
Automated End-To-End System Diagnosis
of Networked Printing Services Using
Model-Based Reasoning

George Forman, Mudita Jain, Masoud Mansouri-Samani,*
Joe Martinka, Alex Snoeren†

Software Technology Laboratory
HPL-98-41 (R.1)
September, 1998

E-mail:[gforman,jainm, martinka]@hpl.hp.com
mms@hpprsdl.sc.hp.com; snoeren@mit.edu

distributed service
management,
client-server systems,
automated end-to-end
diagnostics,
model-based reasoning,
MBR,
network printing,
artificial intelligence

Modern applications increasingly depend on services that are
distributed across the infrastructure, for example, printing,
mail and database services. This is especially so in mobile
computing, where network access is used to compensate for the
paucity of onboard resources. However, the increased
dependence on distributed services poses a challenge to IT
departments whose personnel and tools typically focus on
individual components of the distributed service. This calls for
IT management tools that have an end-to-end perspective on
entire distributed services.

We developed a prototype of such a tool for distributed printing
services and tested it in a large IT department. The diagnostic
tool (1) discovers the dependencies between modeled
components, (2) gathers information from the distributed
environment, (3) diagnoses diverse system problems, and (4)
monitors some components to allow proactive resolution of
certain classes of problems before users encounter them. Our
approach used model-based reasoning as the fundamental
technology for the prototype.

IT personnel were delighted with this tool, especially its ability
to correlate information from multiple heterogeneous
subsystems. During a two-month experiment, its use was
credited with fewer support calls overall, and a 7%
improvement in the percentage of printing related problem
calls that are resolved during the initial call to the help desk.

*Hewlett-Packard Company, Solution Services Division, Santa Clara, California
†Massachusetts Institute of Technology, Laboratory for Computer Science, Cambridge, Massachusetts
 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

AUTOMATED END-TO-END SYSTEM DIAGNOSIS OF NETWORKED

PRINTING SERVICES USING MODEL-BASED REASONING

George Forman, Mudita Jain, Joe Martinka,
Masoud Mansouri-Samani, Alex Snoeren1

Hewlett-Packard Laboratories
Palo Alto, California and Bristol, U.K.
gforman, jainm, martinka@hpl.hp.com,

mms@hpprsd1.sc.hp.com, snoeren@mit.edu

Modern applications increasingly depend on services that are distributed across the
infrastructure, for example, printing, mail and database services. This is especially so in mobile
computing, where network access is used to compensate for the paucity of onboard resources.
However, the increased dependence on distributed services poses a challenge to IT departments
whose personnel and tools typically focus on individual components of the distributed service.
This calls for IT management tools that have an end-to-end perspective on entire distributed
services.

We developed a prototype of such a tool for distributed printing services and tested it in a
large IT department. The diagnostic tool (1) discovers the dependencies between modeled
components, (2) gathers information from the distributed environment, (3) diagnoses diverse
system problems, and (4) monitors some components to allow proactive resolution of certain
classes of problems before users encounter them. Our approach used model-based reasoning as
the fundamental technology for the prototype.

IT personnel were delighted with this tool, especially its ability to correlate information from
multiple heterogeneous subsystems. During a two-month experiment, its use was credited with
fewer support calls overall, and a 7% improvement in the percentage of printing related problem
calls that are resolved during the initial call to the help desk.

Keywords: distributed service management, client-server systems, automated end-to-end
diagnostics, model-based reasoning, MBR, network printing, artificial intelligence

1 Introduction
Business users in modern computing environments increasingly rely on distributed services,

i.e., services that are provided by an ensemble of distributed components. For example,
distributed printing services depend on the correct interoperation of printers, client computers,
and one or more intermediate print spoolers. Mobile users have a heightened dependence on
distributed services, as they tap into the infrastructure to help compensate for the resource
constraints of their mobile devices [Rud98, Zen97].

The growing complexity and business importance of distributed services puts a great deal of
pressure on IT departments, and may cause a breakdown in traditional support where the division
of responsibilities within the IT shop and their often low-level management tools hinders the
diagnosis and recovery of distributed services. The increasing dependence on distributed services

1 Alex Snoeren worked on this project as a student research intern. He is now with the MIT Laboratory for
Computer Science.

2

makes it harder for help desk staff to resolve problem calls— they must often cope with disparate
independent tools manually to diagnose the various parts of the whole system and then coordinate
repair across IT services. Increasingly, mobile systems mean additional problems with dynamic
reconfiguration and users that are not familiar with the proper configuration. The result: more
user down time. This situation heightens the need for management tools that are capable of
addressing distributed services. We hypothesize that such tools will make a key difference to the
future of IT management.

To test this hypothesis we collaborated with the Hewlett-Packard Labs IT department,
addressing their most significant problem, according to their analysis: distributed printing. In this
domain, the points of failure include hardware, software drivers and incorrect configurations
anywhere along the network path from the client machine, to the print server, to the printer itself
(shown in the upper portion of Figure 1). The enterprise scale of these print services at HP Labs
provides a test-bed of over 350 printers (50 different models), 9 official spoolers, over 1200
employees, homed in seven buildings at two sites. The clients and print servers are mixed HP-UX
and Windows NT, with mobile computers typically running Windows 95. Spooled jobs regularly
cross operating system platforms.

We prototyped and deployed a sophisticated tool to automate diagnosis and monitoring of
this environment. The tool employs various remote access mechanisms to gather needed
information from the distributed components. Control and diagnosis is managed by an HP-
developed logic language and reasoning engine: Flipper [Pel95]. Besides system integration
issues, our efforts were concentrated on building a logical model of the distributed printing
service. Model-based reasoning enables the same model to be used, for example, for diagnosis,
verification, monitoring, and documentation [Wil96, Roc97]. It is harder to leverage such re-use
from traditional, imperative programming approaches.

End-user
workstations

Print Servers (spoolers)

NT
Network Printers

Support
Browsers

http

UNIX

Model-Based
Reasoning
Diagnosis

Server Configuration DB

Print Service Models

agent protocol

Win32 API
lp commands

ping

SNMP

Figure 1: Conceptual model of the distributed print service (top) showing
the various instrumentation methods (middle) employed by our prototype
(bottom).

3

The next section describes highlights of the prototype’s design and operation. Section 3
summarizes the main results and lessons learned. Section 4 discusses related approaches, and the
last section concludes with future work.

2 Our Prototype
The upper portion of Figure 1 depicts the conceptual model of the distributed printing service

(end-user workstations, print servers, and printers) with typical print job spooling relations among
them. The lower portion of Figure 1 shows the architecture of our prototype. Central is a model-
based reasoning server that is accessed via Java applets that run in the web browsers of the
diagnosticians. Serving the user interface via the web makes our tool easily and simultaneously
accessible to various potential user populations, including help desk, printer support, server
operations, and end-users of the printing service2.

The user-interface component instructs the general purpose reasoning engine to load the
models specific to the distributed printing service; models may exist for other distributed services
as well [Mar97]. A configuration database for the local site serves to define organizational
policies, supported devices, etc. This database is also used as a cache for slowly changing
information, since automated diagnosis tends to be slow in large distributed environments without
substantial concurrency.

The middle portion of Figure 1 shows the instrumentation methods used for gathering state
from the distributed infrastructure. These include SNMP, network ping, remote procedure calls to
the Win32 printer management API, remote shells for UNIX commands (e.g. lpstat), and a
protocol for communicating with our “PrintMedic” agent. This agent runs on the client’s machine
when its owner asks for printer system diagnosis support. In the general case, remote agents are
needed for distributed diagnosis to improve performance where reference locality is important, as
well as to enable remote access to the management information on remote systems that have
security or legacy issues.

2.1 Model Information
In modeling the print service components, we conformed as much as possible to the

applicable Common Information Model schemas of the Desktop Management Task Force
standardization effort [CIM]. We wrote the models in HP's Flipper Modeling Language (FML), a
declarative, rule-based language derived from previous HP Labs research [Pel95]. These models
are the main structuring tool, containing a typed inheritance hierarchy defining the relevant
managed objects and associated rules. The rules express behavior (model), discovery (query) and
repair (action). A model's objects can also import or inherit the definitions contained in other
models. Figure 2 illustrates the elements of such models.

Our prototype's model consisted of 4400 lines of FML statements. An object hierarchy based
on CIM's single inheritance proved to be somewhat troublesome, but workable. In the rule source

2 Although in this study we did not pursue the end-user population, they could potentially use such a tool to
isolate the cause of their troubles before contacting the help desk, ideally accelerating the time to repair.
This could also be useful during off-hours.

4

Imported
Models

Access
Modules

Real World

FML Model Structure

Core
Objects

Model
Objects

Methods

Objects

Rules Action Rules

Query Rules

Model Rules

Figure 2: Modeling language components comprised of object-based rules
that model behavior, queries and actions, with associated methods for
accessing the real world.

sample below, a typical rule, okToPrintOn is defined in terms of ten other rules. This rule tests
the status of a particular printer from a selected desktop. After checking network connectivity,
the rule discovers the spooler(s) involved, and recursively calls other rules that check their health.
Finally, the printer itself is checked for correct status.

 [ComputerSystem m] okToPrintOn [Win32Printer p]
 IF

// Check that the machine itself is on the network
 [m] networkReachable &

// First check that the printer really does point to a
// physical printer.

 [p] mapsToPhysicalPrinter [RealPrinter pp] &
// Now check that the physical printer does not have any
// critical problems, i.e., offline, out of paper, etc.

 [pp] readyToPrint &
// Check that the spooler and TCP processes are running on
// the machine.

[m] spoolerServiceOK &
// Check that the printer queue is not paused.

 [p] queueStatusOK &
// If printer is redirected to Server s (UNIX or NT),
// recursively diagnose machine s, and printer sp.

 (([p] redirectsTo [ComputerSystem s] usingShare [Printer sp] &
 [s] serverOKToPrintOn [sp]) |
 // If printer directly connected, check job queue

// for the printer on the machine.
 ([p] directlyPrintsFrom [m] & [p] queueOK)) &

// Finally, check the printer configuration on machine,
// the driver version, language, color attributes, etc.

[m] printerConfigurationOK [p].

5

The bindings in the parameters of these rules are modeled objects; their types are italicized in
the listing. Some of these objects, such as Printer and Win32Printer (derived from Printer) are
logical components, whereas RealPrinter is a physical component. The same rule can be used for
monitoring, repair (using 'action' rules to make a configuration correct), and discovery (by leaving
a variable unbound).

Most of the rules in the system are shorter than the one listed above. The reasoning engine
uses these rules in a backward-chaining system designed for performance in a large system. The
system chains backwards from high level goals in order to limit instrumentation overhead for real
world facts on a need-to-know basis. The relative simplicity of these rules is due to the existence
of a reasoning system. It acts to prove rules by discovering bindings for the rule parameters, using
backtracking when necessary.

This approach taken here for networked printer systems is applicable to a broad array of
distributed applications and services where inherent structure and relationships can be exploited
by modeled behavior. Previous prototypes by our group had demonstrated management tools
using model-based reasoning monitoring and diagnosing service failures (e.g. performance
degradation) of web-enabled distributed transaction systems [Mar97].

2.2 User Interface Operation
We now describe a typical interaction with the help desk. After a user calls with a printing

problem, help desk has the user run the PrintMedic agent3. It begins by displaying the local host
name, which the user reads back over the phone to the help desk4. Help desk then directs the
diagnosis server to contact the agent, which then enumerates the list of local printer
configurations and returns spooler binding information from the client's print management
system. The help desk selects which printer configuration to pursue. The reasoning engine uses
the models to check the configuration and state of the client, all intermediate servers, and the
target printer for consistency. If there is a backlog of jobs on the server, the engine also checks
all other servers that are known to spool to the printer, checking that at least one is making
forward progress. A scrollable window in the lower half of the user-interface (Figure 3)
enumerates all the problems found with any of the distributed components or with their mutual
consistency.

The example in Figure 3 shows that the selected target printer, lj12, requires user
intervention, and that multiple spooling queues destined for that printer are backing up. This
example highlights that mutual interference of distributed systems can complicate troubleshooting
and that a reasoning tool can help keep track of the implicit interdependencies. The other panels
of the user-interface provide for drill-down on a specific printer to an adjustable level of detail, or
to the collection of jobs queued at one or all servers that are destined for a specified printer.

One of the user interface panels provides solely for proactive monitoring. This panel is
reproduced in Figure 4. When monitoring is enabled, the user-interface periodically updates two
sorted lists. The first shows all active server queues, with those at the head of the list diagnosed
as “stuck.” The other shows a list of IT supported printers and their top diagnoses, sorted by
severity.

3 This step would be transparent in production systems as support agents are made ubiquitous.
4 This agent functionality was added in the second month of the experiment, as experience indicated that
many users did not know the network name of their desktop system. Scheduling two-iteration release and
observe cycles admitted feedback-directed improvements, such as this example.

6

Figure 3: Help Desk user screen showing the whole system diagnosis tab.
This summary screen provides for end-to-end system diagnostics. Other
tabbed panels provide detail drill-down for specific components.

Figure 4: This screen provides continuous monitoring of selected parts of the
distributed print infrastructure. The upper panel shows print server queues
that are backing up. The lower panel shows troubled printers.

7

3 Results
In this section we summarize the experience from the use of this tool at the IT help desk, and

discuss fundamental issues in concurrency and robustness for any such tool.
The IT personnel who use our tool like it— enough so that they invested scarce resources to

keep the prototype running when the experiment ended. During the two-month long experiment,
the help desk has been able to resolve 7% more of the printing calls without generating trouble
tickets for other members of the IT team. Even in cases where the issue is not resolved
immediately, they claim that it aids in quickly identifying the right IT expert to fix the problem.

Particularly appreciated was the tool’s ability to gather information from many sources and
present it in one place. Prior to the deployment of our prototype, help desk personnel would omit
some fundamental checks, such as whether the printer was online, based on their intuition of
typical problem calls, but anecdotal evidence suggests that these assumptions often go unchecked
for long periods of time, delaying the diagnosis.

In the first month of the experiment, the diagnosis panel showed only the problem diagnoses,
sorted by decreasing severity. However, IT personnel wanted to see more details, e.g., when the
printer was last re-booted and which checks completed satisfactorily. Their principal reasons for
this were to gain confidence in the tool and to help continue diagnosis when the models fail to
find the problem. This will inevitably happen since models are generally incomplete. Even if they
were complete at deployment, they are unlikely to be updated in lock step with changes in the
behavior of the targeted distributed system.

Diagnosis of distributed systems can require a great deal of information about the system.
While caching is useful here, startup performance needs to be considered as well. Solutions in
this area include predictive caching and incremental processing of results. The implementation of
the reasoning engine is currently single threaded; as a result, information collection can take a
significant portion of the interactive response time. We are disappointed with the response time of
some diagnostic rules, which sometimes take minutes to resolve.

We believe concurrency will be essential in collecting information for real-time diagnosis,
particularly where the failure or slowness of any component in responding might delay the overall
diagnosis. In this special case of diagnosing distributed systems, parallelism can be attained by
simultaneously querying multiple remote components for information, or by asking each
component for a self-diagnosis.

Writing robust code for diagnosis of distributed components is a challenge and presents
continued opportunity for research. Such code is expected to function properly even when the
environment is not. Traditional applications in such circumstances can either quit safely or
operate at reduced functionality. Additional software engineering research may help with such
programming rife with complex exception handling.

4 Related Approaches
We considered different choices for knowledge representation and reasoning available to us

in constructing our diagnosis tool. These include case-based reasoning [Kol91], rule-based
reasoning [Dav88], decision trees, Bayesian probability networks [Hec95a], and model-based
reasoning [Dav84].

Case-based and rule-based representations are methods of reasoning backwards from known
symptoms to known problems. In case-based systems, problems are enumerated, and symptoms
are explored to distinguish between cases. The method of representing the knowledge and its use
in inference are intimately linked. We wanted to exploit the inherent relationships between
functioning parts of the printer system, preferring to describe correct behavior of components

8

rather than documenting all its failure modes. In our experience in the distributed systems
domain, this description is often the easier task.

A decision tree is a tool for inference that is constructed to represent a particular domain.
Note that as there is also no explicit model of the internal workings of a system, the creation of
the knowledge need not require much time, since it can be arbitrarily incomplete. However,
when these methods fail to produce a diagnosis, there is no information for the diagnosticians
about which components were checked out as being “OK,” and where they might next direct their
attention. Also, the resulting representations are not modular in any easily maintainable fashion.

Bayesian network technology could be applied in this arena to reason about the uncertainty,
successively suggesting the next most useful observation to acquire and the most likely causes of
failure for printer systems [Hec95b]. Specifying the many conditional probabilities required for
this network is a barrier to knowledge authorship. This project demonstrated that useful diagnosis
does not require the explicit consideration of the uncertainty when diagnosing distributed
systems' fallible observations.

Recent work in producing an object-oriented variation on Bayesian networks [Kol97] could
be leveraged, instantiating network fragment classes for each computer and printer involved in
the diagnosis. Further, its object-orientation aligns with our model-based representation. This
Bayesian guidance to the model-based inference algorithm might be valuable in domains with
significant uncertainty where results are conditional.

By contrast, in model-based reasoning, the specification (or knowledge representation) of the
domain may be considered independently of the inference techniques used. De Rocha and
Westphall presented a successful model-based approach for proactive network management
[Roa97]. Their work focused on discovering trends for heterogeneous network congestion using
monitoring and declarative rules of behavior. Eberhardt et al. used models to abstract behavior
and component relationships, not for operation diagnosis, but for creating a virtual environment
for TMN network system testing during design [Ebe97]. Such practices lead naturally into
extending these models for diagnosis in an operational setting.

5 Conclusion
Supporting enterprise-wide distributed systems, such as the printing infrastructure at Hewlett-

Packard Labs, is typically a difficult task. IT personnel need to know and use a diverse collection
of tools, which individually focus on a small homogeneous piece of the system without
knowledge of the interdependencies. As a result, the user must also understand the interrelations
among specific components and re-run the tools on all the appropriate components, e.g., all
spoolers serving jobs to a printer. We addressed this need with a practical experiment using
model-based reasoning to capture the component behaviors for a help desk support problem. This
tool markedly increased the quality and speed of a relatively complex distributed printing
diagnosis. We believe this approach neatly applies to other distributed service problems.

With the growing business importance, complexity and interdependencies among distributed
services, IT departments require management tools that shoulder more of the burden than is
traditional. Specifically, the tools should have knowledge of the interconnections and automate
much of the diagnosis. Towards that end, great leverage can be gained by providing a machine-
readable model of how the system is supposed to function (model-based reasoning), along with a
database describing the proper configuration of the local instances. Mobility complicates the
effort by requiring this knowledge to be encoded in a parameterized fashion so that correct
configurations can be dynamically generated for new locations and situations.

9

In order to deploy this new breed of tools, third-party software must expose appropriate
management information about their components using standardized interfaces and schema, such
as the Application Response-time Management [ARM] and the Common Information Model
[CIM] standards. Even so, they will need to evolve or be supplemented by better levels of
behavioral modeling. The management models need to capture the relationships among
components as well as the ways they interact. These advances will be important for the future of
automated IT management to support mobile computing, quality of service, and service level
monitoring of distributed systems.

Acknowledgements
We are grateful for implementation assistance from Claudio Bartolini, Marco Casassa Mont,

Elizabeth Ogston, (HP Laboratories - Bristol) and members of the HP Labs SmallWeb project.
We benefited from the irreplaceable knowledge, feedback, and patience of members of HP Labs
IT organization. The three anonymous reviewers' comments helped to focus the final version of
the paper. Finally, we want to thank Tracy Sienknecht who supported and encouraged our
research.

10

References

[ARM] Application Response-time Measurement standard, http://www.hp.com/go/ARM
[CIM] Common Information Model, http://www.dmtf.org/work/cim.html, a Desktop

Management Task Force (DMTF) proposed Web-Based Enterprise Management
(WBEM) standard, http://wbem.freerange.com

[Dav84] R. Davis. Diagnostic Reasoning Based on Structure and Behavior. Artificial
Intelligence, 24:347-410, 1984.

[Dav88] R. Davis and W. C. Hamscher. Model-Based Reasoning: Troubleshooting. In
Exploring Artificial Intelligence: Survey Talks from the National Conferences on
Artificial Intelligence, editor H.E. Shrobe, Morgan Kauffman, San Mateo, CA,
pp. 297-346, 1988.

[Ebe97] R. Eberhardt, S. Mazziotta, D. Sidou. Design and Testing of Information Models in a
Virtual Environment. Integrated Network Management V, pp. 461-472, May 1997.

[Kol97] D. Koller and A. Pfeffer. Object-Oriented Bayesian Networks, In Proceedings of the
Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-97),
pp. 302-313, August 1-3, 1997.

[Hec95a] D. Heckerman, J.S. Breese, K. Rommelse. Decision-Theoretic Troubleshooting.
Communications of the ACM, 38(3):49-57, March 1995.

[Hec95b] D. Heckerman, M. Wellman. Bayesian Networks. Communications of the ACM,
38(3):27-30, March 1995.

[Kol91] J. L. Kolodner. Improving Human Decision Making through Case-Based Decision
Aiding. AI Magazine, 12(2):52-68, 1991.

[Mar97] J. Martinka, J. Pruyne and M. Jain. Quality-of-Service Measurements with Model-
Based Management for Networked Applications, Technical Report HPL-97-167 (R1)
http://www.hpl.hp.com/techreports, Hewlett-Packard Labs, 1997.

[Pel95] A. R. Pell, K. Eshghi, J-J. Moreau and S. Towers. Managing in a Distributed World.
Integrated Network Management IV, editors A. S. Sethi and Y. Raymond, Chapman &
Hall London, pp. 95-105, 1995.

[Roc97] Mareo A. da Rocha and Carlos B. Westphall. Proactive Management of Computer
Networks using Artificial Intelligence Agents and Techniques. Integrated Network
Management V, Chapman & Hall London, pp. 610-621, May 12-16, 1997.

[Rud98] A. Rudenko, P. Reiher, G. J. Popek and G. H. Kuenning. Saving portable computer
battery power through remote process execution. Mobile Computing and
Communications Review, 2(1), January 1998.

[Wil96] B. C. Williams and P. P. Nayak. Immobile Robots: AI in the New Millennium. AI
Magazine, pp.17–34, Fall 1996.

[Zen97] B. Zenel and D. Duchamp. General-purpose proxies: solved and unsolved problems. In
Proceedings of the Sixth Workshop on Hot Topics in Operating Systems, May 5-6,
1997.

