
Worth-Based Multi-Category
Quality-of-Service Negotiation
in Distributed Object Infrastructures

Jari Koistinen, Aparna Seetharaman
Software Technology Laboratory
HPL-98-51 (R.1)
July, 1998

E-mail: [jari,aparna]@hpl.hp.com

quality-of-service,
negotiation,
agents,
distributed
object systems

Quality-of-Service (QoS) encompasses a wide range of non-
functional characteristics, including reliability, security, and
performance and is becoming increasingly important in business-
critical distributed systems.  Such systems are increasingly
deployed in open networks, such as the Internet, where resource
allocation and load varies highly.  To provide useful functionality
and meet QoS requirements in such an environment, systems need
to be able to dynamically (re)configure and adapt to changing QoS
conditions.
This paper describes a model for a QoS negotiation mechanism.
The model allows clients and servers in distributed object systems
to negotiate for QoS agreements involving multiple QoS categories,
such as performance, reliability, security, etc.  The model includes
both a protocol that enables agents to negotiate and a technique for
calculating the worth of alternatives.  The protocol handles
negotiations involving multiple offers and counter offers.  It
evaluates an offer based on the absolute requirements for QoS
levels and their relative worth to the negotiating systems.  The
protocol and the worth calculations are key features of a general
purpose QoS negotiation that involves simultaneous negotiation
over multiple QoS categories.  We describe how negotiating
applications communicate and evaluate offers.  In addition, we
describe the functions the negotiation mechanism requires from its
environment.  The protocol has been formally specified and
simulated.  We are currently investigating implementation
approaches and prototypes for the full as well as simplified versions
of the described model.

  Copyright Hewlett-Packard Company 1998

Internal Accession Date Only



Worth-Based Multi-Category Quality-of-Service Negotiation

in Distributed Object Infrastructures

Jari Koistinen

Hewlett-Packard Laboratories, jari@hpl.hp.com

Aparna Seetharaman

Hewlett-Packard Laboratories, aparna@hpl.hp.com

Keywords: quality of service, distributed object systems, negotiation, agents

Quality-of-Service (QoS) encompasses a wide range of
non-functional characteristics, including reliability, security,
and performance and is becoming increasingly important
in business-critical distributed systems. Such systems are
increasingly deployed in open networks, such as the Inter-
net, where resource allocation and load varies highly. To
provide useful functionality and meet QoS requirements in
such an environment, systems need to be able to dynami-
cally (re)con�gure and adapt to changing QoS conditions.

This paper describes a model for a QoS negotiation
mechanism. The model allows clients and servers in dis-
tributed object systems to negotiate for QoS agreements
involving multiple QoS categories, such as performance, re-
liability, security, etc. The model includes both a protocol
that enables agents to negotiate and a technique for cal-
culating the worth of alternatives. The protocol handles
negotiations involving multiple o�ers and counter o�ers.
It evaluates an o�er based on the absolute requirements
for QoS levels and their relative worth to the negotiat-
ing systems. The protocol and the worth calculations are
key features of a general purpose QoS negotiation that
involves simultaneous negotiation over multiple QoS cate-
gories. We describe how negotiating applications commu-
nicate and evaluate o�ers. In addition, we describe the
functions the negotiation mechanism requires from its en-
vironment. The protocol has been formally speci�ed and
simulated. We are currently investigating implementation
approaches and prototypes for the full as well as simpli�ed
versions of the described model.

1. Introduction

1.1 Background

We use the term Quality-of-Service (QoS) to denote

various non-functional characteristics, such as reliabil-

ity, performance, security, etc. Quality-of-Service has

become a di�erentiating factor for distributed applica-

c
 1998 Hewlett-Packard Company.

tions and systems. Enterprises are increasingly depen-

dent on the e�ectiveness of distributed systems for their

businesses and daily operations. In addition, systems

are more frequently deployed in open network environ-

ments, such as the Internet, that cannot be controlled

and that have constantly varying levels of QoS. Workers

are increasingly mobile, perform their work from many

di�erent network connection points and expect the ap-

plications to handle the varying levels of QoS accord-

ingly. These are some of the reasons why applications

and systems must be able to adapt to changing QoS

levels. We also expect systems to be deployed under

widely varying QoS conditions. Such systems must also

be able to provide reduced services when ideal QoS con-

ditions are not met.

The increased attention on QoS and the variability

of open, mobile, dynamic systems suggest that systems

must be able to adapt dynamically to changing QoS

conditions and end-user requirements. To adapt, an

application should explore the services in its environ-

ment and determine the levels of QoS it can expect and

thereby provide. It must also agree upon the levels of

QoS with the servers that it uses and the clients that

use it. Such agreements may be negotiated dynamically

and take into account many di�erent QoS aspects such

as reliability, performance, security etc. We use the

term category generally for QoS aspects such as per-

formance, reliability, or security. Categories typically

consist of multiple dimensions. A dimension represents

a quantitative or qualitative attribute of a category. For

example, we could characterize reliability as a category

in terms of dimensions, such as time-to-failure, avail-

ability, failure masking, etc.

Sometimes adaptation and dynamic con�guration is

a matter of prioritizing speci�c end-users and their re-

quests. In other situations we may wish to give one

QoS Negotiation, 1998



QoS category (such as performance) higher weight than

another (such as reliability) depending on the user re-

quirements and changes in the environment.

In our view, dynamic negotiation is one key element

to dynamic con�guration and adaptation. By negotia-

tion we mean two or more distributed agents that try to

reach an agreement on the quality-of-service that they

will attempt to provide to each other. The negotia-

tion mechanism we propose is performed dynamically

as the system executes. The agents communicate their

requirements and their provisions. If they agree, they

are said to reach a deal and can continue with the ser-

vice. Dynamic negotiation allows systems to adapt to

changing conditions and to operate with di�erent QoS

levels depending on the resources and the QoS available.

QoS negotiation is essential if we wish to build evolvable

and robust systems that meet the QoS requirements for

open networks.

Traditionally, QoS negotiation has been limited to

speci�c domains such as multi-media. Such systems

commonly consider only a prede�ned set of attributes

and often only a limited and predetermined set of al-

ternative transports. We believe that a more general

approach to QoS negotiation must be taken to allow

adaptation with respect to the wide range of QoS cate-

gories encountered in open distributed systems. Thus,

we are concerned with multi-category negotiation.

Negotiation is commonly centered around �nding ac-

ceptable constraints for speci�c dimensions such as de-

lay or jitter. Although we consider such constraints

essential, we also recognize the need for a more gen-

eral approach in multi-category negotiation. More

speci�cally, we apply worth|sometimes called utility|

calculation in addition to satisfying conventional con-

straints. Worth allows agents to weigh the characteris-

tics of di�erent categories and thereby more accurately

guide the negotiation process. As noted by Rosenschein

and Zlotkin [16], worth-based negotiation enables agree-

ments in situations where goals are only partially satis-

�ed. Hence, we say that we address worth-based multi-

category negotiation.

In addition, our approach di�ers from most other

approaches in that we focus on QoS for operation invo-

cations rather than for data streams.

1.2 Functional and Architectural Context

We consider a QoS agreement as having a life-cycle

of essentially three steps: negotiate, execute, and termi-

nate. During the negotiation|the focus of this paper|

the negotiating parties either establish a deal, or agree

that there will be no deal. If there is a deal, subse-

quent communication can be performed in the context

of the deal. A deal can be time-limited or event-limited

or a combination of both. A time-limited deal could

last, for example, for 60 seconds, while an event-limited

deal can span for 20 invocations of an operation. When

communication is performed using the deal, we say that

the deal is executed. Finally, when the deal ends, it

will be terminated. The termination step involves an

agreement that the deal is terminated and a decision

on whether the deal was successfully executed or not.

Loosely, we say that a deal was successfully executed if

the involved parties each think that the other parties

kept their end of the deal. If this is not the case, a

means for �nding the party responsible for the broken

deal and �nding suitable compensation for the other

parties is required. In this paper, we focus on the nego-

tiation stage although we occasionally refer to the other

stages of QoS agreements.

The negotiation mechanism is the software compo-

nent that accepts requirements and o�ers as input, ne-

gotiates with its peer and delivers a deal or con
ict deal.

Figure 1 shows how the QoS mechanisms �ts into a

communication infrastructure such as an object request

broker. The application uses the infrastructure to cre-

ate and obtain remote object references, as well as to

invoke operations on remote objects. We extend infras-

tructure interfaces to include QoS capabilities, such as

support for negotiation.

We roughly identify three layers in the infrastructure:

Request Dispatcher, QoS Components, and Transports.

The Request Dispatcher is a mechanism that allows ap-

plications to handle references and to invoke operations

on objects in remote processes. The QoS Component

layer contains various QoS components such as negoti-

ation mechanisms, monitoring, etc. Finally, the Trans-

port layer implements transport mechanisms with vari-

ous QoS characteristics, such as varying reliability, se-

curity, performance etc. Concretely, we can view the

Request Dispatcher and Transport layers as jointly cor-

responding to a CORBA Object Request Broker.

Monitoring Negotiation Policing

Transports

Request Dispatcher

Application
(1)

(2)

(3)

(4)

FIG. 1. QoS Enabled Infrastructure

The important interfaces in the architecture are as
numbered in Figure 1.

� (1) represents the QoS speci�cation provided to

the applications.

� (2) is the interface between the application and the

infrastructure. It allows applications to invoke and

receive operations from other applications. It also

2 QoS Negotiation|1998



allows applications to specify the QoS they provide

and require as well as to initiate negotiations and

associate deals with individual invocations.

� (3) is the infrastructure's internal interface be-

tween the dispatcher and the QoS components.

� (4) represents the interface that transports must

provide to QoS components to enable �ltering of

QoS speci�cations. We will collectively call (3) and

(4) the QoS Abstraction Layer (QAL).

1.3 QoS Negotiation

We use the term agent generically for both server

and client applications with negotiation capability. We

assume that the interfaces for agents are de�ned in in-

terface de�nition languages such as CORBA IDL [18]

or Microsoft MIDL [8].

We use the term constraint pro�le, or just pro�le, for

a QoS speci�cation of a CORBA or DCOM agent. Sec-

tion 1.5 describes a QoS Modeling Language, QML [6],

the language we use for such speci�cations. We use

the term server pro�le for the QoS characterization of

a server and client pro�le for the characterization of a

client.
By QoS negotiation we mean the processes used by a

client and a server to reach an agreement on QoS char-
acteristics for their services considering their expected
load, network characteristics and other in
uential fac-
tors. Rosenschein and Zlotkin [16] de�ne automated
negotiation generally as:

the process of several agents searching for an

agreement. Agreement can be about price,

about military arrangements, about meeting

place, about joint action, or about joint objec-

tive. The search process may involve the ex-

change of information, the relaxation of initial

goals, mutual concession, lies, or threats.

The negotiation mechanism proposed in this paper is

restricted to two negotiating agents where one has the

role of a client and the other has the role of a server. We

assume that the syntactic and semantic characteristics

of the associated services are known and agreed upon.

QoS negotiation is necessary for applications to adapt

to environments in which resource availability and load

varies. In addition, negotiation enables one system to

be deployed in environments with di�erent QoS char-

acteristics and therefore enables wider deployment of

applications. Negotiation also allows a single server to

meet di�erent client QoS requirements.

Although, we view a negotiation as ending in one spe-

ci�c agreement, the agreement might need to be �ltered

to re
ect the requirements of the client and server more

appropriately. For example, when we negotiate for a

speci�c performance, we must allow transports to �lter

the agreement accordingly. The client view of the agree-

ment may state a delay of 100 ms, but the estimated

network delay may restrict the actual server execution

to a delay of 30 ms. In other cases, such as quality

of data, the negotiation can be transport-independent

and solely dependent on the capabilities of the server.

There is often a direct dependency between an agree-

ment and a transport mechanism. Although this depen-

dency must be handled in a negotiation-enabled com-

munications infrastructure, we consider it outside the

scope of this paper.

Dynamic negotiation and subsequent interactions go

through the stages described below. Observe that the

numbers do not de�ne an ordering, rather many of the

stages can be performed in parallel:

1. The server application starts up and registers pos-

sible QoS o�ers that it can provide and the require-

ments that it must impose on clients to guarantee.

2. The server also registers with a service that allows

clients to discover the reference to an object con-

tained in the server.

3. A client application constructs a description of the

QoS it will require (server pro�le) for proper oper-

ation and its own expected QoS (client pro�le).

4. The client describes the worth (worth pro�le) of dif-

ferent QoS levels within the bounds of its absolute

requirements. Note that in the current model, the

client does not share either its worth pro�le or its

server pro�le with the server.

5. The client �nds a server providing the appropriate

functional characteristics (interface) and requests a

QoS negotiation.

6. The negotiation components of the client and the

server negotiate which results in a deal or a con
ict

deal.

7. If there is a deal, the client issues requests to the

server and associates a deal with each request.

Monitoring components on the client and server

sides checks the agreement for compliance. If none,

the applications are noti�ed about the problem and

asked to either cancel, renegotiate or ignore.

8. When the deal has expired, the parties agree upon

whether the deal was successfully executed.

There are many possible variations of negotiation.

Sometimes requirements are determined statically. In

other cases, the client application and possibly the

server application are unaware of any ongoing negoti-

ations because the negotiations have been initiated by

an external management agent. In the case of broken

deals, there are also many di�erent possibilities such

as renegotiation, adaptation or penalties. This paper

focuses on steps 3|6 described above.

1.4 Assumptions and Demarcations

In our negotiation model we make the following as-

sumptions and restrictions.

QoS Negotiation|1998 3



Firstly, we consider only a single client negotiating

with a single server with respect to a single syntactic

interface. A negotiation involving multiple clients and

servers requires generalizations or extensions of the de-

scribed model and is the subject for future papers.

Secondly, we do not incorporate the trustworthiness

of an agent. Trust a�ects the willingness of agents in

establishing deals with each other and should be part

of the negotiation model. Incorporating trust into the

negotiation model requires the use of mechanisms for

establishing and verifying trust. We consider a deeper

treatment of trust to be outside the scope of this paper.

Thirdly, two negotiating agents keep their worth pro-

�les private. While the server publishes its constraint

pro�le and its restrictions on the client, the client pro-

�le, the client only shares its own client pro�le with the

server and nothing else. The client keeps its constraint

pro�le and its worth pro�le private so that the server

does not doctor its constraint pro�le with such knowl-

edge.

Fourthly, we do not consider the performance impli-

cations of a negotiation. Such implications are impor-

tant when the negotiation consumes a signi�cant frac-

tion of the total deal execution time. Thus, when we

negotiate short deals, such as for individual calls, per-

formance may be an issue. However, for deals that last

longer, we assume that the performance is acceptable.

Fifthly, for time-limited deals, we assume that the

deal is speci�ed only in time periods and not in absolute

times. Even with this simpli�cation, we need time that

is su�ciently accurate and synchronized to satisfy all

involved parties.

Finally, a server makes o�ers based on its own esti-

mates of how many simultaneous deals it will need to

support. If the number of deals exceeds this number,

the server needs to handle the situation by, for example,

refusing new deals or canceling other low priority deals

and paying the penalty for doing so.

1.5 QoS Speci�cations

The negotiation mechanism requires that we can ex-

press the QoS characteristics for an interface. We use

the QML [6, 7] language that has been developed for

precisely that purpose. QML allows the de�nition of

contract types that generally correspond to categories.

A contract type de�nes a set of dimensions, each with

a sort and a semantic declaration. A contract is an in-

stance of a contract type and de�nes a speci�c QoS

characterization in terms of constraints or statistical

characterizations for a subset of the dimensions de�ned

in the corresponding contract type. A QML pro�le as-

sociates contracts with various interfaces elements, such

as operations.

Figure 2 shows examples of QML contract types, con-

tracts, and a pro�le. It contains two contract types

( Reliability and Performance) and a contract that is

an instantiation of the Reliability type. We also de�ne

a pro�le called myServerPro�le for an interface called

myInterface. We assume that myInterface has two op-

erations: operationOne and operationTwo. The pro�le

associates a default reliability contract for both opera-

tions and individual performance contracts.

type Reliability = contract f
numberOfFailures : decreasing numeric no / year;

TTR : decreasing numeric sec;

availability : increasing numeric;

g;

type Performance = contract f
delay : decreasing numeric msec;

throughput : increasing numeric mb / sec;

g;

systemReliability = Reliability contract f
numberOfFailures < 5 no / year;

TTR f percentile 100 < 200;

mean < 50;g;
availability > 0.8;

g;

myServerProfile for myInterface = pro�le f
require systemReliability;

from operationOne require Performance

contract f
delay fpercentile 50 < 20 msec;

percentile 100 < 40 msec; g;
g;

from operationTwo require Performance

contract f
delay < 400 msec

g
g;

FIG. 2. QML Contracts and Pro�le

We use the term constraint pro�le to denote QoS

speci�cations corresponding to QML pro�les. A server

pro�le is a constraint pro�le that speci�es QoS char-

acteristics of the server, while a client pro�le describes

the characteristics of the client. Note that both the

client and the server have their own representations for

both pro�les. The client-side server pro�le describes

the client's requirements of the server while the client

pro�le describes its own characteristics. The server-side

server pro�le describes the server's QoS guarantees and

its client pro�le captures the server's requirements for

the client.

QML allows us to check whether one contract

satis�es another contract of the same type. As-

sume that we have two performance contracts with

a speci�cation of the dimension delay. If the �rst

speci�es delay < 10msec and the other speci�es

delay < 20msec, the �rst clearly satis�es the second.

4 QoS Negotiation|1998



We say that the stronger contract conforms to the

weaker contract. Using contract conformance, QML

also enables the checking of one pro�le's conformance

with another. Thus, it is possible to check whether a

QoS speci�cation for an interface satis�es another speci-

�cation. This capability is necessary for the negotiation

mechanism that we propose.

Although the proposed negotiation mechanism is

independent of QML, some means of specifying and

checking QoS speci�cations is required in our negoti-

ation mechanism.

We introduce the term worth pro�le for a description

of how worth is computed based on constraint pro�les.

A worth pro�le allows a worth calculation to map a con-

straint pro�le to a single worth value that re
ects the

worth of a particular deal to an agent. Worth pro�les

will be described further in section 4.

2. Negotiation Mechanism

The negotiation component can be viewed as a black

box that drives the negotiation process. To perform a

negotiation, it needs to interact with other components

in the infrastructure, with the application and with

other negotiation components. Figure 3 is a UML [3] di-

agram showing the principal interfaces of our proposed

negotiation mechanism.

Without going into detail, we describe the interfaces

as follows:

Agent2Neg : this interface allows client and server ap-

plication code to interact with the negotiation com-

ponent. For example, servers may register what

they can provide while clients may request negoti-

ations through this interface.

Neg2Agent : this interface allows the negotiation com-

ponent to issue calls to server and client application

code when, for example, a deal has been made, bro-

ken or expired.

QoSSpec : this interface allows the negotiation compo-

nent to traverse and compare QoS speci�cations.

One important function of this interface is to al-

low the negotiation component to determine if one

QoS constraint pro�le is stronger than or as strong

as another. This interface includes both constraint

descriptions and worth descriptions of QoS charac-

teristics.

Trans2Neg : this interface allows the negotiation com-

ponent to let transports annotate and adjust poten-

tial deals to re
ect the QoS characteristics, when

transport-speci�c characteristics have been taken

into account. Network delay is an example of a di-

mension that needs to be adjusted to enable the

negotiation of proper deals.

Neg2Trans : this interface allows transports to register

themselves and thereby be considered in future ne-

gotiations.

Negotiation

<<interface>>

<<interface>>

<<interface>> <<interface>>

<<interface>>

Transport

Neg2Neg

Trans2Neg Neg2Trans

<<interface>>
QoSSpec

Agent2Neg

Neg2Agent

FIG. 3. Negotiation Mechanism Interfaces

Neg2Neg : this is the message interface used by the ne-

gotiation component for the actual negotiation. We

will discuss this interface in detail in section 3.

Although all of these interfaces are important, we

focus only on the internal working of the negotiation

component. We also describe how negotiation compo-

nents interact to reach an agreement/deal (i.e., the pro-

tocol for which the Neg2Neg interface is an important

part). In addition, we describe how applications spec-

ify worth and how the negotiation component computes

the worth of a potential agreement. Although the other

interfaces are essential for the programming model and

for understanding the architectural aspects of the nego-

tiation mechanism, we do not describe these interfaces

any further in this paper.

3. Negotiation Protocol

3.1 Introduction

The negotiation protocol is the set of messages and

procedures that the negotiation mechanism uses in its

interactions with its negotiation peer. The protocol

that we present allows for both peers to make o�ers

and to end an ongoing negotiation gracefully at any

time. The latter is important so that an agent is not

locked into a negotiation it believes will not lead to a

favorable deal. Each negotiation is parameterized with

four parameters: the maximum number of requests that

can be made for o�ers, a boolean argument that deter-

mines whether the negotiation mechanism is allowed to

make counter o�ers, the maximum number of counter

o�ers that should be sent and the maximum number of

counter o�ers that will be accepted. We assume that a

reliable transport protocol is used for message passing.

We also assume that the negotiation function has access

to two important sub-functions: conformance checking

and worth calculation.

QoS Negotiation|1998 5



Before a negotiation can start, the client must have

obtained a reference to the server with which it wishes

to negotiate. The server must have either registered

o�ers re
ecting the QoS levels it believes it can sus-

tain, including some restrictions on client behavior, or

be able to produce these o�ers when requested by the

client. The client speci�es some absolute requirements

that must be satis�ed by the server (the server pro�le)

and its own characteristics (the client pro�le). If the

client makes a request to the server for o�ers , the client

sends its client pro�le over to the server. Furthermore,

the client speci�es a worth pro�le that describes how

the worth of pro�les being considered for a deal should

be computed.

An o�er is a tuple consisting of two pro�les, a time

limit for the o�er and the period for which the speci�ed

QoS is o�ered. One of the pro�les speci�es the QoS that

the o�ering agents promises to adhere to (the server pro-

�le) and the other pro�le represents what it requires in

return (the client pro�le). A deal is essentially an o�er

that the two negotiating agents have agreed upon. A

deal also has continuation information that is part of

deal management and tells how the agents should pro-

ceed when the deal ends, is violated, etc. We consider

deal management outside the scope of this paper since

we focus solely on the negotiation process.

Assuming that a client has obtained a reference to a

server, we depict a typical negotiation scenario as fol-

lows:

1. The client requests the set of o�ers that the server

supports. It supplies the client pro�le to the server

so that the server may present suitable o�ers.

2. If more than one o�er satis�es the server pro�le

of the client, the client selects the o�er with the

highest worth and pro�ers that one to the server.

3. In this case, let us assume that the server cannot

accept the chosen o�er. It then computes a counter

o�er that it sends to the client.

4. If the counter o�er was acceptable to the client, it

sends a deal message back to the server.

5. The server acknowledges the deal.

The following two sections describe the messages and

procedures of the protocol in more detail. In section 3.4,

we discuss both some properties of the protocol and

experiences from simulating and verifying the protocol.

3.2 Messages

We can view the messages as de�ning the interface

Neg2Neg shown in Figure 3. For our proposed protocol,

the messages that can be exchanged between two nego-

tiating agents can be informally described as follows:

request o�er set : Sent by client to request all the of-

fers that the server is willing to accept in a deal.

The message conveys a client pro�le.

send o�er set : Sent by the server in response to a re-

quest o�er setmessage. The message body contains

all the o�ers that the server supports. The client

may select one of these and propose it as a deal to

the server.

send o�er : Sent by either agent to make an o�er (or

counter o�er) to the other. It can be sent as a

response to a send o�er.

deal : Sent by an agent that received an acceptable of-

fer from the other agent. The message indicates

that the agent that received the most recent o�er

is willing to accept it as a deal.

acknowledge deal : Sent by either agent as a response

to the deal message.

con
ict deal : Sent by either agent as a response to a

send o�er message. The message indicates that the

received o�er was not acceptable and that the agent

does not intend to make a counter o�er.

acknowledge con
ict deal : Sent by either agent as a

response to con
ict deal.

stop : This message can be sent by either agent to stop

negotiating immediately. It can be due to a failure,

application shutdown, change of priorities or any

other reason.

The message send o�er conveys an o�er consisting of

a server pro�le and a client pro�le. The message send

o�er set carries a set of o�ers provided by the server.

All of the messages convey a transaction identi�er, that

becomes the deal identi�er if a deal is reached. The

deal identi�er is used to associate individual operation

invocations with deals.

The set of messages sent from the application to the

negotiation mechanism can be summarized as follows:

abort: Sent by the application to its negotiation mech-

anism to indicate the termination of all ongoing

negotiations for that application.

neg: Sent by the application to initiate negotiation.

regO�ers: Sent by server application to register new

any o�ers that provides.

These messages are part of, but do not fully de�ne,

the Agent2Neg interface. The application can signal its

intention to terminate by sending an abort message to

the negotiation mechanism. This makes the negotiation

mechanism stop all ongoing negotiations and refuse any

new negotiation requests.

3.3 Procedures

Our protocol simulation models are speci�ed in a

speci�cation and modeling language called Promela de-

scribed in [14]. In this paper, however, we describe

the procedures for the client and server negotiation

mechanism as Harel state-charts [12]. A box repre-

sents a state and an arrow a state transition. Tran-

sitions are represented by labels with zero or one in-

coming or outgoing events and zero or more actions

6 QoS Negotiation|1998



(inEvent/ ôutEvent/action). States can be nested. A

transition from an outer state indicates a transition that

applies to all the inner states. A circle represents a

start state and two nested circles represent a valid end

state. Figure 4 and Figure 5 describe the client-side and

server-side state machines, respectively.

We can view the state machines as being inside the

Negotiation class that was shown in Figure 3. Since

clients and servers exhibit somewhat di�erent behav-

iors, we separate them into two di�erent state-machines.

Observe that at the described abstraction level, the

models ignore how the agents evaluate and select o�ers

and how they decide to propose a deal or a con
ict deal.

Rather, the models focus on when speci�c messages can

be sent and received.

Normally, the client negotiation mechanism is in an

idle state. When it receives a negotiation request (neg

event,) from the client it transitions to initialO�er. In

initialO�er it determines if its server o�ers are valid or

if it needs to request an updated set of server o�ers. If

it already has a valid set of o�ers, it selects one and

makes an o�er to the server. The server may accept

by sending the deal message, turn down the o�er by

sending con
ictDeal, or send a counter o�er by send-

ing sendO�er. If the server sends a counter o�er, the

client evaluates the o�er (indicated by the incomingOf-

fer state) and either accepts the o�er, rejects the o�er,

or makes a counter o�er by transitioning to initialO�er.

The negotiation will always be interrupted if the

client receives the stop message.

negotiateidle
initialOffer

requestMode computeOffer

incomingOff

waitForResp

notOkayed

notOk

okayed

noDealdealabort

ok

stop

abort

neg

^regOfferSet

sendOfferSet

^sendOffer^sendOffer
sendOffer

^conflictDeal

conflictDeal

^deal

deal

^ackDeal
^ackConflictDeal

ackConflictDeal

ackDeal

^conflictDeal

abort/^stop

FIG. 4. Client Side Negotiation Procedures

The server-side state machine goes into the negoti-

ate state when it receives an o�er or a request for an

o�er set. If it receives a request for an o�er set, it col-

lects the o�ers it currently can support and sends them

to the client. If the server receives an o�er, then the

client chose to propose an agreement immediately as

the client already had what it believes is a valid set.

When the server receives the o�er, it evaluates the o�er

and decides whether it accepts, rejects, or counters the

o�er. The conformance checking of constraint pro�les

and the worth calculation take place in the incomingOf-

fer state for the client and in the evaluateO�er state

for the server. Essentially, the agent checks whether

the o�er pro�le conforms to the pro�le that expresses

its absolute requirements. If it has several acceptable

alternatives|such as when the server returns multiple

acceptable o�ers with the send o�er set message|it

computes worths and compares the results.

negotiateidle

waitForResp

notOk

okayed

abort

collectOffs waitForOff

computeOffer

notOkayed

evalOffer

noDeal

deal

ok

stop ^conflictDeal

sendOffer

^deal

deal

conflictDeal

reqOfferSet

reqOfferSet

stop

abort

^sendOffer

sendsOffer

^ackDeal

^ackConflictDeal

ackDeal

ackConflictDeal

sendOffer

conflictDeal

^sendOfferSet

regModes

abort/^stop

reqOfferSet

FIG. 5. Server Side Negotiation Procedures

The server application can update the valid set of

o�ers that it supports.

The interaction diagram in Figure 6 shows one pos-

sible interaction between applications and negotiation

mechanisms. This particular negotiation results in a

con
ict deal, thus the o�er sent by the client is not ac-

cepted by the server who wants to discontinue further

negotiation.

serverApp serverNM clientNM clientApp

regModes
neg

reqOfferSet

sendOfferSet

sendOffer

conflictDeal

ackConflictDeal

noDeal

FIG. 6. A Possible Interaction

The protocol has been restricted in several ways in

order to keep it and its analysis simple. As an example,

QoS Negotiation|1998 7



we do not allow an agent to respond with a new of-

fer after the other agent sends a con
ict deal message,

although such behavior could be desirable in some sit-

uations.

abortdeal

negotiate

execute

terminate

stop

request

expiredbroken

FIG. 7. Generic Procedure for Execution Phase

When the negotiation mechanisms goes into the deal

state they also transition from the negotiation phase

to the execution phase. We require that the execution

phase can accept stop messages, since otherwise a race

condition could occur. Assume the server has sent the

dealmessage and transitioned to the ok state. The client

accepts the deal in the waitForResp state and sends back

a ackDeal message. At the same time the server receives

an abort message from the application that causes it to

send a stop message and transition to the abort state.

Since the client has transitioned to the deal state it can

not|according to the description in Figure 4|accept

a stop message. However, we view the transition to the

deal state also a transition to the execution phase of the

agreement life-cycle. This phase requires both clients

and servers to maintain deal information and to accept

a variety of messages. Although this phase is not the

focus of this paper we will outline a state machine for

this phase in Figure 7.

The negotiation mechanism must also handle the

case when one party sends a stop message and transi-

tions to abort while the other party sends a negotiation

message before it receives the stop message. This ne-

gotiation message will arrive to the original stop sender

when it is incapable of accepting any of the negotiation

messages. This is, however, not a problem and can be

handled by for example allowing the negotiation com-

ponent to discard negotiation messages for all messages

with deal identi�ers that do not match any of the active

ones.

3.4 Discussion

We used Promela and SPIN [14] for simulation and

veri�cation of the protocol. Promela is a simple, CSP-

like [13] language in which the model is described as a

set of sequential processes. The descriptions can be

annotated with semantic annotations and invariants.

Choices|such as deciding whether an o�er is good or

not|are modeled as indeterministic choices. A model

can be simulated and validated. The validation pro-

cedure uses semantic annotations and invariants to de-

tect problems such as live-locks, deadlocks, inconsistent

states, etc.

Besides pointing out some errors in earlier versions,

the models also identi�ed a few more serious problems,

which we address below.

Firstly, since the protocol allows counter o�ers, a ne-

gotiation can degenerate into an in�nite exchange of of-

fers. Ideally, we would like to detect non-progress in a

negotiation by comparing the worth of a new o�er with

the worth of previous o�ers. Since agents do not share

their worth functions, this solution is not viable. With-

out the worth functions of the other agent, an agent

has no means of ensuring that it indeed makes a con-

cession, i.e., increases the worth for the other agent. On

the other hand, sharing the worth pro�les would make

an agent more vulnerable to cheating. Our solution

is to parameterize each negotiation with the maximum

number of counter o�ers that may be sent and received.

The client side is also parameterized with the maximum

number of request o�er set messages that may be is-

sued. These restrictions allow agents to set a maximum

bound on the number of negotiation rounds that may

take place. Also, a parameter on the server-side captur-

ing the maximum number of requests for o�ers restricts

the client from swamping the server with requests.

Secondly, it must be possible for either agent to en-

force the end of a negotiation session. A general purpose

stop mechanism may be used to do this. This message

does not require any acknowledgment from the other

agent and hence does not block the agent.

After the model was enhanced with these parame-

ters, the simulations and validations indicated that the

model de�nes a well-behaved negotiation protocol.

4. Worth Calculation

4.1 Introduction

According to our protocol, the client receives several

QoS o�ers for a service. It then either selects one of

these o�ers to propose a deal or it proposes a con
ict

deal.

As part of the selection process, the client agent �rst

applies conformance checking to obtain the set of server

o�ers that meet its absolute requirements. This set may

contain more than one o�ers. In order for the client to

pick the o�er that best satis�es its requirements, we

need a means for assessing o�ers.

We propose that this be done by using a worth func-

tion that computes the worth of an o�er based on the

client's current preferences. This requires that we pro-

vide a means for specifying the relative worth of di�er-

ent values for speci�c dimensions and categories (con-

8 QoS Negotiation|1998



tracts in QML). The client may assign a higher worth

to those values of a dimension that are more desirable

and a lower worth to those values that are less desirable.

The client may also assign worth to contract types to

indicate their relative importance to the client. Finally,

the client may assign di�erent worth to the di�erent

operations in an interface to indicate that it prefers to

obtain a better QoS for some of the operations.

One important criteria in the design of the worth

calculation was that agents should be able to use worth-

based negotiation without having to explicitly specify

worth pro�les for all entities and contracts in a pro�le.

To enable this, there must be a reasonable default worth

speci�cation that can be used when worth has only been

partially de�ned by the application. The second criteria

was that when a worth calculation is speci�ed, it should

be necessary to only specify those portions of the worth

pro�le that are di�erent from the default.

4.2 Worth Functions

We view the worth calculation as a function

(profileWC) that takes a server pro�le (from an o�er)

and a worth pro�le as input arguments.

profileWC : (serverProfile�worthProfile)! worth

The result of the calculation is the expected worth

of the server pro�le. This worth function uses other

functions that calculate the worth for individual op-

erations. The operation worth function in turn uses

functions that calculate the worth of contracts.

The worth calculation for operations and contracts

is, to a large extent, concerned with assigning weights.

When calculating the worth of a contract, however, the

worth function by default, assigns di�erent values for

individual dimensions. The expected worth is then cal-

culated as the integral of that function over what is

speci�ed in the server pro�le.

Our model enables agents to provide their own con-

tract worth functions. Such functions could be de�ned

in terms of worth functions for dimensions, but in order

to reduce the number of worth functions that must be

speci�ed, we only specify at the granularity of contract

worth functions. The signatures below represent the

worth calculation functions that take customized worth

functions as input and produces an expected worth:

operationWC : (contracts� worthFunc)! worth

contractWC : (dimensions� worthFunc)! worth

Figure 8 shows an example of a worth function for a

dimension called availability. We think of the dimension

as being part of a reliability contract that also has other

dimensions such as MTTF, MTTR, etc.

The availability worth function essentially maps dif-

ferent availability values to di�erent worths. Assume

that a server pro�le guarantees that the availability

will be between a and b with an uniform distribution.

Our expected worth can then be calculated as the mean

worth in that interval.

worth

availabilitya b

FIG. 8. Agent Speci�c Dimension Worth Function

Figure 9 shows the default worth function for avail-

ability used by the negotiation mechanism. The default

worth function assumes equal worth for all acceptable

values of the dimension.

The worth of an operation is computed by invoking

the appropriate contract worth functions and weighing

the worths of contracts according to agent preferences

(see hierarchy of worth functions in Figure 10). Finally,

we weight the worth of di�erent operations according to

agent preferences. Our model enables agents to supply

their own contract worth functions, contract weights for

each operation, and operation weights. Although we fo-

cus on weights in this description, we do support a more

general notation of worth functions at the operation and

pro�le levels as well.

The speci�cation of the weights and worth functions

for contracts associated with speci�c operations is called

a worth pro�le.

The worth function for dimensions can be arbitrar-

ily complicated, depending on the worth function and

the statistical distributions of the input pro�le. In the

following sections, we omit any discussions on statisti-

cal computations. Instead, we focus on how the results

of such computations are aggregated to a worth for a

pro�le.

4.3 The Worth Calculation Process

The goal of the worth calculation process is to pro-

duce one numeric value that represents the expected

worth of the server pro�le using the supplied weights

and worth functions. The expected worth re
ects the

worth of a speci�c constraint pro�le to a client with re-

spect to a speci�c worth pro�le. It is called expected

worth since it is based on the expected statistical dis-

tributions of dimensions.

Before we start computing, we identify the contracts

for each operation in the server pro�le. We then omit

those contracts that do not have a corresponding con-

tract in the constraint pro�le of the client. A contract

for an operation in one pro�le corresponds to a contract

in another pro�le if they are of the same contract type.

If a contract appears in the server pro�le, but does not

have a corresponding contract in the client's constraint

QoS Negotiation|1998 9



pro�le, then the server has made guarantees about a

QoS category that the client does not require. There-

fore, we also assume that the client is not assigning

worth to contracts that do not appear in its constraint

pro�le. Thus, we can omit these contracts from our

worth calculation process.

We are left with the contracts for each operation in

the server pro�le that have a corresponding contract

in the client's constraint pro�le. Now, we apply the

corresponding worth function to each of the contracts

to obtain the worth of each contract. We also normalize

the worth of the contract by dividing it by the sum of

the worths of each dimension de�ned in it to obtain the

expected worth of each contract.

Next, we calculate the aggregated worth of an oper-

ation by multiplying the weights of each contract (as

speci�ed by the operation worth function) with their

calculated expected worth and by summing all the re-

sults. We then obtain the expected worth of an opera-

tion by dividing its worth by the sum of the weights of

all the contracts de�ned for it.

Finally, we multiply the expected worth of each op-

eration by the weight associated with the operation.

The aggregated worth of a pro�le is then the sum of

all the weighted worths of these operations. The ex-

pected worth of a server pro�le is obtained by dividing

its worth by the sum of the weights of the operations

de�ned in it.

A more formal description of the algorithm for cal-

culating the expected worth is given in Figure 11. In

Figure 11, SP stands for server pro�le, CP for con-

straint pro�le, EW for expected worth of a server pro-

�le, wfc for the worth function that calculates the worth

of a contract, wfo for the worth function that returns

the weight of a contract in an operation and wfp for

the worth function that returns the weight of an opera-

worth

availability

FIG. 9. Default Dimension Worth Function

. . . . .

. . . . . . . .

Profile

Operation_mOperation_1

Contract_1 Contract_n

ContractWF ContractWF

OperationWF OperationWF

ProfileWF

FIG. 10. Worth Function Hierarchy

tion. The function Sums(X) returns the sum of the

weights/values of all Xs. That is, if X = C, then

Sums(X) returns the sum of the values of every di-

mension in every contract. If X = O, then the function

returns the sum of the weights of all the contracts. Fi-

nally, if X = P , then Sums(P ) returns the sum of the

weights of all the operations.

The expected worth calculation algorithm may be

further re�ned to include a threshold such that only

those server pro�les that have an expected worth above

a certain threshold are considered. This enhancement is

easily made by adding an extra statement at the end of

the current algorithm that checks if EW > Th, where

Th represents the threshold. If it is, then the function

may return EW . If not, the function may return a null

to represent an unacceptable server pro�le. Note that

null may be used even without the introduction of the

threshold.

In the absence of an agent-de�ned worth pro�le, a

default worth pro�le is used. The contract worth func-

tions in the default worth pro�le return one as the worth

of each dimension. The default weight for each contract

and each operation is also set to one. Thus we would

obtain a default expected worth of one for each server

pro�le. This, of course, means that if we only have de-

fault pro�les, there is no need to calculate the worth;

rather, we can assert that all server pro�les have the

same worth and an arbitrary choice can be made.

If an agent-de�ned worth pro�le has been supplied, it

overrides the default pro�le. The agent-de�ned pro�le

need not be complete; rather, it may override selected

portions of the worth pro�le. The calculation algorithm

uses the agent-speci�ed weights and functions for the

selected portions of the worth pro�le and the default

values otherwise.

4.4 Worth Speci�cation

Begin

EW = 0; Worthp = 0;

For all operations O in SP

f
Expecto = 0; Wortho = 0;

For all contracts C for O in SP and CP

f
Expectc = wfc(C) / Sums(C);

Wortho += wfo(C) * Expectc;

g
Expecto = Wortho / Sums(O);

Worthp += wfp(O) * Expecto;

g
EW = Worthp / Sums(P);

End;

FIG. 11. Expected Worth Calculation Algorithm

10 QoS Negotiation|1998



To specify worth, an agent needs to be able to specify

two di�erent aspects: the worth functions and weights

for contracts, operations, and pro�les; and the individ-

ual functions along with how and where the functions

are used.

Worth functions can be de�ned in a variety of ways

including implementing regular programming language

functions. There might even be specialized languages

developed for this purpose. Such functions would take

a contract as input and produce a worth. For this pa-

per, however, we assume that such functions can be

de�ned by the agents that are available to their negoti-

ation components.

The other aspects that need to be de�ned are how the

worth is aggregated, what speci�c worth functions are

to be used for individual operations, etc. We call these

aspects the worth pro�le. Although we have developed

a prototype language for this aspect, we will omit de-

scribing this in detail in this paper. We will, however,

provide some simple examples to illustrate the idea.

Since our mechanism allows negotiation even when

there are no explicit worth pro�les speci�ed, there needs

to be a default worth pro�le. Assume that we have a

simple interface called myInterface with two operations

op1 and op2. In addition, we are using only contracts

of type C1 and C2. The default worth pro�le|shown

in Figure 12|would then specify that for the contract

types we use the default contract worth function, and

that the operations have equal weight of one(no weight

de�ned). To aggregate the contract worths for individ-

ual operations, we also use a default function that gives

contracts of di�erent type the same weight.

If we explicitly de�ne a worth pro�le, it selectively

overrides functions speci�ed by the default worth func-

tion. In Figure 13 below, we de�ne a pro�le that re-

places the worth function for contracts of type C1. In

addition, it gives the contract of type C2 a weight of

two in the computation of the worth for op1. In all

other cases the implicitly de�ne default worth pro�le

still holds.

DefaultWP for myInterface = worth f
contract type C1 use DefaultContractWorthFunction;

contract type C2 use DefaultContractWorthFunction;

entity op1 use DefaultOperationWorthFunction;

entity op2 use DefaultOperationWorthFunction;

g;

FIG. 12. Default Worth Pro�le

DefaultWP for myInterface = worth f
contract type C1 use myCWorthFunction;

entity op1 weight 2 for C2;

g;

FIG. 13. A Worth Pro�le

This model allows agents to selectively change parts

of a worth pro�le without needing to rede�ne the entire

worth pro�le. The example given is very brief; a full

treatment of our prototype language is outside the scope

of this paper.

4.5 Discussion

A client agent may already know how to utilize a

service provided by the server. It may know which op-

erations in an interface are going to invoked, how often

it will invoke them, the limitations and advantages of

the environment from which it invokes a service, etc.

By allowing the client to assign worth to the values of

dimensions, contract types and even the operations, we

facilitate the making of intelligent deals between the

agents maximizing the throughput of both the client

and the server.

This worth calculation scheme allows calculation and

thereby negotiation even when the client has not sup-

plied any worth functions. If desired, however, agents

may replace default worth functions arbitrarily, allow-

ing them to change the worth calculation with minimal

e�ort.

One question that can be raised, however, concerns

the process an agent (usually a designer or end-user)

should use to de�ne worth functions and weights. Al-

though we do not address this issue explicitly, we have

been investigating it and believe that conventional de-

cision theory techniques|such as multi-attribute deci-

sion theory [19]|can be used for this purpose.

For the purpose of this paper, we have mainly de-

scribed how the worth for operations and pro�les are

speci�ed by assigning weights. We do, however, sup-

port the more general notion of providing worth func-

tions that aggregate the worths of operations and pro-

�les. This allows us to capture dependencies between

contracts. As an example, we might specify that we are

prepared to accept lower performance, if the reliabil-

ity is better, but not otherwise. Such dependencies can

not be described by weights alone. This extension is

applied by associating worth functions with operations

and pro�les rather than just with weights.

Although we have described the worth calculation

as a client evaluating server pro�les, it need not be re-

stricted to this. The schema could be used more gen-

erally for any situation in which an agent evaluates the

o�er made by another. Similarly, the worth functions

are not dependent on QML. Rather, any speci�cation

language may be used to capture QoS. Worth functions

can be applied to any QoS speci�cation.

The worth calculation mechanism will undoubtedly

impose a performance overhead. We expect to be able

to report more on this as the implementation work has

been is �nished. We have, however, limited worth cal-

culations to clients to avoid imposing too much compu-

QoS Negotiation|1998 11



tational overhead on the server before the performance

characteristics are more thoroughly understood.

5. Example

5.1 Introduction

To illustrate the negotiation process, we use a small

�ctitious example. The scenario for the example is a for-

eign exchange trading system. The user is a manager of

funds who needs to access the system from many di�er-

ent locations. He uses a laptop computer that connects

to a network providing him access to many foreign ex-

change trading services.

The application on the laptop provides the user in-

terface. The application uses aQuoteServer and a Trad-

ingServer. The QuoteServer provides foreign exchange

rates and is the primary information source for the hu-

man user. The TradingService provides an entry point

to a banking system that allows the user to buy and sell

currency.

Generally, the user would want reliable, secure, and

fast access to both information and trading. But when

faced with resource scarcity, the user could prioritize

availability and performance of the QuoteServer over

other characteristics such as security because the user

always needs recent and accurate information, but may

perform trading by other means, e.g., by calling the

bank. Depending on resource availability, the applica-

tion may make tradeo�s with respect to the QoS char-

acteristics of the QuoteServer.

To achieve this, the client application could spec-

ify its absolute requirements (a server pro�le), its ex-

pected behavior (a client pro�le) and the relative worth

(a worth pro�le) for various QoS characteristics. Using

these, our proposed negotiation mechanism would be

able to negotiate the best possible QoS agreement with

respect to the user's preferences. The negotiation would

be performed without any user intervention. Naturally,

if the absolute constraints could not be meet on either

side, the negotiation will not reach an agreement. In

such a case, the user could agree to weaker requirements

or take actions that enable a stronger agreement, such

as moving to a faster network connection.

In the example below, we show what such speci�ca-

tions may look like and how a negotiation mechanism

might use them. For simplicity, we only consider nego-

tiation for the QuoteServer service.

5.2 Speci�cations

The IDL interface speci�cation of QuoteServer is

provided in Figure 14.

interface QuoteServer f
rate getRate(in Currency from, in Currency to);

sequence<rate> getRateSeq(in Currency from,

in Currency to,

in TimeI ti);

g;

FIG. 14. QuoteServer interface

In order to specify the desired and provided QoS,

we need to de�ne QML contract types. Figure 15 de-

scribes three simpli�ed contract types. Reliability has

two dimensions, one for Time-To-Repair and one for

availability. Performance has only a single dimension,

delay. Finally, Security has one dimension for character-

izing anonymity and another for encryption level. The

anonymity dimension has two values denoting whether

anonymity can be provided or not. For the purpose of

this example, the encryption dimension provides only

di�erent levels of encryption. A higher level indicates

that it takes a longer time to crack an encrypted mes-

sage.

type Reliability = contract f
TTR : decreasing numeric sec;

availability : increasing numeric;

g;

type Performance = contract f
delay : decreasing numeric msec;

g;

type Security = contract f
anonymity : decreasing enum f true, falseg;
encryption : increasing

enum fhigh, med, low, noneg
order fnone < low, low < med,

med < highg;
g;

FIG. 15. Contract Types

In Figure 16, we introduce contracts that re
ect dif-

ferent levels of QoS. The contracts highRel and lowRel

re
ect higher and lower levels of reliability. Similarly,

highSec and lowSec re
ect di�erent levels of security.

We combine these contracts in pro�les to specify di�er-

ent combinations of security, performance, and reliabil-

ity levels.

Figures 17, 18 and 21 de�ne di�erent server pro�les

with high, medium and low performance guarantees re-

spectively. The pro�le in Figure 17 speci�es low se-

curity and reliability but high performance guarantees.

Observe that in contrast to the security and reliability

contracts, we do not name the performance contract;

12 QoS Negotiation|1998



instead, we de�ne it as a set of values within the pro-

�les.

Figure 18 de�nes a pro�le with a high reliability guar-

antee. However, the server is not be able to provide the

highRel = Reliability contract f
TTR f

percentile 100 < 200;

mean < 50;

variance < 0.3

g;
availability > 0.8;

g;

lowRel = Reliability contract f
TTR f

percentile 100 < 2000;

mean < 1000;

variance < 0.3

g;
availability > 0.4;

g;

highSec = Security contract f
anonymity = false;

encryption > low;

g;

lowSec = Security contract f
encryption < high;

g;

FIG. 16. Contracts

qsFast for QuoteServer = pro�le f
require lowRel;

require lowSec;

from getRate

require Performance contract f
delay < 40 msec;

g;
g;

FIG. 17. Pro�le with high performance guarantees

qsMedium for QuoteServer = pro�le f
require highRel;

require lowSec;

from getRate

require Performance contract f
delay < 70 msec;

g;
g;

FIG. 18. Pro�le with medium performance guarantees

clientHigh for QuoteServer = pro�le f
require myHighRel;

require mySec;

from getRate

require Performance contract f
delay < 350 msec;

g;
g;

FIG. 19. Client Requirements

clientLow for QuoteServer = worth f
entity getRate weight 5 ;

contract type Performance use cPerfWort;

g;

FIG. 20. Client Worth Pro�le

same performance guarantee as that speci�ed by the qs-

Fast pro�le and the security guarantee is weak as well.

The server mode speci�ed in Figure 21 provides sig-

ni�cantly lower performance than qsFast and qsMedium,

but in return we get both higher reliability and secu-

rity guarantees. The reason for the lower performance

is, of course, that the reliability protocol and the en-

cryption generate considerable computational overhead.

Figure 19 speci�es the client's QoS requirements. The

client requires that the server satisfy the contracts my-

HighRel and mySec for both QuoteServer operations.

In addition, a constraint is imposed on the delay of the

getRate operation. Without going into the details of

the contracts, we assume that both lowSec and highSec

conform to mySec. In addition, we assume that highRel

conforms to myHighRel, and lowRel does not conform

to myHighRel.

Figure 20 describes the worth pro�le for the client.

The worth pro�le gives getRate a higher weight than the

other operations of QuoteServer. This means that the

di�erences in worth for the di�erent pro�les is magni�ed

for getRate. In addition, we provide a worth function

for Performance contracts. Rather than de�ning the

worth function in detail, for the purpose of this paper

we assume that the function gives a higher worth to

better performance.

The previously presented pro�les focus on the QoS

that the server can provide to the client and the QoS

qsLow for QuoteServer = pro�le f
require highRel;

require highSec;

from getRate

require Performance contract f
delay < 300 msec;

g;
g;

FIG. 21. Pro�le with low performance guarantees

QoS Negotiation|1998 13



that the client requires from the server. A QoS agree-

ment goes two ways, which means that the server may

not promise any QoS without knowing how the client

is going to be use it. Thus, each pro�le contained in

an o�er by the server also has an associated require-

ment on the behavior of the client. In our negotiation

model, the QoS provided by the client is also speci�ed

as a QML pro�le. These speci�cations typically involve

call frequency and distribution, complexity of the argu-

ments, etc. For the simplicity of this example we omit

describing these pro�les in detail.

5.3 A negotiation

Assume that the human trader connects his laptop to

the network and starts the TraderStation software ap-

plication. The application connects to a repository from

which it obtains references to the QuoteServer and trad-

ingService services. The application then attempts to

negotiate a QoS agreement with the reference to satisfy

the user's requirements for timeliness of data, reliability

etc.

We describe a possible negotiation scenario as shown

below. This scenario is simple and straight-forward sce-

nario, in contrast to one complicated by including mul-

tiple o�ers.

1. The client sends its client pro�le to the server with

a request o�er set message. The client pro�le spec-

i�es that the client will issue 300 calls per hour to

getRate and �ve calls per hour to getRateSeq.

2. The server selects modes that it can provide, as-

suming the speci�ed client behavior. In this negoti-

ation scenario, this set consists of qsLow, qsMedium

and qsFast. The server sends these modes to the

client with the sendO�erSet message.

3. The client checks whether the pro�les it received

conforms to its server pro�le (clienthigh (shown in

Figure 19). It concludes that qsLow and qsMedium

do conform to clientHigh. The pro�le qsFast, how-

ever, does not and will be removed from the client's

set of potential agreements. qsFast does not con-

form since it provides lowRel which does not con-

form to the reliability contract myHighRel (as we

assumed in section 5.2) required by the client.

4. The client is left with two acceptable server pro�les

and needs to select one. The client calculates the

worth of the two remaining pro�les based on the

worth pro�le described in Figure 20. Since the per-

formance for getRate is better in qsMedium it gets a

higher worth. The di�erence is magni�ed because

the worth pro�le gives getRate a higher weight.

5. Based on the worth calculation the client selects

qsMedium and sends it back to the server with a

send o�er message.

6. The server receives the o�er and veri�es whether it

can still accept it and reach an agreement. It then

sends back a deal message to the client indicating

that it is prepared to strike a deal.

7. The client receives the deal message and acknowl-

edges it by sending an acknowledge deal message to

the client. The identi�er that passes with each of

the negotiation messages is now the unique identi-

�er for the deal. This identi�er is used with subse-

quent operation calls.

5.4 Discussion

This example illustrates the basic principle of our ne-

gotiation mechanism although we have omitted several

speci�cations and detailed descriptions of computations

in order to keep the example simple.

In a more complex situation, the client and server

may dynamically create new o�ers that are presented

as counter o�ers. Such behavior requires that an appli-

cation be QoS-aware and obtain information about the

conditions of its environment, current load, etc.

The example negotiation above seems to send pro�les

over the wire multiple times. A smart protocol imple-

mentation would optimize by sending pro�le identi�ers

once the pro�les have already been transmitted.

6. Related Work

Most existing QoS negotiation protocols, such as

GSM [10], QoS-A [11], NAFUR [9] and NRP [5, 1] are

focused on multi-media applications and deal with only

a restricted number of QoS parameters. Furthermore,

most of these protocols regard negotiation as the pro-

cess of reserving resources. We argue that QoS negotia-

tion can be viewed at a higher level and be more generic.

We view an application as being capable of carrying out

many services, each at di�erent QoS levels. Negotiation

for a service is then the process of choosing one of the

many QoS levels associated with that service based on

worth, that both the client and server applications agree

upon. Resource reservation is then performed to sup-

port the agreement. None of the negotiation protocols

that we have reviewed allows counter o�ers when ini-

tial o�ers are unsuccessful. This prohibits them from

continuing the negotiation if an initial mismatch occurs

even if a potential for useful agreements exists. NAFUR

and NRP di�er from other related work in that they at-

tempt to address some of the negotiation concerns in a

more generic manner.

In NAFUR, Ha�d et al. [9] present a negotiation

model for distributed multi-media applications. In their

model, they present representations for o�ers and deals

as well as a negotiation protocol that allows future reser-

vations. When a request can not be satis�ed, NAFUR

allows the server to propose a later time when the re-

14 QoS Negotiation|1998



quest can be ful�lled. NAFUR includes a description of

how o�ers can be related, e.g., one o�er being stronger

than another. Although we also consider such relations

necessary, we rely on the general QML [6] QoS speci�-

cation language for such comparisons. The model de-

scribed by Ha�d et al. [9] includes a model for both

how a future load is projected and how o�ers are com-

puted. In contrast, we consider such algorithms as

agent-speci�c and outside the scope of a generic negoti-

ation model. We do, however, consider the generic com-

putation of worth within the scope of the negotiation

mechanism. NAFUR supports the distinction between

the time at which a request is made and the time it is

serviced. We agree that this is an important distinction

and our model consequently supports a similar distinc-

tion, although we treat such parameters as any other

QoS dimensions. NAFUR, like the model proposed in

this paper, includes the duration of a service in the ne-

gotiation. NAFUR [9] does not support probabilistic or

statistical values for any of its attributes; neither does

it provide groupings for the subsets of logically related

attributes as we do using QML. The NAFUR approach

focuses on providing acceptable service, but has no no-

tion of worth; rather it focuses on the constraints asso-

ciated with an o�er.

Dermler et al. [5, 1] present a negotiation and re-

source reservation protocol (NRP) for end-to-end QoS

reservations in distributed multi-media applications.

NRP is general in the sense that it can support di�er-

ent application architectures, i.e., di�erent topologies

of video stream sinks, sources, and mixers. The NRP

protocol allows components to specify their capabilities

and merge them into speci�cations of capabilities sup-

ported by multiple nodes. Assume, for example, that

an application uses a mixer conncted with two cameras.

The resolution provided by the mixer is dependent on

both cameras and thus is limited to the resolution sup-

ported by both cameras. To allow end-user reserva-

tion, Dermler et al. propose an additional application-

speci�c QoS reservation layer on top of NRP. This layer

allows an application to specify requirements indepen-

dent of individual components. Rather, the layer trans-

lates end-to-end requirements to NRP reservations. It

is not clear how generic the NRP protocol is; it has

clearly been designed with multi-media applications in

mind and is therefore highly specialized for such appli-

cations. In contrast to the approach proposed in this

paper, NRP does support the determining of the level

of QoS provided by intermediate nodes. This capability

of NRP is dependent on the components knowing the

QoS dimensions that are combined. It also assumes a

high-level understanding of the functions of the compo-

nents whose capabilities are combined. As an example,

they de�ne a mixer as a component with multiple in-

streams and only one out-stream; thus we can �gure out

that the in-streams must be synchronized to produce an

out-stream. In contrast, we are addressing the general

need for distributed applications and can not make as-

sumptions about the speci�c functions of components.

Consequently, our approach does not address the prob-

lem of deriving|based on the components used|the

level(s) of QoS of a client component. Rather the com-

ponent (agent in our terminology) needs to understand

how the di�erent levels of the received QoS levels a�ect

the QoS levels it provides.

In summary, we view NRP as mainly a reservation

protocol with some elements of negotiation. Dermler

et al. [5] discuss QoS negotiation in terms of using the

intersection between the client's QoS and the QoS of all

the components involved, but does not o�er alternatives

or worth assessment and is application-speci�c.

Although most QoS mechanisms are limited to multi-

media streams and do only a limited QoS negotiation,

there are other types of QoS negotiation mechanisms.

As an example, Chen et al. [4] propose a mechanism

that allows applications to adjust to changing band-

width and failure rates in wireless networks.

In [15], Rajahalme et al. introduce negotiation for a

prede�ned set of both attributes and transports in wire-

less networks. The negotiation selects media codings

and session protocols for all the terminals involved in a

particular communication session. They focus mainly

on data streams and assume a prede�ned parameter set

for the negotiation.

In the area of arti�cial intelligence (AI), work has

been done on agents that negotiate to perform inter-

acting tasks and reach intersecting goals. These models

provide an excellent basis for understanding and ana-

lyzing various negotiation scenarios. Rosenschein and

Zlotkin [16] describe three di�erent negotiation models

in the AI realm. The �rst model is task-oriented and

addresses the problem of dividing a set of tasks among

a set of agents. The goal is to �nd a solution in which

every agent bene�ts from the agreement. The second

model is state-oriented. It is more general and involves

a common world state that can be manipulated by any

one agent. The goal is to agree upon both a �nal world

state and the means of reaching it. There are situations

in both the task and the state-oriented domains that

may result in a con
ict deal because the bene�ts are cal-

culated based on the cost to the agent if it were doing its

own tasks. In the third model Rosenschein and Zlotkin

introduce worth, which allows deals that could not have

been reached with task or state-oriented models. This

model|the worth-oriented model| allows agents to as-

sign a worth to a deal independent of other alternatives.

It is therefore possible to reach deals in those situations

for which state or task-oriented models would result in

a con
ict deal. Rosenschein and Zlotkin describe di�er-

ent negotiation models for these three domains and their

associated problems and possibilities. On an abstract

level, the state and worth-oriented domains match QoS

QoS Negotiation|1998 15



negotiation quite well, if we view the global state as the

common QoS agreement. We have drawn much inspira-

tion from their descriptions of these models. There are,

however, some fundamental di�erences between their

models and what we believe is necessary in QoS negoti-

ations. Rosenschein and Zlotkin assume that all agents

can perform the same set of operations, that agents do

not commit themselves to some future behavior, and

that past history does not a�ect an agent's decision.

We do not believe that such assumptions are realistic for

QoS negotiations in open distributed environments. As

an example, we believe future reservations are necessary

in real applications. In an open system, we need to con-

sider how well agents have ful�lled their commitments

in the past, thus making trust important. Although

our model does not currently include trust, we do be-

lieve it is essential to the future development of QoS

negotiations. Moreover, all the protocols presented by

Rosenschein and Zlotkin attempt an agreement at the

time that the request is made. They do not distinguish

between the time the request was made and the time

that the request is serviced. Neither do they consider

the duration of the service as a factor for QoS negoti-

ation. Rosenschein and Zlotkin do recognize|and we

agree|that a separate negotiation oracle will not pro-

vide a scalable solution. Thus, the negotiation mech-

anism should have a protocol that ensures progress in

the negotiation without using a single point for o�er

evaluation, con
ict resolution, etc.

In contrast to the majority of existing implemen-

tations of negotiation models, the model proposed in

this paper is intended to be general. We believe that

there is a need for a generic QoS negotiation proto-

col that is application-independent, supports multiple

QoS categories and can accept fully satisfactory agree-

ments. Moreover, we have found that none of the ex-

isting protocols describe a language for specifying QoS

constraints or worth in a general way. Nor are there any

that present algorithms that show exactly how di�erent

alternatives are compared, how choices are made and

how contracts are agreed upon. We not only provide

these algorithms, but we also allow the user to replace

any of them to support di�erent applications and user

preferences.

7. Implementation Issues

In this section, we discuss some implementation

issues with respect to the negotiation mechanism dis-

cussed in this paper.

An o�er by a server will not always correctly de-

scribe the QoS that would be received by a client and

vice versa. As an example, consider a server that o�ers

a delay of 30 ms. In a distributed system we need to

take into account the time between when the client is-

sues the request and it is received by the server. If this

takes 20 ms and the return of the result takes 15 ms,

the client should expect a total round-trip delay of 65

ms. The invocation and the return may take di�erent

amounts of time due to, for example, di�erences in the

complexity of transferred data. We have a similar situ-

ation between what is speci�ed by the client and what

is actually required by and provided to the server,

To take these di�erences into account an implemen-

tation must allow transports (see section 1.2) to anno-

tate o�ers and requirements appropriately.

We use �lter as a generic term for any mechanism

that alters the QoS speci�ed by the application in a

transport and agent implementation speci�c way. We

also see the need for a mechanism that allows the ne-

gotiation mechanism to notify the �lters of the o�ers in

any negotiation and to bind the appropriate �lters to

the QoS captured in the deal. Each �lter may modify

an o�er to produce multiple o�ers corresponding to the

results of �ltering. Each �lter may also further modify

information put in by other �lters. Note that the �l-

ters need to deal with inter-dependencies between the

contracts in the pro�les.

A possible implementation scheme for the �lters is to

arrange them in a pipeline and pass the o�ers through

them. The pipelining must satisfy interdependencies

between �lter, which might not be trivial.

Another implementation issue is the representation

of QoS pro�les and o�ers. This representation should

be compact and allow additional data to be added to

each o�er by the �lters. Note that the two negotiating

agents may not support or understand all of the con-

tracts, dimensions or additional information present in

the o�ers that they receive from one another. The ne-

gotiation mechanism should be able to handle such a

situation gracefully.

Other issues include persistent storage for o�ers that

become deals so that they may be referred to when calls

are made associated with those deals or when a dis-

pute occurs between the negotiating agents, handling

expired or broken deals, etc., that we collectively term

deal management. Deal management is a subject for

future research.

8. Concluding Remarks

QoS negotiation is essential if we are to build sys-

tems that can dynamically (re-)con�gure to changing

QoS conditions and requirements. Such adaptations

will enable systems to be deployed under many di�erent

QoS conditions, and still provide services with accept-

able QoS. QoS negotiation allows systems to trade dif-

ferent QoS characteristics o� against each other when

resources are scarce or when there are partial failures.

To enable such adaptation, we must consider negoti-

ation over multiple categories, as well as negotiation

based on worth, rather than absolute goals.

16 QoS Negotiation|1998



To implement a negotiation mechanism, we need to

understand how such a mechanism �ts into a commu-

nications infrastructure, how negotiation is performed,

and how the worth of QoS speci�cations can be com-

puted. This paper has presented a model and archi-

tecture for such a mechanism. The protocol has been

speci�ed formally and simulated; we are currently in

the process of investigating implementation techniques

and prototypes for the full as well as restricted versions

of the proposed model.

Acknowledgments

We wish to thank Ellis Chi, Svend Fr�lund and Evan

Kirshenbaum for their highly valuable participation in

lengthy technical discussions. We greatly appreciate the

input and feedback we received from Joe Martinka. We

also thank Keith Moore and Patricia Markee for their

detailed comments on previous versions of this paper.

References

1. Ingo Barth, Gabriel Dermler, and Walter Fiederer. Levels

of Quality of Service in CINEMA. University of Stuttgart,

Report.

2. Christian R. Becker and Kurt Gheis. MAQS|Management

for Adaptive QoS-enabled Services. Proceedings of IEEE

Workshop on Middleware for Distributed Real-Time Systems

and Services, December, 1997.

3. Grady Booch, Ivar Jacobson, and Jim Rumbaugh. Uni�ed

Modeling Language. Rational Software Corporation, version

1.0, January 1997.

4. Tsu-Wei Chen, Paul Kryzankowski, Michael R. Lyu, Cor-

man Sreenan, and John A. Trotter. Renegotiable Quality

of Service|A New Scheme for Fault-Tolerance in Wireless

Networks.

5. Gabriel Dermler, Walter Fiederer, Ingo Barth, and Kurt

Rothermel. A Negotiation and Resource Reservation Protocol

(NRP) for Con�gurable Multi-edia Applications. Proceedings

of Multimedia'96, IEEE, 1996.

6. Svend Fr�lund and Jari Koistinen, QML: A Language for

Quality of Service Speci�cation. Hewlett-Packard Laborato-

ries, Tech. Report, HPL-98-10, January 1998.

7. Svend Fr�lund and Jari Koistinen, Quality of Service Spec-

i�cation in Distributed Object Systems Design. In Proc.

4th USENIX Conference on Object-Oriented technologies and

Systems. April, 1998.

8. Richard Grimes. Professional DCOM Programming. WROX

Press Ltd, 1997.

9. A Ha�d, G. V. Bochmann, and R. Dassouli. Quality of Ser-

vice Negotiation with Present and Future Reservations. Com-

puter Networks and ISDN Systems, 1996.

10. Constant Gbaguidi, Simon Znaty, Jean-Pierre Hubaux. A

Generic Service Management Architecture for Multimedia

Multipoint Communications. Proceedings of the IFIP TC6

Conference on Intelligent Networks and New Technologies,

1995.

11. Andrew Campbell, Geo� Coulson, David Hutchison. A Qual-

ity of Service Architecture. Computer Communication Re-

view, ACM SIGCOMM, April, 1994.

12. David Harel. STATECHARTS: A Visual Formalism for Com-

plex Systems. Science of Computer Programming, Vol 8.,

1987. Elsevier Science Publications B. V.

13. C. A. R. Hoare. Communicating Sequential Processes.

Prentice-Hall, 1985.

14. Gerard J. Holzmann. Design and Validation of Computer

Protocols. Prentice-Hall, 1991.

15. Jarno Rajahalme, Telma Mota, Frank Steegmans, Per F.

Hansen, and Fernanda Fonseca. QoS negotiation in TINA.

Proceedings of TINA'97 Conference. November, 1997.

16. Je�rey S. Rosenschein and Gilad Zlotkin. Rule of Encounter:

Design conventions for automated negotiation among com-

puters. The MIT Press, 1994.

17. J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Ar-

guments in System Design. ACM Transactions om Computer

Systems, Vol. 2, No. 4, November 1984.

18. Object Management Group. The Common Object Request

Broker: architecture and speci�cation, July 1995. revision

2.0.

19. K. Paul Yoon and Ching-Lai Hwang. Multiple Attribute De-

cision Making: An Introduction. Sage Publications Inc. 1995.

QoS Negotiation|1998 17




