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1 Introduction

Watermarking of images has gained a lot of interest in the last few years [1, 2]. This is mainly

due to the ease with which digital images are transfered through the Internet. Embedding

a watermark in an image (also called watermarking), means embedding information in the

image, in a manner which does not deteriorate the image quality to the viewer. Usually there

are additional requirements from the watermark [1], like immunity to tempering, retrieval

ease, and di�cult duplication. Possible applications of watermarking are tracing of illegal

image documents, authentication, etc.

A few works deal with watermarking of printed material, e.g. [3], where watermarking of

printed text is discussed. The watermarking is done by modifying spaces in the printed

output, like changing spaces between lines, words etc. However, this method will not work

for printed images, since images are composed of pixels rather than lines of characters.

In this report we deal with watermarking of printed images. Printing an image is di�erent

from printing a text, since a halftoning process is involved, which converts an input image

of continuous gray levels to a binary image of black and white. A similar work, dealing with

watermarking of hard-copy images, is [4], however the solution there is di�erent.

The problem of watermarking of hard-copy images can be formulated as follows: Given an

input image and a watermark bit-stream, produce a halftoned version of the input image,

with a seamless watermark.

In this report only a speci�c halftoning method is considered, that of dithering [5]. In

dithering, each pixel in the input image is compared to a threshold in a dither-matrix, and

is rendered accordingly. Usually one dither matrix of small size, say 16� 16 pixels, is used,

and duplicated to tile the whole image. The idea presented in this paper is to use a sequence

of two (or more) di�erent dither matrices in the halftoning process to encode the watermark.

When two matrices are used their order is the binary representation of the watermark.

We mention in this stage that a crucial problem, not discussed in this report, is the problem

of designing two dither matrices, that will tile seamlessly. Dither matrices are designed to be

self-compliant in the sense that the matrix is assumed to be on a torus [9]. One possibility

is to modify design procedures, so as to produce two dither matrices which are checked to

be compliant. Another alternative might be the Quad-Fly algorithm [10], which is capable
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of producing numerous compliant dither matrices.

The organization of the report is as follows: Section 2 describes the terms, and formulates

the problem as a communication problem. In Section 3 the image pixels are assumed to

be independent and identically distributed (i.i.d.), and a theoretical analysis is made which

leads to a closed form decoding algorithm. In Section 4 a characterization of an optimal

matrix pair, in terms of the above decoding algortihm, is given. Finally, an example is given

in Section 5. Summary and future directions are given in Section 6.

2 Problem Formulation

In order to facilitate notation, we order the image pixels as a one-dimensional vector. This

is merely to avoid the double index notation in the sequel. In the same manner, the dither

matrices are ordered to form one-dimensional vectors.

The problem of embedding a watermark in the halftoning process can be formulated as

shown in Fig. 1:
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Figure 1: Schematic description of the encoding process.

� ~x - Input contone image, of size L:

~x = fxig
L
i=1 ; xi 2 [0; 1] : (1)
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� ~y - Output halftone image.

~y = fyig
L
i=1 ; yi 2 f0; 1g : (2)

� ~B - The watermark data. We assume K possible symbols, and that there are M

symbols to be marked:

~B = fBig
M
i=1 ; Bi 2 f1; : : : ; Kg : (3)

� ~D1; ~D2 : : : ~DK - Dither vectors corresponding to di�erent symbols. The size of the

dither matrices is denoted as N :

~Dj =
n
Dj
i

oN
i=1

j = 1 : K; Dj
i 2 [0; 1) : (4)

� ~D - The dither vector as selected according to ~B. The selection can be changed once

every N input-elements have been dithered.

~D 2
n
~Dj
oK
j=1

: (5)

In what follows, we assume a binary watermark (K = 2) with equal symbol probability, and

an input image ~x of size L = N , namely M = 1 (since we use L =M �N).

The output halftone image ~y is determined according to the following rule:

yi =

8>>><
>>>:

0 if xi � Di ;

1 if xi > Di :

(6)

Now that we have seen how the output vector ~y is created, we can make the following

observation about the dither matrices. Since the average output value should be similar

to the average input value (see also discussion of mean-value reproduction rule in [8]), the

dither matrix elements are permutation of a single set, namely

8j = 1 : : :K ; ~Dj = Permutation of

(
i

(N + 1)
; i = 1 : : :N

)
: (7)
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One last word about notations: The notation Pr(�) is context dependent and is used to

describe both the probability of an event (discrete-case, e.g. yi), and the probability-

distribution-function of a random variable (continuous-case, e.g. xi). The context will be

clear from the discussion in the text.

2.1 Formulation as a communication channel

The following interpretation of the process as a communication channel is useful, and enables

performance analysis of the system. In this model the data to be transmitted is ~B, and the

noise is created by the halftoning process, as induced by the input image ~x. This is shown

schematically in Fig. 2. The problem at hand is to �nd the best receiver for extracting the

information.

x
D2D1 Dk

D Noisy Cchannel

Data Modulation Channel Output

B y

Figure 2: Schematic description of the watermarking process as a communication channel.

Using a MAP (Maximum a Posteriori) based receiver, the decision rule is [6]:

�(~y) =
Pr(~y= ~D1)

Pr(~y= ~D2)

8>>><
>>>:
> 1 ) Decode ~D1 ;

< 1 ) Decode ~D2 :

(8)

(Cases of �(~y) = 1 can be decided randomly).

Let us now de�ne the error 'e' as either '1' or '0', describing whether an error has occurred

or not. The error probability, incurred by this decision rule, can be written as

Pr(e = 1=~y) =
min

n
Pr(~y= ~D1) ; Pr(~y= ~D2)

o
Pr(~y= ~D1) + Pr(~y= ~D2)

: (9)
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The terms in the likelihood ratio can be written explicitly, as follows:

Pr(~y= ~D1) =
Z
~x
Pr(~y= ~D1~x) Pr(~x) d~x : (10)

The probability Pr(~y= ~D1~x) is either 1 or 0, as can be seen from (6):

Pr(~y= ~D1~x) = 1 i� the following holds

8i = 1; : : : ; N

8>>><
>>>:

(yi = 0) and xi 2 [0; D1
i ]

(yi = 1) and xi 2 (D1
i ; 1]

: (11)

Inserting it into (10) leads to:

Pr(~y= ~D1) =

�����
Z yN

xN=D1

N

� � �
Z y1

x1=D1

1

Pr(~x) d~x

����� : (12)

Equation (12) characterizes the communication channel described in Fig. 2. In the sections

to follow, we assume a speci�c probability distribution of ~x, and describe in a closed form

the decoding algorithm, evaluate the error-probability, and characterize the pair of dither

matrices which minimize it.

3 Optimal decoding scheme

In this section we assume that ~x is composed of N independent random variables, each with

a uniform distribution in [0; 1]. Therefore, the probability of ~x is

Pr(~x) =
NY
i=1

Pr(xi) = 1 ; (13)

The �rst equality follows from the i.i.d. of ~x, and the second follows from the fact that xi is

uniformly distributed as described above.

Substituting into (12), we arrive at

Pr(~y= ~D1) =

�����
Z yN

xN=D1

N

Pr(xN) dxN � � �
Z y1

x1=D1

1

Pr(x1) dx1

����� =
NY
i=1

���yi �D1
i

��� : (14)
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Another helpful point-of-view is the geometric one, where each of ~D1; ~D2; and ~y, is described

as a point in RN . Moreover, ~y is a vertex of the unit cube [0; 1]N , and ~D1; ~D2 are interior

points in that cube. The decision rule then reduces to selecting the dither-matrix-point

'closest' to ~y, where the distance d
�
~y; ~D

�
is de�ned as

d(~y; ~D)
4
=

NY
i=1

jyi �Dij ; (15)

namely the N-dimensional volume of the sub-cube de�ned by ~y and ~D.

4 Matrix pair characterization

In this section we de�ne an error criterion, and characterize the pair of matrices ~D1; ~D2 which

minimize it. Recall that the two matrices are permutation of the same set, and are there-

fore permutations of each other. Therefore, the characterization describes the permutation

relating the two matrices.

Let ~D1 be a dither vector,

D1
i = Permutation of

(
i

(N + 1)
; i = 1 : : :N

)
: (16)

Let the output vector be denoted as ~yj 2 f0; 1g
N , and let J denote the set of 2N such vectors.

Let us now compute the average error:

E feg =
X

e=f0;1g

e � Pr(e) (17)

=
X

e=f0;1g

e �
X
j2J

Pr(e=~yj) Pr(~yj) (18)

=
X
j2J

Pr(e = 1=~yj) Pr(~yj) : (19)

Writing explicitly,

Pr(~yj) = Pr(~yj= ~D1) Pr( ~D1) + Pr(~yj= ~D2) Pr( ~D2) (20)
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=
1

2

h
Pr(~yj= ~D1) + Pr(~yj= ~D2)

i
: (21)

Substituting equations (9) and (21) into (19), we get

E feg =
X
j2J

min
n
Pr(~yj= ~D1) ; Pr(~yj= ~D2)

o
h
Pr(~yj= ~D1) + Pr(~yj= ~D2)

i �
1

2

h
Pr(~yj= ~D1) + Pr(~yj= ~D2)

i
(22)

=
1

2

X
j2J

min
n
Pr(~yj= ~D1) ; Pr(~yj= ~D2)

o
(23)

=
1

2

X
j2J

min
n
d(~yj; ~D1) ; d(~yj; ~D2)

o
; (24)

where the last equality holds, using (15), for the i.i.d. case.

Claim 1 The permutation ~D2 = P( ~D1) for which

D2
i = 1�D1

i 8i ; (25)

minimizes E feg.

Proof of Claim 1

Before dwelling on the proof, we need the following Lemma.

Lemma 1

d(~yj; ~D) = d
�
P(~yj);P( ~D)

�
8j and 8P : (26)

Proof of Lemma 1 The proof of the lemma is immediate due to the fact that d(�; �) is a sep-

arable operation, as described in (15). Thus, a permutation only changes the multiplication

order in (15).

To simplify notations, let us note that the permutation described in (25) is self invertible,

namely ~D1 = P( ~D2) and ~D2 = P( ~D1).
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Following the lemma, rather than looking for a permutation which minimizes (24), we min-

imize X
j2J

min
n
d(~yj; ~D1) ; d(P(~yj); ~D1)

o
: (27)

Now, let us examine the term

dj
4
= d(~yj; ~D1) ; (28)

as a function of j. There are 2N vertices ~yj. There are therefore 2N values which dj can

acquire (some of which may be equal). Let us order these values in a descending order. Each

of these values appears twice in

min
n
d(~yj; ~D1) ; d(P(~yj); ~D1)

o
; (29)

once as the value of d(~yj; ~D1) for some j, and once as the value of d(P(~yj); ~D1) for a possibly

di�erent j. Thus, (27) is minimal i� none of the 2N

2
highest values of dj is the result of (29).

Therefore, P should associate vertices which lead to one of the 2N

2
top values of dj, with

vertices which leads to one of the 2N

2
lower values of dj.

It is important to note that not every association of vertices is a valid permutation. For

example, there is no permutation that associates vertex f1; 1; 1; 1g to f0; 0; 0; 0g.

Lemma 2 The association of vertices

~yj () ~1� ~yj ; (30)

where ~1 is a vector of all ones, leads to the following pair, d(~yj; ~D) and d
�
~1� ~yj; ~D

�
, where

one of them is from the lower half values of dj, and the second is from the top half values of

dj.

Proof of Lemma 2 The proof is immediate since from (15)

d(~yj; ~D) � d
�
~1� ~yj; ~D

�
= Const 8j 2 J : (31)
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To prove the claim, it is su�cient to show that using P in (25), and given a vertex j, the

following holds

d
�
P(~yj); ~D

�
= d

�
~1� ~yj; ~D

�
: (32)

We start by computing the left hand-side of (32):

d
�
P(~yj); ~D

�
= d

�
~yj;P( ~D)

�
(33)

=
Y

i=~yj(i)=0

(1�Di) �
Y

i=~yj(i)=1

Di : (34)

And the right hand-side is

d
�
~1� ~yj; ~D

�
=

Y
i=~yj(i)=0

(1�Di) �
Y

i=~yj(i)=1

Di ; (35)

and this completes the proof.

Evaluating the average error for various dither matrix sizes, N , gives a Rate-Distortion

graph, since the size of the dither matrix is inversely proportional to the number of symbols

we can encode in a given image. The rate-distortion graph, for a pair of matrices determined

according to (25), is described in Fig. 4. It is important to recall that N is the total size of

the dither matrix. Therefore, a value of N = 3, amounts for a dither matrix of size 1� 3.

It is interesting to note that using the dither matrix pair according to (25), leads to an equal

probability of yi being either
010 or 000. Explicitly:

Pr(yi = 0) = Pr(yi = 0= ~D1) Pr( ~D1) + Pr(yi = 0= ~D2) Pr( ~D2)

= D1
i

1

2
+D2

i

1

2
=

1

2
: (36)

5 Numerical examples

We start by describing the exact process by which the watermark was implemented, and

then analyze the results.

An 8 bit gray level image of size 1230 � 726 pixels was used as a source. This image was

dithered using dither-matrices of size 256 � 256. The dither employed here was random
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Figure 3: Rate-Distortion graph. The abscia describes the dither matrix size, N , which is inversely

proportional to the number of symbols one can encode in a given image, and the ordinate is the

average error.

dither, which is known to be inferior to other dither matrices [5, 9]. It was preferred due to

the fact that currently there is no easy method for designing two dither matrices which tile

seamlessly. For the case of halftoning with no watermarking, one dither matrix was used.

For watermarking, its optimal pair (25) was employed as a second dither matrix. A total of

15 symbols were embedded in the image. The resulting halftoned image was then processed

to extract the watermark. No printing and no scanning were involved1.

The resulting images appear in Figure 4. In this case (as expected by the large size of the

dither-matrices), all the 15 bits of data were extracted with no error. The rate-distortion

performance will have to be examined much farther if a practical system is to be involved,

which means having to cope with noise due to the printing and scanning of the image.

1The halftoned image ~y was written to a �le by the watermark encoder, and then read by the watermark decoder.
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(a)

(b)

Figure 4: (a)Halftoned image, no watermarking. (b)Halftoned image with watermark, using two

dither matrices.
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Figure 5: Rate-Distortion graph. The abscia describes the dither matrix size, N , which is inversely

proportional to the number of symbols one can encode in a given image, and the ordinate is the

average error. Three cases are considered: (a) Theoretical minimum for the i.i.d. case (solid-line).

(b) Performance on a real-image, using the optimal permutation as in (25) (dashed-line). (c)

Performance on a real-image, using two randomly permuted matrices (dotted-line).

To examine the importance of the best-permutation as compared to random-permutation,

we compared the performance of two randomly generated matrices, to that of an optimal

pair according to (25). The rate-distortion, mentioned in Sec. 4, was measured on a real-

image, as described in Fig. 5. The curve for randomly chosen permutations was obtained

by averaging the error over a very large ensemble of randomly selected permutations. The

advantage of using the optimal permutation pair is evident from the graph.

6 Summary and Future Directions

This work introduced the idea of embedding a watermark in an halftoned image. The speci�c

halftoning process discussed was the dithering method. The basic idea is to use di�erent

dither matrices to encode di�erent symbols. An i.i.d. image model was analyzed, leading

to a closed form decoding algorithm. Minimizing the corresponding average error, resulted

in a characterization of optimal dither-matrix pair. Finally, numerical examples were given,

which demonstrate the method.
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Future directions include both theoretical extensions, and practical implementation consid-

erations:

1. Full system considerations - A full system will include the scanning of a printed image,

processing the image, and then extraction of the data. This system will depend heavily

on the type of printer involved, and on the scanner quality.

2. Design of dither-matrices - The problem of designing dither matrices which tile seam-

lessly should be faced.

3. Theoretical analysis of measurement noise.

4. Introduction of error-correcting codes is important in order to cope with measurement

noise. This will have to be done while keeping in mind the typical measurement errors

that may occur.

5. Extending the characterization of optimal matrix-pair to a metric on dither matrices.

This will enable us to use more than two-matrices for the encoding process. Of course,

this de�nition will depend on the assumption as to the probability distribution of the

input image, and on the error-de�nition.
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