definition in which the variables may occur (free or bounded): the
procedure acts as a scope binder. We assume standard rules for variable instantiation but
we require that, when a procedure call is evaluated, values of the correct type are
provided for all the variables. The types we allow for variables are: org (organization),
msg (message), obj (object), act (activity/task) and srv (service).

9



Procedure Call:

Label eVall, .. ,VaIN)

P {VarlNall} ... {VarNNaIN}

Where - Label (Varl, ... , VarN) { P} - is in the definition environment.

In the rule for the sequential operator we model the fact that the left operand (P) has to be
executed first and the right operand eQ) is considered only when P is completed.

Sequential: .

S :: P => S' :: P'

S :: P ; Q=> S' :: P'; Q

S :: nil ; Q=> S :: Q

The semantics of choice operator introduces the Eval function we need to evaluate the
condition (cond). We expect an integer result k in the range [I,n] and only the process Pk

will be executed.

Choice:

Eval (cond) = i i E{l .0 n}

S :: (cond)[PI, ... ,Pn] => S :: Pi

The parallel operator introduces the consistency problem for multiple actions on the same
environment. The solution we adopted is to associate a copy of the original environment
to each process and to let them evolve independently. All the threads are completely
autonomous and they can evolve either in a truly concurrent or in an interleaved way. The
parallel operator is completed when all the threads are completed and the final state of the
system derives from the merge of the final state of all the threads.

Parallel:

«S::P1& ... & S::Pn »

10



«Sl::nil & ... & Sn:: nil» => StU ... U Sn :: nil

3.3 Example

As an example of a very simple but very reusable procedure, we present a possible
definition for the basic interaction model used in the PSEE Oz: the summit [5]. The first
step in a summit is to arrange for all the participants to be ready to start, then a
cooperative activity takes place and the final step is to provide indications to the
participants on what to do after the core activity is finished.

OpenSummitWith(X:org, Y:org, Z:org){

Task(X, "summit initialisation");
< message(X, Y, "begin summit");

Task(Y,"start");
message(Y, X, "I-ready")

&
message(X, Z,·"begin summit");
Task(Z,"start");
message(Z, X, "2-ready")

>

CloseSummitWIth(X:org, Y:org, Z:org, res:obj){

< pull(X, Y, res);
message(X, Y, " 1end summit")

&
pull(X, Z, res);
message(X, Z, "2 end summit")

>

CentralizedProcessing(X:org, Y:org, A:act, O:obj){

pull(X, Y, obj);
message(X, Y, "thanks");
Task(X ,act)
}

Fig.3: Library procedures

Let us suppose to have in our library the three procedures represented in (Fig. 3) and that
the core activity of the summit is to make organization A processing tables coming from
the organizations B - C, and then to share with them the result. We can define the overall
summit process as:

11



MySummitWith (Memberl :org, Member2: org, Task:act){

<OpenSummit (A, Memberl, Member2) & Task(A, start_operation»;
<

CentralizedProcesing (A, Member!, Task, tablel)
&

CentralizedProcesing (A, Member2, Task, table 1)
>;
Task(A, join_table-processing_results);

CloseSummit (A, Memberl, Member2, result);
}

The actual execution of the process may be triggered by a call like:

MySummitWith(B, C, FindMax)

As we can see, procedures encourage process reuse but they are also a fundamental
modularization tool.

4 Federation Infrastructure

Main components of the support infrastructure are the compiler, the enactment engine(s)
and the interface wrappers.

4.1 Compiler

The purpose of the compiler is, starting from a single process definition, to extract
information about the role of each organization in the process. In terms of cooperation,
there are two main aspects we need to identify and they are related to: (1) the activities an
organization has to perfonn and (2) the way in which activities performed by different
organizations (or multiple activities within an organization) are synchronized.
The definition language enforces the point of view of an independent manager who wants
to coordinate the work of different resources (the organizations) in order to achieve a
specific result. This approach allows compact and easily understandable process
definitions but for the actual enactment of the processes we take a completely opposite
approach. The impact of this choice on the flexibility of the overall infrastructure will be
clear looking at the enactment architecture.
For each organization we build a version Vorg of the federated process that contains the
specification of all and only the tasks the organization is requested to do and the
synchronization points it has to maintain with respect to its partners. Without going into
all the details of the specific compilation techniques, we focus on some of their crucial
aspects. Basic operations are easy to map into Vorg while the synchronization problems
come with the composition operators. In this version of the system we do not allow

12



higher-order procedures, that means the parameters of procedure cannot be other
procedures, so their mapping is quite linear. The problem we have, for example with
sequential composition, is pictured in the following example:

< A(xx) & B(xx) > ; < A(yy) & B(yy) >

If xx is completed in A but B is still working on it, A has to wait until also B completes xx
before starting yy: if B is faster than A the situation is the same. The compiler manages
these situations with specific solutions that assure the intended semantic of the operators
is preserved. Because each organization needs to be sure that all its partners will conform
their behavior to the same set of rules, symmetry is fundamental.
This organization-centric approach allows a modular structure for the enactment
infrastructure with major benefits also in terms of autonomy and security as well as fault
tolerance. An organization may follow its own process independently from other
members of the federation (autonomy) unless explicit synchronization points are
specified. Benefits from a fault tolerance perspective derive from the autonomy of the
organizations: if an organization experiences (temporary) problems its partners may not
be affected.

4.2 Enactment Engines

The enactment paradigm has strong dependencies with both the cooperation model and
the compiler techniques presented in the previous sections. In the actual enactment
infrastructure we distinguish three main components (Fig. 4): workspace components
(W), engines (E) and the interconnection support.
Focusing on a single organization, the engine has complete access to the workspace
component and it can also communicate with other engines but, in a normal situation, it
cannot interact directly with any peE. Each engine Ex enacts the projection Px of the
federated process produced by the compiler for the organization X: its main job is related
to messages and data management, task posting and synchronization. Also for the engine
implementation, the complexity is concentrated in the support for multiple execution
threads, sequential integrity and choice-step consistency.
Choice-step consistency problems, for example, depends on the fact that if a path (Pi) is
chosen (choice operator) for one of the projections of the global process, we need to
follow the same path in the enactment of all other projections. Major issue is that we
allow different execution speeds in different organizations. In order not to introduce
implicit synchronization points (with solutions like waiting for all the organization
involved in the choice to reach the evaluation point), specific solutions need to be
enforced both in the engine and in the compiler.

13



PCEK

_... -- ....

,
I
I
I,
I
I,,
I
I

J

, PCEJ
I

I,
I

I,,,,
I

I

" Federation
I

I, ....--.....

... --

"., .... ....

" .......' .... -.. .- ..

,--------,,
I,,

I,
I

/

"".... "

-.. -
~- .. ,

PCEA

PCEC

I
I

I
J,,

I
I,,,,,

\ ,
\,
I
I
I,,,

\
\,

\
\,

\
\,

\

Fig. 4: Enactment Infrastructure

4.3 peE Interface

The logic interface an organization has to the federation is provided by its workspace
component. 'In practice the PCE of an organization needs a bridge to W in order: (1) to
put and get messages and data and (2) to access the indications on the tasks it has. to
perform. W is mainly a container for data and information, and the bridge to the PCE
depends on the level of automation it enforces. In our investigation we focused on two
extremes (full automation and pure presentation) but solutions in between are also
possible. Concerning the technology, we focused on Java and Corba though OLE is also
under investigation.
We can consider, for example, the case of full automation based on Java. The wrapper
uses an event-based mechanism in order to receive a notification every time the engine
posts a new task in W. A one-to-one association between tasks and objects is established
so that as soon as a task is posted the correspondent method is activated. The association
of a task to a structured set of methods invocations is not directly supported but this
limitation can be bypassed using a proxy method whose body contains the desired
invocation sequences. In order to put data or messages into the workspace component the
PCE can invoke specific methods of the wrapper API.

14



5 Deployment

Deployment considerations had a big impact on the actual implementation of the
enactment infrastructure and flexibility was our main reference.

max+-------t--------.,

•

• I
I
I
I
I
I
I

--------~----------I
I
I
I
I
I
I

min Information Distribution max

"Fig. 5: Deployment of federation infrastructures

Looking at the problem of where to deploy the various components of the federation
infrastructure associated to both information and process management, we notice (Fig. 5)
that there is a tendency [2,3,5] to associate data with process logic. Alternative
approaches have been investigated [8] but we decided that, given the dynamic
characteristics of a federation context, the ability of our infrastructure to adapt to different
situations without being re-engineered was a major goal.
The main components of the physical architecture (engines, workspace components and
wrappers) are built on top of Java RMI infrastructure and they can be deployed following
the distribution pattern that better suits the configuration of the federation.

6 Conclusions

Distributed object architectures (DCOM, CORBA, Java RMI) coupled with Internet and
Intranet technology have a great impact on process-centered environments and distributed
workflow management, both in terms of connectivity and applications automation. As
projects become more complex they may span over different organizations and/or
different parts of an organization and the coordination need of different peE (federation)
is the target of our work.
We present a complete infrastructure supporting federated workflow starting from the
definition of the process to its actual enactment. Few basic operators and the possibility
to build high-level modules are the design environment we provide while the enactment
environment is based on a distribution-oriented compiler and a RMI (Java) based
infrastructure. The TEAM (teamwork enabler abstract machine) abstraction is used to
model the system and to specify the process semantics.

15



Bibliography

[1] S. Bandinelli, E. Di Nitto and A. Fuggetta. Supporting cooperation in the
SPADE-1 environment. In IEEE Transactions on Software Engineering} Vol. 22,
no. 12, December 1996.

[2] N.S. Barghouti. Supporting cooperation in the Marvel process-centered SDE. In
Fifth ACM SIGSOFT Symposium on Software Development Environments.
Herbert Weber (ed.), 1992.

[3] C. Basile, S. Calanna, E. Di Nitto, A. Fuggetta and M.Gemo. Mechanisms and
policies for federated PSEEs: basic concepts and open issues. In Proc. 5th

Europeen Workshop on Software Process Technology. Nancy, France, 1996.

[4] I.Z. Ben-Shaul, A. Cohen, O. Holder and B. Lavva. HADAS: A Network-centric
framework for interoperability programming. In Proc 2nd Inter. Conference on
Cooperative Information Systems. June 1997.

[5] I.Z. Ben-Shaul and G.E. Kaiser. Federating process-centered environments: the
Oz experience. In Automated Software Engineering, Vol. 5. Kluwer Academic
Publisher, 1998.

[6] I.Z. Ben-Shaul and G.E. Kaiser. Integrating groupware activities into workflow
management. In Proc. 7 th Israeli Conference on Computer Based Systems and
Software Engineering. June 1996.

[7] A. Giacalone, P. Mishra and S. Prasad. FACILE: A symmetric integration of
concurrent and functional programming. In Proc. ofT~PSOFT'89, Vol.2. Lecture
Notes in Computer Science (LNCS 352). Springer-Verlag, 1989.

[8] D. Heimbigner. The Process Wall: a process state server approach to process
programing. In Proc. 5th SIGSOFT Symposium on Software Development
Environments. ACM Press, December 1992.

[9] C.A.R. Hoare. Communicating Sequential Processes. Series in Computer Science.
Prentice-Hall, 1985.

[10] D. Hollingsworth. The workflow reference model. Workflow Management
Coalition (WfMC), TCOO-I003, November 1994.

[11] N. Krishnakumar and A. Sheth. Managing heterogeneous multi-system task to
support enterprise-wide operations. In Distributed and Parallel Databases.
Kuwler Academic Publishers, 1995.

16



[12] J. Miller, A. Sheth, K. Kochout and D. Palaniswami. The future of Web-based
workflow. In Proc. of the International Workshop on Research Directions in
Process Technology. Nancy, France, July 1997.

[13] R. Milner. A calculus of communicating systems. Lecture Notes in computer
Science Vol. 32. Springer-Verlag, 1980.

[14] Object Management Group (OMG). A discussion of the object management
architecture. January 1997.

[15] Object Management Group (OMG). CORBA facilities: common facilities
architecture V4.0. November 1995.

[16] R. Orfali and D. Harkey. Client/Server programing with Java and CORBA. Wiley
Computer Publishing, 1997.

[17] M. Rusinkiewicz and A. Sheth. Specification and execution of transactional
workflows. In Modern Database Systems: the Object Model Interoperability and
Beyond ACM Press and Addison-Wesley, 1995.

[18] Creating Programmable Applications with OLE Automation. Vol. 1 and 2.
Microsoft Press, 1994.

[19] A. Sheth, D. Georgakopulos, S. Joosten, M. Rusinkiewicz, ·W. Scacchi, J.
Wileden and A. Wolf. Report from the NSF workshop on workflow and process
automation in information systems. In Proc. NSF workshop on workflow and
process automation in information systems: state-of-the-art andfuture directions.
A. Sheth (ed.), May 1996.

[20] K.D. Swenson and K. Irwin. Workflow technology: tradeoffs for Business
Process Reengineering. In Proc. Conference on Organizational Computing
Sysyetms. ACM Press, August 1995.

[21] G. Valetto and G.E. Kaiser. Enveloping sophisticated tools into process-centered
environments. In Proc. 7th IEEE International Workshop on CASE. IEEE
Computer Society Press, 1995.

17




