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Volume rendering is a compute and memory
intensive application.  Researchers have attempted
to use parallel computers to speed up volume
rendering for interactive frame rates.  Many
architectures and approaches have been developed.
I developed a taxonomy of volume rendering by
forming five categories: algorithm control flow,
targeted hardware, application data characteristics,
visualization method, and publication specifics.  I
discuss the current approaches in parallel volume
rendering algorithms, and show how different
taxonomies from the developed classification
provide the ability to compare, contrast, and show
potential for future research results.
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searchers have attempted to use parallel

computers to speed up volume rendering for

interactive frame rates. Many architec-

tures and approaches have been developed.

I develop a taxonomy of volume render-
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1 Introduction

Volume rendering is a method for visualizing
three dimensional sampled data, and has come
to encompass an ever growing family of ap-
proaches. Figure 1 shows a 2D slice through
a 2563 volume of CT data. Figure 2 shows a
volume rendering of the same data where only
the bone has been segmented out by classi�ca-
tion from the gray tissue densities of Figure 1.
Because of the computational complexity, typ-
ically O(n3) for an n � n � n volume of data,
researchers have sought to use parallelism to
achieve interactivity. There has been dupli-
cation of e�ort and a lack of comparisons of
techniques.

There have been e�orts to survey algo-

rithms. Previous studies have used the follow-
ing approaches to classify volume rendering:
intermediate data representation [9, 2], view
transform or processing order [9, 2, 23], com-
pute platform [23, 6], top N algorithms [2, 1],
top N hardware platforms [6], type of par-
allelism used [6], and visualization technique
[19, 2].

Figure 3 shows eight subvolumes in the ob-
ject space on the left, and eight subimages in
the image space on the right. The view trans-
form or processing order is the order in which
the algorithm considers the primitives. Pro-
posed processing orders have been object, hy-
brid, and image order [2, 23, 9].

These earlier surveys e�ectively distin-
guished the approaches, but did not compare
or di�erentiate parallel algorithms. Recently,
there have been hundreds of parallel algorithms
published. Figure 4 shows a recent abstract
search performed in the IEEE Inspec service.
The number of papers in the �eld is growing
rapidly.

Yagel [23] took an important step in gen-
eralizing the survey of approaches to include
the platform. But, even with these classi�-
cations, it is di�cult to determine what the
best approaches might be for a new parallel
machine, or what the ideal approaches would
be for implementation in a hardware architec-
ture. Because of this, I have developed the
following taxonomy of parallel volume render-
ing approaches. I show speci�cally how the
previous classi�cations did not disambiguate
algorithms, and how my classi�cation clearly
does. I explain each characteristic of the tax-
onomy, discuss the classi�cation of some exist-



Figure 1: A view of a Spiral CT data set showing
only a 2D cut plane through the dataset of a 3D
volume of voxels.

Figure 2: Volume rendering of Spiral CT data
human vertebrae shown in Figure 1. Data Cour-
tesy of Dr. Ramani Pichumani, Stanford Uni-
versity.

ing parallel volume rendering approaches, and
draw conclusions about the most promising ap-
proaches for future research.

2 Classi�cation

To create a classi�cation for parallel volume
rendering algorithms, I designate the following
orthogonal feature groupings: algorithm con-
trol ow, targeted hardware, application data
characteristics, visualization method, and pub-
lication speci�cs. I describe each of these
groupings in more detail, and also develop new
taxonomies from them. Examples from the lit-
erature of parallel volume visualization helps
to evaluate the usefulness of my classi�cation.

Algorithm control ow. I designate two main
classi�cations for algorithm control ow, view
reconstruction and outer loop iteration data
space. The following four methods are used
for calculating the view reconstruction in par-
allel volume visualization: i) backward (B), ii)
forward (F), iii) multipass forward (MF), and
iv) Fourier (F).
The outer loop iteration data space is de-

�ned as whether the program's outer loop it-
erates through the i) object (O) or ii) image
space (I). See Figure 3. For graphics and vol-

ume rendering, object space is the source, and
image space is the destination. More details on
this important classi�cation are given in Sec-
tion 2.1.

Targeted hardware. I designate the follow-
ing �ve hardware platforms: i) graphics (G),
ii) volume rendering (V), iii) parallel shared
address space (PS), iv) parallel distributed ad-
dress space (PD), and v) distributed (D). More
explanation for targeted hardware is found in
Section 2.2.

Application data characteristics. Input data
topologies types include: rectilinear (R), curvi-
linear (C), and unstructured (U). Input data
types visualized include: scalar, vector, tensor.
Data units include: pressure, temperature, hu-
midity, etc. And �nally the voxel format speci-
�es the number of bits for the voxel and alpha,
and whether the voxel is color or gray scale.

Visualization method. The visualization
method includes very many di�erent param-
eters such as shading, the reconstruction �lter,
gradient, transmission model, and data classi-
�cation.

Publication speci�cs. In published studies,
there may be a collection of result data. I use:
date, number of processors, volume size, pro-
totype machine, asymptotic complexity analy-
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Figure 3: To achieve parallelism object space
parallism can be done by splitting the 3D ob-
ject space into separate regions and image space
parallelism can be achieved by splitting the 2D
screen space into regions.
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Figure 4: IEEE Inspec search on parallel and
(volume rendering or volume visualization) 1989
to 1998.

sis, and performance (MVoxels/second, scala-
bility).

Next I further characterize the speci�cs of
these groups with concrete examples, espe-
cially the algorithm control ow in Section 2.1
and targeted hardware in Section 2.2.

2.1 Algorithm Control Flow

The outer loop iteration data space has been
called the processing order, or data ow. In
parallel volume rendering algorithms, the pro-
cessing order designation as object space, im-
age space, or hybrid is not speci�c enough.
For example, four high performance parallel
algorithms use the hybrid designation [2, 9,
23] of processing: Lacroute's Shear Warp [8]
(Method A), Ma et al.'s Binary Swap technique
[10] (Method B), my permutation warping [22]
(Method C), and Yagel et al. and Schroder et
al.'s rendering using templates or by line draw-
ing [24, 16] (Method D). See Table 1. I separate
out these approaches more clearly by using the
view reconstruction and the outer loop itera-
tion data space. See Table 2. For the majority
of image and graphics processing a transform
based paradigm is used to develop, validate,
and analyze algorithms. In order to clarify the
di�erences between hybrid algorithms, I have
separated the view reconstruction �lter from
the processing order.

Figure 5 shows algorithms represented as a
directed graph G = (V;E), where each vertex
shows a data representation v 2 V and each arc

shows a transformation, e 2 E. This transform
graph is fundamental to image processing, vol-
ume rendering, and mathematical morphology.
The edges represent alternative ways to calcu-
late the same result. The view reconstruction
may be de�ned as backwards, forward, multi-
pass forwards, or Fourier. A backwards view-
ing reconstruction is where the inverse view
transform, T�1, is used to calculate voxel lo-
cations from pixel locations. Figure 6 shows
forwards and backwards resampling. Using a
backwards transform in volume rendering is
most commonly called ray casting. A forward
viewing reconstruction is where the view trans-
form, T , is used to calculate pixel locations
from voxel locations. Using a forward trans-
form in volume rendering is most commonly
called splatting [18]. A multipass forward
viewing reconstruction is where the view trans-
form is a decomposition into multiple trans-
forms, T = T1T2 : : : Tn, that are used to cal-
culate multiple intermediate voxel locations.
There are multiple resampling steps to com-
pute view transformed volume data, and e�-
ciency results from regular memory accesses.
A Fourier viewing reconstruction is where the
view transform is achieved by using the Fourier
space as an intermediate space. This technique
relies upon the Fourier slice theorem, the rela-
tion of a line integral to the Fourier transform
of a single projection. There are additional fac-
tors a�ecting the view reconstruction method,
such as the type of transform supported, and
any restrictions.
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Processing Order Object Image Hybrid

Algorithm A [8],B [10], C [22],D [24, 16]

Table 1: Elvin, Yagel, Levoy taxonomy groups four algorithms into the same category.

View Reconstruction Multipass Multipass Backward Backward
Forward (MF) Forward (MF) (B) (B)

Outer Loop Object (O) Image (I) Object (O) Image (I)

Algorithm A [8] D [24, 16] C [22] B [10]

Table 2: Proposed algorithm control ow grouping separates four algorithms into di�erent cate-
gories.

Once the view reconstruction is speci�ed,
the processing or outer loop iteration data
space can be determined. Instead of using pro-
cessing order, the outer loop of iteration is used
to di�erentiate algorithms. This is necessary
for parallel algorithms, which ideally use both
object space and image space parallelism for
maximum performance. Figure 6 shows �lter-
ing. Filtering can be calculated by convolving
a spatial �lter with samples to create an output
sample. This is shown by the backward edge
in the graph. The same output can also be
calculated by taking each input and convolv-
ing them with a �lter that is summed in the
output. This is the forward edge in the graph.
The backward operation convolves sequence A
with B to get sequence C, C = AOperatorB.
Psuedo code for outer loop destination process-
ing (image space, I) is

Initialize C

For c 2 C

For k 2 B \ A

C[c] = Operator(C[c]; A[c; k]; B[c; k])

The outer loop source (object space, O) pro-
cessing is

Initialize C

For k 2 B \ A

For c 2 C

C[c] = Operator(C[c]; A[c; k]; B[c; k])

The outer loop de�nes forwards or back-
wards calculation and each direction may cal-
culate the same result. Also one can calculate
the �ltered image by �rst transforming into
the frequency domain, multiplying by a �lter,

and then transforming into the spatial domain.
This is the Fourier edge transitions in Figure
5. Examples of operations that can be calcu-
lated by changing the ordering of the process-
ing loops include matrix product, gray scale di-
lation, convolution, and grey scale erosion. Be-
low I de�ne the example operators for matrix
multiply (two dimensional C = (i; j)), Con-
volution, Grey scale dilation, and Grey scale
erosion.

Op(C[c]; A[c; k]; B[c; k])

= C[i; j] +A[i; k] �B[k; j]

= C[i] +A[i� k]�B[k];

= max(C[i]; A[i � k] +B[k]);

= min(C[i]; A[i + k]�B[k]):

Other examples include spatial warping, vol-
ume rendering, ray tracing, and radiosity. Ex-
aming an algorithm at this level of detail al-
lows quick classi�cation of approaches, identi-
�cation of untried approaches, and analysis of
the most e�ective approach for the application
at hand.

2.2 Targeted Hardware

The targeted hardware designations: include
the �ve platforms: G, V, PS, PD, and D. The
graphics hardware (G) designation means spe-
cial purpose graphics hardware, or hardware
that is optimized for computer graphics ren-
dering. The volume rendering hardware (V)
designation means special purpose volume ren-
dering hardware, or hardware that is optimized
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Figure 5: Transition graph from data spaces to
�nal rendering in image space.

voxel pixels

T

voxels pixel

T-1

Figure 6: Forward resampling or backwards re-
sampling.

for volumetric rendering. The parallel hard-
ware designation means general purpose paral-
lel hardware with a shared address space (PS)
or distributed address space (PD), or hardware
that is designed for tightly coupled general pur-
pose parallel processing. The distributed hard-
ware (D) designation means general purpose
distributed hardware, or hardware that is de-
signed for loosely coupled processing such as
networks of workstations.

There are many other designations for
characterizing the speci�c hardware platform,
which are used as subclasses of these four cate-
gories. Methods include parallelism type from
Flynn's classi�cation (SIMD, MIMD, etc.),
theoretical model of parallel computing used
for algorithm analysis (such as the parallel
random access machine, PRAM, type CRCW,
EREW, CREW), and the type of memory ad-
dressing supported (distributed address space
or shared address space).

To develop taxonomies from this multidi-
mensional classi�cation requires selecting the
most appropriate axes to investigate. The al-
gorithm control ow and targeted hardware are
focussed on in the next section to investigate
the variety of parallel volume rendering algo-
rithms now available.

3 Parallel Taxonomy

To create a parallel taxonomy, one chooses fea-
tures from the classi�cation. Table 3 is one
possible classi�cation using the primary two
classi�cations: control ow and targeted hard-

ware. I have chosen to place the view recon-
struction (4 choices) and outerloop (2 choices)
as rows, and the targeted hardware (5 choices)
as columns. This creates 40 unique combina-
tions, not all of which have a published result.
Other interesting combinations can be created,
by choosing the parameters that are most rele-
vant for the variants that are being compared.
In order to see the separation of techniques,
I have also listed alphabetically a selection of
parallel volume rendering results with targeted
hardware, reconstruction, outerloop, and data
grid type in Table 4.

Certain approaches have not been exam-
ined, or others have had very much emphasis.
Backwards view reconstruction image space
outer loop on general parallel hardware has had
many publications for example [10, 11]. And,
of course, not all combinations appear to be
meaningful, for example a forward view recon-
struction with an outer loop in the image space
has not been discovered. An additional inter-
esting discrimination of the taxonomy is that
it di�erentiates between the view reconstruc-
tion of an algorithm, and the outer loop which
is used for determining control ow. Permuta-
tion warping that we have worked on is shown
to calculate a backwards view reconstruction,
while using the e�ciencies of iterating in the
object space. And, in a technique known as 3D
texture mapping [17], a backwards reconstruc-
tion is used in texture mapping, while poly-
gons are drawn in object space to invoke the
texture mapping for an object space iteration.
Making such view and iteration space di�er-
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target hardware

view rec. o. loop graphics
(G)

volume (V) parallel
shared add.
(PS)

parallel
distributed
add. (PD)

distributed
(D)

forward Object [21] [7] [20] [12]
(F) Image

multipass Object [1] [8] A [15]
forward (MF) Image [14] [16, 24] D

backward Object [17] [22] C
(B) Image [25] [4] [13] [10, 11] B [3]

Fourier Object [5]
(F) Image

Table 3: Taxonomy of parallel volume rendering using view reconstruction and outer loop (rows)
versus targeted hardware (columns)

ences explicit is a valuable insight of this taxon-
omy. Fourier volume rendering has been only
minimally investigated for parallel implemen-
tation [5].

4 Conclusions

I presented a comprehensive classi�cation for
volume rendering, that can be used to develop
taxonomies for the study of the �eld. I showed
one important taxonomy that di�erentiates ap-
proaches that could not be di�erentiated under
other classi�cations. This was possible because
of the use of orthogonal categories, and the
consideration of the sequential nature of par-
allel algorithms. The algorithm control ow
features are very important to understanding:
view reconstruction and outer loop. The view
reconstruction �lter was classi�ed by a graph,
with data representations and tranformations
arcs: backwards (B), forwards (F), multipass
forwards (MF), and Fourier (F)). The outer
loop determines whether, in the sequential con-
trol loop of processing, iterations are done in
object (O) or image (I) space.

The use of an example taxonomy showed
how { Lacroute's Shear Warp [8], Ma et al.'s
Binary Swap technique [10], my permutation
warping [22], and Yagel et al. and Schroder
et al.'s rendering using templates or by line

drawing [24, 16]{ can be distinguished. With
prior classi�cations, all four of these algorithms
would have been in one category, hybrid. Inter-
estingly, three of these algorithms, all use the
same shear warp decomposition of the view-
ing transformation [8, 24, 16], and combine ef-
�cient calculation of interpolation weights for
the intermediate sheared volume with the ef-
�ciencies of regular access to the aligned base
plane intermediate image. Further work needs
to be done to clarify if these are actually the
same algorithms, implemented on di�erent ma-
chines, and described somewhat di�erently.

The use of a taxonomy helps those in the
�eld �nd a wide perspective. Such a taxon-
omy can point out areas that have not been
explored, and makes it easier to compare one's
work. The work is also valuable for those enter-
ing the �eld to get a fast introduction with the
right context. I have denoted the important
parameters for a more general classi�cation of
parallel volume rendering. I have shown one
possible table of approaches. There are hun-
dreds of published algorithms, and hopefully
this classi�cation will help researchers to un-
derstand and improve upon them.
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